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SOME ADAPTIVE LOGICS FOR DIAGNOSIS∗

Abstract. A logic of diagnosis proceeds in terms of a set of data and one or

more (prioritized) sets of expectancies. In this paper we generalize the logics of

diagnosis from [27] and present some alternatives. The former operate on the

premises and expectancies themselves, the latter on their consequences.

1. The Problem

In [27], two logics for diagnosis are outlined, ALEXP and AL∗

EXP . The idea
is that the reasoning proceeds from data as well as from expectancies. The
latter only have effects in as far as they are compatible with the former. The
aim of the diagnosis is to locate the expectancies that fail, if some do. We
refer to [27] for different types of diagnosis and for their logical features.

The difference between the two logics shows when some expectancies
cannot be upheld. In such cases, the first logic merely identifies the com-
binations of expectancies that cannot be upheld, whereas the second logic
relies on a numerical criterion for choosing a combination that saves the
largest number of expectancies.

Both logics are prioritized adaptive logics. A brief introduction to adap-
tive logics is presented in Section 2. A logic is prioritized iff it defines a
consequence relation Σ ⊢ A in which Σ is an n-tuple of sets of closed for-
mulas, 〈Γ0, . . . , Γn〉 and each Γi has a different preference ranking. In the
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present paper, each Γi is a subset of W, the set of closed formulas of the
standard predicative language L, and Γi is preferred over Γi+1.

The logics presented in [27] handle only couples of subsets: 〈Γ0, Γ1〉 in
which Γ0 is the set of premises that are accepted as true and Γ1 the set
of premises that have the status of expectancies—in [27], the A ∈ Γ1 are
written as E(A) to distinguish them from the members of Γ0. The gener-
alization to n-tuples is technically straightforward. Moreover, it is natural
with respect to the application context. Consider the example from [27] in
which the diagnosis concerns an electrical network consisting of gates and
connections between them. One may expect that the gates function properly
(in agreement with the tags attached to them), but expectancies may differ
in strength depending on the age of the gates, on the factory that produced
them, etc.

As will be explained in Section 3, the logics from [27] are specific pri-
oritized Rescher–Manor consequence relations: they proceed in terms of
maximal consistent subsets of Γ0 ∪ Γ1 that contain all members of Γ0. We
generalize these logics in Section 3. In subsequent sections, we develop prior-
itized adaptive logics that proceed in a rather different way, and show them
to be more efficient in specific circumstances. We first present the semantics
of these logics, in Sections 4–7, and demonstrate some metatheoretic prop-
erties in Section 8. We present the dynamic proof theory in Section 9 and
offer some examples in Section 10. Some open problems are discussed in
Section 11.

2. Adaptive Logics

As the name suggests, an adaptive logic AL adapts itself to the premises—
see the discussion of the semantics and the proof theory below. AL is defined
from a lower limit logic LLL and a set of abnormalities. Extending LLL with
(one or more) axioms that rule out the occurrence of abnormalities leads to
the upper limit logic ULL. This warrants that ULL is an extension of LLL.
Moreover, it warrants that A1, . . . , An ⊢ULL B iff there are abnormalities
C1, . . . , Cm such that A1, . . . , An ⊢LLL B ∨ C1 ∨ . . . ∨ Cm.1 The upper limit
logic ULL presupposes that abnormalities are false, whereas the lower limit
logic LLL drops this presupposition.

The adaptive logic AL interprets the premises ‘as normally as possible’.
This phrase is not unambiguous. It is disambiguated by choosing a specific

1 Remark that C1 ∨ . . . ∨ Cm ⊢ULL ⊥, where ⊥ is defined by ⊥ ⊢ A. This formulation
presupposes the presence of a disjunction that behaves in a standard way. It is possible
to get around this, see, for example, [5].
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adaptive strategy. If the Simple strategy is chosen,2 CnAL(Γ), the AL-
consequence set of Γ, is closed under a set of rules of the form “if A1, . . . , An ∈
CnLLL(Γ) and C1, . . . , Cm /∈ CnLLL(Γ), then B ∈ CnAL(Γ)”—such a rule
obtains just in case A1, . . . , An ⊢LLL B ∨C1 ∨ . . .∨Cm in which C1, . . . , Cm

are abnormalities. The adaptive logics articulated in the present paper are
based on the Reliability strategy, on the Minimal Abnormality strategy, and
on a specific Counting strategy—we shall explain these strategies in due
course.

