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1. Introduction

The theory of combinatoria geometries (or matroids, as

they were first calleda [15]) concerns properties of a matrix

which depend only on a nowledge of which sets of columns are

independent. in this sense, the study of combinatorial geo-

metries can be tilought of as linear algebra without algebra.

On the other iland, sonei of te deepest and most interesting

results in the field concern attempts to express algebraic

statements in combinatorial lianguage (an idea which dates back
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to the earliest days of projective geometry).

This paper concerns a number of problems and related

algorithms, all of which rest on the abstract notion of "pivot-

ing". In the context of matrix theory, a pivot is a single

application of the Gauss-Jordan elimination process. In abstract

combinatorial geometries, the existence of pivots is assumed as

an axiom, in the form of basis exchange property: If S and

T are maximal independent sets (bases) and y T, there

exists an element x S such that (S-x) y is a basis. If

we think of S as a coordinate basis, represented by some set

of columns in a matrix, and y is any nonzero column, the ex-

change property guarantees that one can "pivot" about some non-

zero entry in y, transforming S into a new coordinate basis

containing y.

The basis exchange property allows one to recover some

of the algebraic structure of matrices in combinatorial form.

However, major obstacles are encountered when one tries to ob-

tain combinatorial analogs of theorems involving determinants.

Questions of this type have been studied in detail by Rota [111,

[12] and others [13], [i4]. Following his approach, one of the

authors proved a "multiple exchange property for bases" [6]

which can be thought of as a combinatorial analog of the Laplace

expansion teorem for determinants: if S and T are bases of

a conmbinatorial geometry, an C S, then there exists a sub-

set B 'IC sucIi that (S-A) 3 and (T-B) A are both

bases. 'I'his is easily dleriveu from the Laplace expansion theorem

if S is represented by a coordinate basis. owever, by reducing
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the proof to elementary pivot operations, one obtains a construc-

tive method for carrying out the exchange. This method is valid

in any combinatorial geometry.

In this paper we will show how a number of results re-

lated to the multiple exchange property can be expressed as

"abstract pivot theorems", and describe the pivot algorithms

associated with them. Among other tings, we will show how

Greene's exchange theorem follows immediately from the power-

ful "matroi partition theorem" of dmonds and Fulkerson 5].

We describe this theorem in section 2, including an algorithm

which, although not essentially new, takes on a particularly

simple form in the present context. In section 3, we describe

a number of "multiple exchange theorems", all of which can be

reduced to the Ldmonds-Fulkerson theorem, and hence can be

proved by elementary pivot techniques. In section 4, we raise

a new question: can a multiple exchange of k vectors be

carried out by sequence of k single exchanges? We conjecture

that some permutation of the vectors can be exchanged sequential-

ly, and prove that this is the case for k = 2.

2. Pivot Operations and the Edmonds-Fulkerson Theorem

Recall that a combinatorial geometry G(X) consists

of a finite set X together with a collection of subsets of X

called bases, such that (i) all bases have the same size

and (ii) if S and T are bases, and y c T, then there

exists an element x £ S such that. (S-x) y is a basis. A

set A is called independent if it is contained in some basis.

'-~l---y~-~_ _ ._ .__ I_
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If it is possible to associate the elements of X with

columns of a matrix M in such a way that bases correspond

to maximal independent sets of columns, we say that G(X) is

coordinatized by M. Lxamples show that not every geometry

can be coordinatized by a matrix; nevertheless most arguments

involving the elementary tools of linear algebra - independence,

dependence, linear closure, dimension, etc. - carry over to

combinatorial geometries with no difficulty. The reader can

safely assume that any such argument appearing in this paper

can be derived solely from the axioms for bases . .

We mention two important properties: first the rank

of a subset A, denoted r(A), is defined as the maximum size

of an independent subset of A and obeys the submodular law:

r(A J B) + r(A \ ) < r(A) + r(B).

Second, if S is a basis, and y S, we say that y depends

on the set C(y,S) of elements x S such that (S-x) y

is a basis. More generally, we say Lhat y depends on a set

A if there exists a basis S such that C(y,S) A. The

set y C(y,S) is called the circuit determined Ab_ and S,

and is a minimal (in the sense of set-inclusion) dependent set.

Most important for our purposes is the fact that "dependence"

is transitive: if y depends on A, and every element of A

depends on B, then y depends on B. We will make free use

- __s1^1__-�··1�·----0--·-·-)-- -^-1

I
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of these ideas without attempting to justify our reasoning -

the reader can refer to [15] for a detailed development.

Suppose that G(X) is coordinatized by a matrix M, and

S is a basis whose columns in M are coordinate vectors.

(This means that M is in reduced echelon form with respect

to the columns corresponding to S.) For any y S, the elements

of c(y,S) can be identified immediately by looking at the non-

zero entries in column y. Each element x c(y,S) can

be replaced by y to form a new basis T = (S-x) y. We call

the operation of transforming S into T a pivot about x in

y (with respect to 6). Whenever such a pivot is possible, that

is, whenever x c(y,S), we write

y x .
S

These symbols define a directed graph with vertex set X

and a multi-labelled set of directed edges, with one label type

for each basis S.t in concrete terms, each pivot represents a

single application of the Gauss-Jordan elimination process

(applied to the colun y). Much of this paper concerns the

interpretation of these symbols in special situations.

It will be convenient to know when a chain of pivots

x-a y-- z ... w
S T U

tA related structure, called a basis graph has been introduced by
S. B. Maurer [9], [10]. The objects are formally distinct, how-
ever, since the vertices in a basis graph are bases, with edges
defined by pivots. Here, the vertices are elements of X and each
basis determines a class of edges.

�···^ll�-l*LCI11_111IIYI C-·--- I I - I - - _-
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can be carried out simultaneously. That is, if a basis appears

several times in the chain, we need conditions which guarantee that

all of the replacements involving it can be made at once.

The following lemma provides a very useful condition of this

type, which applies even when the bases S, T, ..., U come

from different geometries.

Lemma Suppose that y' y' 'Yk are elements of X and

B B ,... ,B are bases of geometries G1(X), G2 (X),...,Gk(X)-1 2 - k -' _ _

respectively. (Neither the B. I' s nor the G. 's are required

to be distinct.) suppose that

0 ... Yk-l Yk Yk
B 1 B 2 Bk

is a chain of pivots. Assume further that this chain is

minimal, in the sense that no shorter path from YO to Yk

exists using the labels B 1 , B 2, .. , Bk. Then each of the

sets

Bi = (Bi-yaYb- * yc) V Ya-lb J Yb-l J Yc-

(where B. B, = = B) is a basis in G.(X),
1-- a b -jo t

i = 1,2,...,k.

Proof: We observe that, for each B i, the pivots on elements

of Bi can be carried out sequentially, provided that the last ones

are made first. If B i appears only once in the list, then BI
1

is trivially a basis (by definition of yil1 - yi). If B

1

appears more than once, then Yi B. Yi can still be
1

I llCII^lX i. I.-. �1 11-..xl��..�-·- ...1.�..1 -, ---
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performed unless some member of the circuit c(Yi_1, Bi),

say yj, has been removed from B i in an earlier pivot. But

then there exists an arc Yi _l--- yj with j > i, whichB.

violates the assumFtion of minimalllength.

Next we describe the matroid partition theorem of Edmonds

and Fulkerson. The question is this; suppose that

G1 (X), G2(X),...,Gk(X) are geometries defined on the same set X.

Under what conditions is it possible to partition X into blocks

B. such that, for each i, b. is independent in G.? Moreover,
-1 - .............- ;1'

how can one find such a partition if it exists?