Where CL (Classical Logic) is taken as the standard of deduction, adap-
tive logics that have CL as their upper limit are called corrective; adaptive
logics that have CL as their lower limit are called ampliative. This dis-
tinction is mainly introduced for pragmatic reasons. Inconsistency-adaptive
logics (see [4] and many other places) are corrective: a possibly inconsistent
set of premises is interpreted as consistently as possible. Examples of am-
pliative adaptive logics are the logic of compatibility from [12] or the logics
of induction from [9] and [11] (if one disregards the background generaliza-
tions).

Adaptive logics are called prioritized when they apply an adaptive strat-
egy to a sequence of sets that are ordered according to some priority ranking.

Thus, our logics of diagnosis attach the highest priority to the data—they
deliver all CL-consequences of the data. They attach lower and descending
priorities to the expectancies, starting with the ones that are most preferred
or trusted. Their CL-consequences are adaptively derivable, but only in as
far as they do not conflict with (retained) consequences of more preferred
items—see Section 4 and following for formal details. With respect to the
expectancies, these logics are corrective: not all their CL-consequences may
be derivable. With respect to the data, they are obviously ampliative.3 We
shall disregard the prioritized case in the sequel of this section.

From a semantic point of view, the AL-models of some Γ are a subset (a
selection) of the LLL-models of Γ, defined in terms of the abnormal parts of
models—see [1] for the first application of this idea. If Γ is normal in that it
has ULL-models, the AL-models of Γ coincide with these ULL-models of
Γ. If Γ has no ULL-models, the AL-models of Γ are the LLL-models of Γ
that are ‘as normal as possible’.

2 The Simple strategy can only be applied for specific lower limit logics and abnormal-
ities. For most combinations, it assigns a trivial consequence set to many sets of premises.

3 Given the special structure of the premise sets to which prioritized adaptive logics
apply, it seems advisable to consider them as a sui generis category.
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The most fascinating feature of adaptive logics is their dynamic proof
theory, first presented in [2]. Characterizations in terms of consequence sets
or of models may offer precise definitions, but, unlike the dynamic proof the-
ory, they are in themselves not computationally useful. Moreover, adaptive
logics are specifically devised in order to explicate, in a formally precise way,
forms of reasoning that are undecidable and for which there is no positive
test. For this reason, their proof theory is necessarily dynamic.

Dynamic proofs may easily be characterized in terms of the lower limit
logic and the set of abnormalities. The basic idea is that the rules of LLL

apply unconditionally, whereas those of ULL apply conditionally, that is,
provided some formulas behave normally. This idea is implemented by writ-
ing, at the end of each line in the proof, a condition—for most adaptive
logics, a set of formulas. Intuitively, the formula derived at the line, is
correctly derived provided all members of the condition of the line behave
normally.

Given the absence of a positive test for AL-derivability, the proof theory
is unavoidably dynamic: some formula is considered as derived at some stage
of a proof, but as not derived at a later stage of the same proof—for some
adaptive logics, the formula may again be considered as derived at a still
later stage. This feature is implemented by the marking definition. This
definition specifies, in terms of the formulas that are derived in the proof at
a stage, which lines are marked and hence are considered as not belonging
to the proof at that stage.

Clearly, we need a limit to the dynamics, even if the limit may not always
be reached within a finite number of steps. This limit is defined in the same
way for all adaptive logics. A is finally AL-derived at line i at a stage s of
a proof from Γ iff line i is not marked at stage s, and any extension of the
proof in which line i is marked may be further extended in such a way that
line i is unmarked. A is finally AL-derivable from Γ, Γ ⊢AL A, iff A is finally
AL-derived at a stage of a proof from Γ. Needless to say, final derivability
should be sound and complete with respect to the AL-semantics.

Although there is no positive test for (final) AL-derivability, there are
criteria that enable one to decide, in some cases, that A has been finally
derived from Γ. Where such criteria do not apply, it may be shown that a
proof at a stage offers a good estimate concerning the final derivability of a
formula from a set of premises, viz. the best estimate that is available in view
of the information provided by the proof—see [3] for a formal explication of
this information.
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3. Consistent Chunks

The chunking approach was originated by Nicholas Rescher, partly in coop-
eration with Ruth Manor—see [21], [22], [23], [24], and other papers. This is
why we use the term “Rescher–Manor consequence relations” to refer to such
logical mechanisms. The underlying idea is to define consequence relations
in terms of the CL-consequences of maximal consistent subsets of a set of
premises. A survey of the flat (non-prioritized) Rescher–Manor consequence
relations is offered in [15]; a survey of prioritized such consequence relations
in [16]. All those consequence relations are characterized by inconsistency-
adaptive logics as well as by ampliative adaptive logics—see [7], [14], [8],
[25], and [26]).4 All those consequence relations may be strongly enriched
by relying on an idea from [19] (that enriches Jaśkowski’s paraconsistent
logic); see [10] for the flat and [25] for the prioritized ones. Let us start with
some definitions, where Γ is a subset of W.