In terms of matrices, the problem can be described as

follows: suppose that M, 2'..., Mk are matrices, each

having X columns, which are stacked on top of each other to

form a large matrix M*. Under what conditions is it possible

to partition the columns of M* into sets Bi so that for

each i, the submatrix of M i determined by B i has independent

columns. The answer is contained in the following:

Theorem (Edmonds, Fulkerson) A partition of X into sets

B., independent in G i, exists if and only if for each A C X,

JAI < rl(A) + r2 (A) + ... + r k(A), where r i (A) denotes the

rank of A in G..
1

Necessity of this condition is trivial, so it suffices

to prove that a partition exists whenever the conditions are

satisfied. WVe now give an algorithm, based on pivot operations,

which shows this:

_ 1�1 I__ __�� IIIP-�---�l I_-·P�--·C� �I-.11III_·�11 ----- 
- II 



-8-

Suppose that B 1, B 2,..., k are subsets of X with the

property that B i is a basis of Gi, for each i. If U Bi = X,

we are done, since w'e can form a partition into independent

sets by removing duplicated elements. If Bi 6 X, let

y X - U bi. We must show how to rearrange the elements of

i into new sets ~I with the same property, and add y to

one of them. If this is always possible, we can continue until

X is exhausted, anu a partition is obtained.

The algorithm is based on a labelling procedure:

Step (0) Label the element y.

Step (1) For each labelled element y', label every unlabelled

element z such that y' z for some B..
i 1

Step (2) If an element common to two bases, say Bi and

Bj, has been labelled, stop. Otherwise go back to step 1.

When the labelling procedure stops, there is a chain

Y0 I) 1 Y2 2 ' -+ Yj_ Yj

where yj is conUlon to two bases, say B ( j) and Bk. (It

is understood that bases can appear several times in the list.)

Now define, for each i = 1,...,k,

.i if B. aoes not appear in the list

(i b-Yb-Yc) L Ya-l U Yb-lU ... U Yc-1

if B. = B (c)
1

�____I__ -IIII�Y·U-^----� ·-I--111� -1
·I�·-- I__l�----�IIIICI I1 II-1 Ilt-ll-----l---·l*llI�--- --.-- L.--�LI1�·I .



-9-

From the nature of the labelling algorithm, it is clear that

the chain from y to Yi is minimal. Hence the previous

lemma applies, and it follows that each Bi is a basis in

G i. Clearly U B! = y Bi. and we have added y as

desired.

It remains to show that the labelling process terminates

-O- that is, some element common to two bases is

eventually labelled. Suppose to tile contrary, that the

algorithm proceeds until Step 1 no longer labels anything new.

If we denote the set of labelled elements by L, then L

depends on L L i in each geometry Gi, and the sets

L Bi are disjoint. Hence

7 r (L) = 5ILf B < ILI - 1

Since y c L but y B 0 B. This contradicts our hypothesis,

and the proof is complete.

A numbel of variations in the labelling procedure are

possible, giving rise to slightly different algorithms. How-

ever, the essential features are the same in each case, so

we omit discussion of thiese details.

In the concrete matrix version of the problem, it should

be noted that no matrix operations are necessary until the

end of each cycle (adding an element y). The labelling is

done entirely by scanning the nonzero elements of each colurmn.

After tile new bases Bi,B ,.., have been found, one performs

row operations on each M i to put it in canonical form with

__ CI___II__I111___1��_-I --· I I�LYII�·II··�-�_II*LI---·1·-.__11-11-^11�1�1IIIUY-IIIYI^_III.� · _ .II-~ · L·i-ll- _- - 1 -- -we II
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respect to Bi , but it is not necessary to do this sooner.

For example, in the picture below, if B 1 = {x3,x 4,x 5 1 and

B 2 = {x2 ,x3 }, and y = xl, the circles and arrows illustrate

the relations

- x - x - x
1 2 4 3
2 B, 132

.I.

rA -L

(In fact, this is all the labelling which takes place).

According to the algorithn;, we construct new bases

B i = (1 - ) L) x 2 = {x2,x 3 ,x5 }

AA

I 0 O

0 : I
- II ,

O ,

0''o 0

o lo
O
_ _ _

M:=-r, 1 _ a

X > ' , X 
_I I.Z- 5t e 

..__-11 1�---·111·�-1 --̂  i
_ �-CI-bPI·-g-l--I^-�·-----^ -0---11�--^--_.1-�1_�I It

C)
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and B = (B - x 3 -x 2) x4 x1 = {Xl,X 4}

which provide a complete partition of X.

A variation on the Ldmonds-Fulkerson theorem which can

be proved by similar methods is the natroid intersection

theorem: If G 1(X) and G2(X) are two geometries defined

on the same set X, thien there exists a subset S X

of size k which is independent in both G 1 and G 2 if

and only if |kl < r(A) + r2 (X - A) for all A C X. The

connection between matroii intersection and matroid partition

is well known, and a labelling algorithm similar to the one

given above can be constructed. Such an algorithm has been

described by Lawler [8]. (See also Edmonds [4],)

3. Multiple iExchange Theurems

lillie following teorem was proved by Greene [61 (and

independently by rylawski [i]).

Let S and T be bases of a combinatorial geometry

G(X), and let A C S. ;i'hen there exists a subset B C T

such that (S - A) X and (T - B) A are both bases.

For k = 1, this is almost trivial. For matrices it can

be proved inediately by assuming that S is a coordinate

basis. The columns o T are represented by a nonsingular

matrix and the result is equivalent to the following:

_____ 1___ _I_^ · _III1C-ll ·II - -------_ -�s I- I---·------·---------------�l-�I"Y""��"
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Let M be a nonsingular matrix, whose rows have been

partitioned into two parts A and A'. Then it is always

possible to ermute the columns of M in such a way that the

principal minors corresponding to A and A' are nonzero.

This follows easily from the Laplace expansion theorem for

determinants, but the question of how to carry out the exchange

is much less obvious. Greene's original proof provided an ef-

ficient but unattractive algorithm. However, it is much more

convenient to observe that the multiple exchange property is a

trivial consequence of the Edmonds-Fulkerson theorem. Hence

an elementary algorithm is easily obtained.

To see this, consider the geometries G1 (T) = G/A and

G 2(T) = G/S-A defined on T by "factoring out" A and S-A.

That is, we define rank functions

r, (U) = r(U j A) - r(A)

r2 (U) = r(U U (S-A)) - r(S-A)

It is easy to see that exchanging A for a subset of T is

equivalent to partitioning T into sets B1 and B2 which

are bases in G 1 and G 2, respectively. According to the

theorem, this can be done provided that

iU < r(U) + r 2 (U)

for every subset U c Y. ut

rl(b) + r 2(U) = r(U A) + r(rU (-Hf)) - 51

I - �-
. . . .. ··- ~ I---- -----�-- �-- -~--I��-'�
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= r(U A) + r(U (S-A)) - r(U A (S-A))

> r((Uv A) (U % (S-A)))

by the submodular law. But

r((U A) (U J (S-A))) = r(U) = jUj

and this completes the proof.

Remark: In order to apply the Edmonds-Fulkerson algorithm, it

is not necessary to compute the factor geometries G/A and G/S-A.

The algorithm can be applied directly, provided that we start

with bases B1 A and B2 v (S-A), B 1 C T, B2 C T, and mod-

ify step (1) by requiring that elements of S are never labelled.

The multi-part partition theorem in fact proves a stronger

result:

Let b al !j He ases of G(X) and let

n = S , ... ,S } e a partition of S. Then there exists

a partition ii' = { .. . } of T with the property

that, for each = 1,2,...,k, tuLi set (S-S.) T. is a

basis of G(X).

Proof: To extend the argument used to prove the multiple ex-

change theorem we need the following extended submodular in-

equality (easily proved by induction, using the ordinary submodular

law): if P ?,. '.. P k are subsets of any geometry, then-- 1 2

r (P) > rfl ) + r Pi )
+ r(P 2Pi 2n

+ ... + r(Pk-l Pk ) '

__ �__���___ _..1111(.�_



-14-

To prove the theorem, let Gi = T/S-Si, i = ,...,k. If

A C T, then ri(A) = r(A (S-Si)) - IS-Sil, so that

k k

Z r i (A) = ' r(A ) (S-Si)) - (k-l) SI.
i=l i=l

Let Pi = A U (S-S i) in the above inequality. Then

r (Pi q k+l Pj) = ISI for each i = 1,...,k-l, and

r(r k Pi) = A. Hence Zri(A) > A + (k-1) S - (k-1) S - IAI,

for every subset A C T. By the Edmonds-Fulkerson theorem,

T can be partitioned into sets T i such that T i is indepen-

dent in G for each i. It is easy to show that this implies

Ti % (S-Si) is a basis in G for each i.