Definition 1. The set of all maximal consistent subsets of Γ, denoted as
MCS(Γ), is the set of consistent subsets of Γ that are not themselves proper
subsets of a consistent subset of Γ.

Definition 2. The cardinality of Γ, denoted as #(Γ), is the number of
elements of Γ.

The logics ALEXP and AL∗

EXP are easily seen to come to consequence re-
lations that take 〈Γ0, Γ1〉 as their set of premises. Both ALEXP and AL∗

EXP

are determined by maximal consistent subsets containing Γ0, the former
considers all of them, the latter only those of maximal cardinality.

Definition 3. D〈Γ0, Γ1〉 = {∆ | ∆ ∈ MCS(Γ0 ∪ Γ1) and ∆ ⊇ Γ0}.

Definition 4. 〈Γ0, Γ1〉 ⊢ALEXP
A iff ∆ ⊢CL A for all ∆ ∈ D〈Γ0, Γ1〉.

Definition 5. 〈Γ0, Γ1〉 ⊢AL∗

EXP
A iff ∆ ⊢CL A for all ∆ ∈ D〈Γ0, Γ1〉 of

maximal cardinality (for which there is no ∆′ ∈ D〈Γ0, Γ1〉 such that #(∆′) >
#(∆)).

For reasons explained in Section 1, it is useful to generalize ALEXP and
AL∗

EXP to make them apply to Σ = 〈Γ0, . . . , Γn〉. The natural place to
look for such generalizations is [16], which contains a survey of prioritized

4 A major advantage of this is the unification of a large set of non-monotonic conse-
quence relations. A major advantage of a different sort is that all Rescher–Manor conse-
quence relations are provided with a (dynamic) proof theory.
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inconsistency-handling consequence relations that are based on consistent
chunks. The most natural generalization of ALEXP is the SMC -consequence
relation. Out of the SMC -consequence relation a generalization of AL∗

EXP

can be forged. In some diagnosis contexts, one might defend the application
of the Argued consequence relation (which should not be confused with the
flat Argued consequence relation) or of its sophistications (SD, DS and SS ).
In other diagnosis contexts, it seems sensible to apply the ℓ-consequence re-
lation, which is not a generalization of ALEXP and does not proceed in terms
of maximal consistent subbases. In the subsequent paragraphs, we briefly
characterize the SMC -consequence relation, its variant that takes the car-
dinality of maximal consistent subsets (or subbases) into account, and the
ℓ-consequence relation. All these consequence relations will be slightly mod-
ified in view of the presupposition, which is used throughout this paper, that
the set of data, viz. Γ0, is consistent. Here are the (adjusted) definitions—we
always suppose that Σ = 〈Γ0, . . . , Γn〉.

Definition 6. ℓ(Σ) is the subset of Γ0 ∪ . . . ∪ Γn obtained by starting with
all the elements of Γ0 and step by step adding or not adding all the elements
of the next Γi depending on whether consistency is or is not preserved.

In other words, one selects those Γi that are compatible with their se-
lected predecessors, and calls their union ℓ(Σ). The Dℓ-consequences of Σ
are the CL-consequences of ℓ(Σ) :

Definition 7. Σ ⊢Dℓ
A iff ℓ(Σ) ⊢CL A.

For the SMC -consequence relation, one starts again with all of Γ0, but
this time adds as much as is consistently possible from each subsequent Γi.
This obviously does not result in a single set: several members of Γi+1 that
are compatible with the selection made up to Γi may be jointly incompatible
with this selection. This is why one needs to define a set of SMC -subbases.

Definition 8. ∆0 ∪ . . . ∪ ∆n is a SMC-subbase of Σ iff, for all i, 0 ≤ i ≤ n,
∆0 ∪ ... ∪ ∆i ∈ MCS(Γ0 ∪ . . . ∪ Γi).

The DSMC -consequences of Σ are those formulas that are CL-conse-
quences of all SMC -subbases of Σ; the DP

SMC -consequences of Σ are those
formulas that are CL-consequences of all SMC -subbases of Σ that are max-
imal with respect to their cardinality.

Definition 9. Σ ⊢DSMC
A iff ∆ ⊢CL A for all SMC-subbases ∆ of Σ.