If RI is taken to i)e the trivial partition of b into

IS P parts, we otain tie following result of Lirualdi [2]:

If S ana '1 are ases of G(X), there exists a one-

to-one correspondence 5 -+ T such that (S-x) (x)

is a asis for ail x 5.

There are elementary examples which show that the last

two results are racemnei~i theorelims rather than exchange

theorems. Tliat is, for cxamplie, it is not always possible

to ave (5-x) u 0 (x) a-inu (T-, (x)) x simultaneously

bases or all x b. (See [2] . ilwortn [3] obtained similar

results in a related ut somewhat more special case.)

It is interestin9 to ote that the Edmonds-Fulkerson

partition teorem proves a result wnicn is apparently stronger
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than the multiple exchange theorem. This is most clearly

seen by examining the analog of brualdi's theorem when one

of the sets is nc't required to be a basis. We ask: under

what conditions, if S is a basis anu T is arbitrary, does

there exist an injec:tive idLp aO S + T such -that

(S-x) a (x) is a basis for each x C S. If T is represented

by an arbitrary matrix, te Ldmonds-Fulkerson theorem in this

case gives necessary and sufficient conditions for some term

in the determinant expansion of to be nonzero. (These

conditions are euivaient to the well-known "matching

conditions" of P. all [7], as can be easily verified,)

Brualdi's theorem, on te other hand, gives only a sufficient

condition: that tile coiumls of T'I be independent. In an

analogous way, the 2-part case of tile Edmonds-Fulkerson

theorem gives a result wich is apparently stronger than

Green's multiple exchange property.

~ve remark thilat, when applied to Brualdi's Theorem,

the aloritllil wilicl we escribe in chapter 2 is essentially

equivalent to iie so-callce "iiungarian metiiod" - or "alternating

chain" method - for finkaing matching in a bipartite graph.

4. Sequential xchlanle -roperties

In tiiis section, we consider the question: can a

nmultiple excilange be carried out y a series of single

exchanges? Hiere we mean xcange rather than replacement:
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If x S and y E , a singl e exchange of x for y is

a pair of pivots x - y, y - x. A replacement is a single
T S

pivot x - y or y - x. There are five questions which
T' 

one might reasonably ask:

question 1: if A C S can be exchanged for B C T, is it

always_ ossible to do this with IA| single exchanges?

Question 2; If A = {a _l..,a_ is it always possible to

exchange A for soine B C i' exchangin aa 2 , . . . ,a

in order?

Question 3: If A C S can be exchanged for b 'C T, is

there always some set of singlie exchanges which carries this out?

Question 4: If A = _a i, ...,ak} is there always a permutation

o such that A can be xcnaiige for some L by exchangin

a a(2) ** 1: order?

Question 5: Is _it possiblc to exchange , for some B b

sone seeunce of exclanges?

In this paper, we will partially answer these questions

as follows:

(i) The answer to questions 1 and 2 is no.

(ii) The answer to question 4 is yes if k = 2.
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Conjecture: Questions 3 and 4 (and hence 5) can be answered

affirmatively for all k.

First, the counterexamples: let M be the matrix

K t XL X < X __ X

I o I o I

0 I O I I

C) O I I I I

Counterexaple 1: If S = {x ,X 2,X 3 } and T = {x4,x5,x6},

then {xl,X 2} can be exchanged for {x4,x5 } but it is not

possible to achieve this by two single exchanges.

Counterexample 2; Let $ and T be as above. Then

{xlx 3 } can be exchanged for {x4 ,x5 } via x 3 4-+ X5,

x1 + x4. However, it is not possible to exchange {xlx 3}

for anything by switching x i first and then x 3.

Next, we show that some sequential exchange is always

possible, for k = 2. First, it is convenient to have the

following lemmas:

i

L
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Lemma: Suppose that S and T are bases of a combinatorial

geometry, and suppose that there exists a closed alternating

chain of pivots

X1 Y1 - X2 4 Y 2 * ... Y - n+l = X1S T S T

(Here we assume that the x's are in T and the y's are in S).

If this cycle is minimal, in the sense that it contains no

chords x. y., i or Yi xj, i L j-1 then

l,...,x n } can be exchanged for {Y_,Y2,___n }

Proof: This is a special case of the lemma on sequential

pivots described in section 2.

Next, we have the following lerumma, which should not be

confused with the (false) assertion in Question 1:

Lemma: Suppose that S and T are bases and A C S, B C T,

with AI =_[I = k. If A can be exchanged for B, it is

possible to carry out this exchange by means of 2k replacements

(or pivots).

Proof: Consider the directed graph whose vertices are the

elements of A B, and whose edges are given by the symbols

a - b, b' - a'. First observe that every a A is connected
T 

to some b by an edge a -4 b, since otherwise a depends
T

on T - , which is impossible since A can be exchanged for

B. Similarly, each b e 13 is connected to some a A. Hence
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there exist directed cycles, and we choose one which is minimal.

By the previous lemma, this permits us to exchange some subset

AO C B for some subset L0 C B, using 2k 0 replacements,

where k = A0 = Bo0 . Now repeat the process for A - A0,

B - B0 , and so forth until the exchange is complete.

Remark: It is possible to use the previous two lemmas to construct

a labelling algorithm for multiple exchange directly. owever,

it is entirely equivalent to tne one previously described so

we omit the details.

If our conjecture is true, the 2k pivots described in

the previous lemma can be arranged so that each successive

pair x- y y- x is an exchange. Next we show that this

is always the case if k = 2.

Theorem: Let and 'T be bases, and let {x ,x2 } C S.

Then, after relabelling x and x if necessary, it is

possible to find a sequence of exchanges

T S

2 , Y 2 2

for some -Yl-2_ '.. (here 5' = (S-xl) Y1, T' = (T-yl) x1 .)

Proof: Suppose that xl has been exchanged for yl (as is

always possible). If x2 can now be exchanged for some Y2'

we are done, so assume that x 2 can be exchanged only for xl.

.. ..-- .
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This implies that S" = (S-x2) Y 1 and T" = (T-y1 ) u x 2

are both bases. On the other hand, we know that Xl,X 2X

can be exchanged for something, say {y2,Y 3}. Hence, in S'

and T', {yl,x2 } can be exchanged for {y2,y3
} Similarly,

{Y1 ,xl } can be exchanged for {y2,Y 3} in S" and T". By

the previous lemma, each of these exchanges can be carried

out by four pivots, which we represent by the following diagrams:

be - -I X s x -3 --' Y
S' S

-" " T* S

We can assume that the diagrams have this form, since any chords

would permit a sequential exchange immediately, and the pos-

sibility

) rn X . r -ir n

AT" S" h I So

for the second diagram is excluded by the fact that the arc

Xl- * Y3 must be present. (This follows from the existence of
Tv"

arcs xl -- x2 and x2- Y3 since T' is the result of
T" T'

replacing x2 by xl in T".) From the fact that both chains

are chordless, we infer that neither Y 2 V Yl nor Y2---- yl
S' S"

occurs. Hence y2 depends on both S'-Y 1 = S-x2 and S"-y 1

= S-xl. But then Y 2 depends on S-xl-x2, which contradicts the

fact that {Y2 ,Y 3 } can be exchanged for {x1,X 2 }. This completes the

proof.
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Symbols appearing in text:

C set-membership (epsilon)

is set-non-membership

C set-inclusion

v set-union (small)

set-intersection (small)

~n set-intersection (large)

U set-union (large)

arrow
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