Definition 10. Σ ⊢
DP

SMC

A iff ∆ ⊢CL A for all SMC-subbases ∆ of Σ for

which there is no SMC-subbase ∆′ such that #(∆′) > #(∆)).
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Which consequence relation is most suitable for a specific application
depends on the preference ordering. Expectancies may belong to the same
Γi because the objects to which they pertain share some relevant property.
For example, in the case of an electric circuit (see [27]), the preferences
may be based on the estimated reliability of the factory that produced the
gates. If the data contradict an expectancy about at least one gate that was
produced by a certain factory, it may be sensible to consider all expectancies
about the gates produced by that factory as questionable. In such a case,
the ℓ-consequence relation is appropriate. In other cases, expectancies may
belong to the same Γi in view of less relevant properties, for example the age
of the gates. That a gate of a certain age fails seems not a good reason to
consider all gates of that age as unreliable—they may have been produced
by different factories, be of different types, etc. In such cases, the SMC -
consequence relation is more suitable.

In view of [26], it is obvious that all of these consequence relations are
characterized by adaptive logics. One possible characterization proceeds in
terms of a modal predicative language—compare [10] and [25]. A different
characterization is obtained in terms of inconsistency-adaptive logics that
have the basic paraconsistent logic CLuN as their lower limit logic—see [7]
for the plot. In both cases the proof theory is dynamic. It is even simple
enough to devise a ‘direct’ dynamic proof format (one that proceeds in terms
of CL-formulas only) along the lines of [14]. All three proof theories (and
especially the latter one) enable us to explicate the relevant human reasoning
processes in a precise and adequate way.

4. From Chunking to Reasoning

From this section on, we present an approach that departs drastically from
the Rescher–Manor consequence relations, and argue that it is appropriate
for specific forms of diagnosis. Rather than selecting maximal consistent
subsets of Γ0∪. . .∪Γn that contain Γ0, we shall start from the latter and add
certain CL-consequences of members of Γ1, next certain CL-consequences
of members of Γ2, etc. In doing so, we shall require that the members of the
Γi (0 ≤ i ≤ n) be consistent,5 but not that the Γi themselves are consistent.

5 If some A ∈ Γi is inconsistent, the consequence relations will assign a trivial conse-
quence set to Σ—however, see Section 11.
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The general plot is to interpret expectancies within the modal logic T of
Feys (which is von Wright’s M).6 Several predicative versions of T may do,
provided a = b ⊃ 2a = b is not a theorem.

Let LM be the standard modal language with S, Pr, C, and WM the
sets of sentential letters, predicative letters of rank r, constants, and wffs
(closed formulas). To simplify the semantic metalanguage, we introduce a
set of pseudo-constants O, requiring that any element of the domain D is
named by at least one member of C ∪ O.7 Let WM+ denote the set of wffs
of LM+ (defined by letting C ∪ O play the role played by C in LM). The
function of O is to simplify the clauses for the quantifiers.

A T-model M is a quintuple 〈W,w0, R,D, v〉 in which W is a set of
worlds, w0 ∈ W the real world, R a binary relation on W , D a non-empty
set and v an assignment function. The accessability relation R is reflexive.
The assignment function v is defined by:

C1.1 v : S × W 7→ {0, 1}
C1.2 v : C ∪ O × W 7→ D
C1.3 v : Pr ×W 7→ ℘(Dr) (the power set of the r-th Cartesian product of

D)

The valuation function vM : WM+ × W 7→ {0, 1}, determined by the model
M is defined by:

C2.1 where A ∈ S, vM (A,w) = v(A,w)
C2.2 vM (πrα1 . . . αr, w) = 1 iff 〈v(α1, w), . . . , v(αr, w)〉 ∈ v(πr, w)
C2.3 vM (α = β,w) = 1 iff v(α,w) = v(β,w)
C2.4 vM (¬A,w) = 1 iff vM (A,w) = 0
C2.5 vM (A ∨ B,w) = 1 iff vM (A,w) = 1 or vM (B,w) = 1
C2.6 vM ((∃α)A(α), w) = 1 iff vM (A(β), w) = 1 for at least one β ∈ C ∪ O
C2.7 vM (3A,w) = 1 iff vM (A,w′) = 1 for at least one w′ such that Rww′.

A model M verifies A ∈ WM iff vM (A,w0) = 1. A is valid iff it is verified
by all models.

As the construction is somewhat unusual, a bit of explanation is useful
here. One may define a function d that assigns to each w ∈ W its domain
d(w) = {v(α,w) | α ∈ C ∪ O}. If an element of an r-tuple of v(πr, w)

6 The essential thing is that the accessibility relation R is not transitive. So, K would
do just as well. However, T allows for a simpler formulation of the formal machinery
below.

7 O should have at least the cardinality of the largest model considered—if there is no
such model, one selects a suitable O for each model.
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does not belong to d(w), then the r-tuple does not have any effect on the
valuation.8 Remark also that, if Rww′, the question whether v(α,w) is or
is not a member of d(w′) is immaterial for any v(A,w). For example, the
value of vM (3Pa,w) is determined by the values of v(a,w′) and v(P,w′) for
those w′ for which Rww′. Obviously, the semantics may be rephrased as a
counterpart semantics: a ∈ d(w) is a counterpart of b ∈ d(w′) just in case
there is an α ∈ C ∪O such that v(α,w) = a and v(α,w′) = b. An α ∈ C ∪O
may be seen as picking a specific counterpart ‘path’ on W .9

We now move on to express Σ in terms of T. Where 3
i abbreviates a

sequence of i ≥ 0 diamonds, M is a T-model of Σ = 〈Γ0, . . . , Γn〉 iff, for all
i (0 ≤ i ≤ n) and for all A ∈ W, M verifies 3

iA if A ∈ Γi. We shall write
Σ |=T A to denote that all T-models of Σ verify A.

As the accessibility relation of the T-semantics is reflexive, a model that
verifies 3

iA also verifies 3
jA for all j > i. Thus, some Σ have T-models

in which W = {w0} and hence vM (A,w0) = 1 for all A ∈ Γ0 ∪ . . . ∪ Γn.
Such T-models will be called singleton models. It is easily seen that Σ has
singleton models iff Γ0 ∪ . . . ∪ Γn is consistent.

T is axiomatized by its propositional axiom system together with the
usual axioms and rules for quantification, the Barcan Formula, ⊢ α = α, and
Replacement of Identicals outside the scope of modalities. 2a = b,3A(a) ⊢T

3A(b) and similar sequences are easily derivable. While soundness is as
obvious as usual, the completeness proof falls beyond the scope of the present
paper. However, it is quite simple in view of the present framework—if Γ 0T

A, a counter-model with denumerable domain is obtained by instantiating
existentially quantified formulas by means of a denumerable set of pseudo-
constants. We shall write Σ ⊢T A to denote that {3iA | A ∈ Γi} ⊢T A.
Remember that each Γi ⊆ W (the set of closed formulas of the standard
predicative language L).

T will be our lower limit logic; let us now select the set of abnormalities.
Let Fp be the set of primitive formulas (sentential letters, formulas of the
form πrα1 . . . αr, and identities), and let Fa be the set of atoms (primitive
formulas and their negations). The abnormalities will be formulas of the
form 3

iA ∧ ¬A in which A is an atom. The upper limit logic, say T+, pre-
supposes the normal situation, viz. the one in which all premises expressing
expectancies are compatible with the members of Γ0. T+ is obtained by

8 In other words, C1.3 may just as well be replaced by “v : Pr × W 7→ ℘((d(w))r)”.
9 The technique to handle quantifiers in terms of C ∪ O is itself not related to modal

logic—see, for example, the semantics for P in [13]. We shall not discuss here the possibility
of expressing de re modalities in terms of the present framework.
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adding to T the axiom “3A ⊃ A”. A characteristic semantics for T+ is
obtained by restricting the T-semantics to singleton models.10 As 2A ≡ A
and 3A ≡ A are theorems of T+, the latter is identical to the well-known
system Triv—see, for example, [17, p. 35]. It follows that Σ ⊢T+ A iff
Γ0 ∪ . . . ∪ Γn ⊢CL f(A), in which f(A) is obtained by deleting any occur-
rences of modalities in A.

We have four useful remarks on abnormalities. First, if Σ = 〈Γ0, . . . , Γn〉
is abnormal (in that its T+-consequence set is trivial), it is possible that no
abnormality is T-derivable from it, but that disjunctions of abnormalities
are. Next, the lower limit logic T spreads abnormalities. If 3p∧¬p is true in
model M , then so are either 3(p∧ q)∧¬(p∧ q) or 3(p∧¬q)∧¬(p∧¬q), etc.
This problem is well-known from other adaptive logics (see, for example, [6]
and [19]). The solution is to proceed in terms of abnormal atoms (as defined
above). The third remark concerns open formulas. Although diagnosis will
usually concern finite systems, we need, in order to formulate the logic in a
decent way, to allow for models that verify 3Pα∧¬Pα for some α ∈ O but
not for any α ∈ C—and hence verify (∃x)(3Px ∧ ¬Px), which is a formula
of LM . This feature too is well-known from other adaptive logics. The last
remark is related to the prioritized character of the logic. If i < j, then an
abnormality of the form 3

iA∧¬A will count as worse than an abnormality
of the form 3

jA∧¬A. In other words, the logic should first try to avoid the
former, and only then try to avoid the latter.

Here is how we shall handle abnormalities. Let ∃A abbreviate A preceded
by a sequence of existential quantifiers (in some specified order) over all
variables free in A. An abnormality is a formula of the form ∃(3iA ∧ ¬A),
where A ∈ Fa. For the semantics, we define, for each T-model M of Σ =
〈Γ0, . . . , Γn〉 a set of abnormal parts (where 0 < i ≤ n):

Definition 11. Abi(M) =df {A ∈ Fa | vM (∃(3iA ∧ ¬A), w0) = 1}

In the logics defined in subsequent sections, the adaptive models of Σ
will be obtained by making a selection of its T-models, first with respect to
the sets Ab1(M), next with respect to the sets Ab2(M), etc.

For the proof theory, we need disjunctions of abnormalities. It turns out
that we may restrict our attention to disjunctions of formulas of the form
∃(3iA ∧ ¬A), with the same i in each disjunct and A ∈ Fa. By Dabi(∆)
we denote the disjunction

∨
{∃(3iA ∧ ¬A) | A ∈ ∆}. We shall say that

Dabi(∆) is a Dabi-consequence of Σ iff all T-models of Σ verify Dabi(∆). A

10 A different characterization is obtained by requiring, for all A ∈ W and for all
wi, wj ∈ W , that vM (A,wi) = vM (A,wj).
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Dabi-consequence Dabi(∆) of Σ will be called minimal iff there is no ∆′ ⊂ ∆
such that Dabi(∆′) is a Dabi-consequence of Σ.

Example 1. Σ = 〈{p}, {¬p ∨ q}, {¬q, r}〉. The T-models of Σ verify p,
3(¬p ∨ q), 33¬q, and 33r. Σ has no Dab1-consequences. It has one
minimal Dab2-consequence, viz. (33¬p ∧ p) ∨ (33q ∧ ¬q) ∨ (33¬q ∧ q).
This indicates that ¬p, q, and ¬q are unreliable formulas ‘at level 2’ of Σ.11

All logics discussed below select, first, the T-models of Σ that verify p
as well as ¬p ∨ q. All these models verify q. From the thus selected models,
the logics select those that verify r. They do not select models that verify
¬q because Dab2{¬p, q,¬q} is a minimal Dab2-consequence of Σ. Actually,
there is no alternative: no T-models of Σ that verify ¬p ∨ q also verify ¬q.

5. Reliability

We shall first present prioritized adaptive logics that stepwise add to the
CL-consequences of Γ0 as many CL-consequences of each consecutive Γi as
possible. Such addition may be governed by several strategies, the two most
interesting of which are Reliability and Minimal Abnormality. Each of them
leads to a different logic, and we shall consider both. Both logics add ‘as
much as possible’ from each consecutive Γi. So, they add (each in its specific
way) whatever may be added safely, and nothing else. This is why we shall
call these adaptive logics Tsr and Tsm—the “s” refers to Safety, the “r” to
Reliability, and the “m” to Minimal Abnormality.

Of the two strategies, Reliability is the most cautious one. The basic
idea is that any n-tuple Σ defines n sets of unreliable formulas (one for each
level) and that the Tsr-models of Σ are the T-models of Σ in which only
unreliable formulas behave abnormally. The sets of unreliable formulas are
defined with respect to the minimal Dabi-consequences (0 < i ≤ n) of Σ:

U i(Σ) =df

⋃
{∆ | Dabi(∆) is a minimal Dabi-consequence of Σ}

Example 2. Σ = 〈{¬p,¬q}, {(p ∨ q) ∧ r}〉. All T-models of Σ verify
(3p∧¬p)∨ (3q ∧¬q), and some T-models of Σ verify (3r ∧¬r). However,
as r /∈ U1(Σ), the latter are not selected as Tsr-models of Σ. As a result, all
Tsr-models of Σ verify r.

11 The formula (3¬p∧ p)∨ (3q∧¬q)∨ (33¬q ∧ q) is also T-derivable from Σ. It would
be misleading to interpret this formula as saying that there either is a problem with ¬p or
with q ‘at level 1’ (that is, with respect to 〈{p}, {¬p∨ q}〉), or that there is a problem with
¬q ‘at level 2’. There is no problem at all at level 1, as {p}∪{¬p∨ q} is consistent. Hence
it is better to consider only Dabi-consequences of Σ, as in the discussion of the example.
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Let MΣ be the set of all T-models of Σ. As abnormalities of the form
3

iA∧¬A are considered as worse than abnormalities of the form 3
jA∧¬A

whenever i < j, the Tsr-models of an n-tuple Σ are obtained by defining
n + 1 selections of MΣ as follows:

σ0(MΣ) =df MΣ

and, where 0 ≤ i < n,

σi+1(MΣ) =df {M ∈ σi(MΣ) | Abi+1(M) ⊆ U i+1(Σ)}

The Tsr-models of Σ are the members of σn(MΣ). It is possible to
characterize them directly as follows:

M ∈ MΣ is a Tsr-model of Σ iff Abi(M) ⊆ U i(Σ) for 0 < i ≤ n .

As we are only interested in the members of W that are derivable from
Σ, we define:12

Definition 12. Where A ∈ W, Σ |=Tsr A iff A is verified by all Tsr-models
of Σ.

6. Minimal Abnormality

Semantically, the logic Tsm is obtained by stepwise selecting, for each con-
secutive Γi, the minimally abnormal models of 〈Γ0, . . . , Γi〉. In other words,
we define the n + 1 selections from Section 5 as follows:

σ0(MΣ) =df MΣ

and, where 0 ≤ i < n,

σi+1(MΣ) =df {M ∈ σi(MΣ) | for no M ′ ∈ σi(MΣ), Abi+1(M ′)
⊂ Abi+1(M)}

The Tsm-models of Σ are the members of σn(MΣ).

Definition 13. Where A ∈ W, Σ |=Tsm A iff A is verified by all Tsm-models
of Σ.

The difference between Tsr and Tsm is easily illustrated by a simple
example.

12 So, we define the semantic consequence relation between n-tuples of members of W
and members of W. Obviously, one might define the corresponding relation that obtains
between subsets of WM and members of W, but we are not interested in that relation
here.
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Example 3. Σ = 〈{¬p ∨ ¬q}, {p, q}, {p ⊃ r, q ⊃ r}〉. Dab1{p, q} is a
minimal Dab1-consequence of Σ. First consider the selection functions as
defined for Reliability (Section 5). σ1(MΣ) selects the models of ¬p ∨ ¬q
that verify a proper or improper subset of {3p∧¬p,3q∧¬q}. These include
models that verify ¬p∧ q, models that verify p∧¬q, and models that verify
¬p ∧ ¬q. From these models, σ2(MΣ) selects those that falsify 33r ∧ ¬r.
Some of these models verify ¬p, ¬q and ¬r, whence Σ 2 r. The formulas
verified by all these models are the CL-consequences of (¬p∨¬q)∧(r∨(¬p∧
¬q)).

If the selection functions are defined as in the present section, then
σ1(MΣ) comprises only those models from σ0(MΣ) that verify p ∨ q—
the models that falsify both p and q are not selected because they are
more abnormal than the models that verify only one of them. As a re-
sult, σ2(MΣ) comprises only models that verify p ∨ q, p ⊃ r, q ⊃ r, and
hence r. The formulas verified by all these models are the CL-consequences
of (¬p ∨ ¬q) ∧ (p ∨ q) ∧ r.

The Minimal Abnormality strategy is semantically simple and transpar-
ent, and it delivers a richer consequence set than the Reliability strategy.
However, as we shall see in Section 9, its proof theory is complicated.

It is possible to characterize the minimally abnormal models of Σ in
terms of the minimal Dabi-consequences of Σ. Although the matter is a bit
complicated, it is useful to spell this out in view of subsequent sections.

Let f(A) be the result obtained by relettering the free variables in A
in such a way that they occur in some standard order (the first occurring
free variable is always x, the second always y, etc.), let A ≺ B denote that
∃B follows by (non-zero applications of) existential generalization from ∃A,
and let g(∆) = {f(A) | A ∈ ∆; for no B ∈ ∆, f(B) ≺ f(A)}. Let Φoi

Σ

be the set of all sets g(∆) such that ∆ contains, for each minimal Dabi-
consequence Dabi(Θ) of Σ, at least some A ∈ Θ, and let Φi

Σ be obtained
by eliminating from Φoi

Σ those members that are proper supersets of other
members. It can easily be shown that M ∈ σi+1(MΣ) iff M ∈ σi(MΣ) and
Abi+1(M) ∈ Φi+1

Σ . The proof proceeds wholly as the one presented in [4, §7]
for the non-prioritized case. As a result, the n + 1 selections for Tsm may
be defined as follows:

σ0(MΣ) =df MΣ

and, where 0 ≤ i < n,

σi+1(MΣ) =df {M ∈ σi(MΣ) | Abi+1(M) ∈ Φi+1
Σ }

This result will prove useful to define the logic presented in the next
section.
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7. Counting

The logic AL∗

EXP minimizes, at each level, the number of expectancies.
Incorporating this idea in the logics Tsr and Tsm results in minimizing the
number of abnormalities (that are in general subformulas of expectancies).
This actually leads to a single logic, which we shall call Tc.

In view of the preceding Section, the matter is straightforward. Each
member of Φi

Σ provides us with a hypothesis on what went wrong at level
i, provided we take it for granted that we have reasons to (set theoretically)
minimize the number of things that went wrong. All we have to do is to
select the members of Φi

Σ that are numerically smaller than other members.
The following example illustrates the matter.

Example 4. Consider Σ = 〈{p, q, r}, {p ⊃ ¬r, q ⊃ ¬r, p ⊃ s}〉. The
minimal Dab1-consequences of Σ are (3¬p∧ p)∨ (3¬r∧ r) and (3¬q ∧ q)∨
(3¬r ∧ r). Hence, Φ1

Σ = {{¬r}, {¬p,¬q}}. As {¬r} is numerically smallest,
p ⊃ s, and hence s, are verified in all Tc-models of Σ.

For other examples, several members of Φi
Σ may be numerically minimal,

and hence all of them have to be treated on a par. Let Φi#
Σ denote the

members of Φi
Σ that do not have a larger cardinality than any other members

of Φi
Σ. We then select the Tc-models of Σ as follows:

σ0(MΣ) =df MΣ

and, where 0 ≤ i < n,

σi+1(MΣ) =df {M ∈ σi(MΣ) | Abi+1(M) ∈ Φi+1#
Σ }

The Tc-models of Σ are the members of σn(MΣ) and, where A ∈ W,
Σ |=Tc A iff A is verified by all Tc-models of Σ.

Example 4 illustrates the gain obtained by moving from Tsm to Tc: r is
not a Tsm-consequence of 〈{p, q, r}, {p ⊃ ¬r, q ⊃ ¬r, p ⊃ s}〉. This gain
is obtained by introducing a numerical criterion and in this respect differs
from the gain obtained by moving from Tsr to Tsm, which is obtained by
introducing a logical criterion.

8. Some metatheory

In this section, we show some basic properties of the semantics, and at
once prepare the proof theory. We shall rely freely on the Soundness and
Completeness of both T and T+ with respect to their semantics.
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The models that belong to the selections have some striking properties.
We cannot fully report on these properties here, and merely pick out two
striking ones. The first property is that, if A ∈ Fp and A,¬A /∈ U i(Σ)
(i ≥ 1), then any M ∈ σi(MΣ) verifies either 2

iA or 2
i¬A (in which

2
i abbreviates i occurrences of 2).13 A further striking property is the

following:

Theorem 1. If Dabi(∆) is a minimal Dabi-consequence of Σ, then there is a
(non-empty) ∆′ ⊆ ∆ such that Dabi+1(∆′) is a minimal Dabi+1-consequence
of Σ.

Proof. If the antecedent is true, Σ |=T Dabi(∆) and hence Σ |=T

Dabi+1(∆). It follows that there is a (non-empty) ∆′ ⊆ ∆ such that
Dabi+1(∆′) is a minimal Dabi+1-consequence of Σ.

This means that it does not make any difference, for the Reliability
strategy, whether we make the selections with respect to U i(Σ) or with

respect to U
bi(Σ) =df U i(Σ)∩U i+1(Σ)∩ . . .∩Un(Σ). Remark that U

b1(Σ) ⊆

U
b2(Σ) ⊆ . . . ⊆ U bn(Σ). As the matter is somewhat complicated, an example

seems useful.

Example 5. Σ = 〈{p, q, r}, {(¬p∨¬q)∧(¬p ⊃ s)}, {¬p,¬r}〉. As U1(Σ) =
{¬p,¬q}, σ1(MΣ) comprises the T-models of Σ in which the only abnor-
malities of level 1 are 3¬p∧ p, 3¬q∧ q or both. Selected models that verify
3¬p ∧ p verify 3s. As s /∈ Ab1(M), these models verify s as well as 2s.
However, some models that falsify 3¬p ∧ p verify ¬s as well as 2¬s.

As U2(Σ) = {¬p,¬r}, σ2(MΣ) comprises no models that verify 33¬q∧
q. It follows that σ2(MΣ) comprises no models that verify 3¬q (because
3¬q ⊢T 33¬q and all models of Σ verify q). Hence all models in σ2(MΣ)

verify s as well as 2s. If the models had been selected in terms of U
bi(Σ),

no models verifying 3¬q would have been selected in the first run: U
b1(Σ) =

{¬p} and U
b2(Σ) = {¬p,¬r}.

The theorem has similar consequences for the Minimal Abnormality
strategy and for the Counting strategy of Tc.

As is usual for adaptive logics, the dynamic proof theories for Tsr, Tsm,
and Tc are based on a specific relation between derivability by the upper
limit logic T+, and derivability by the lower limit logic T. We now prove
the lemmas and theorems that warrant this.

13 This holds for all three logics. Stronger properties hold for T
sm and T

c.
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Lemma 1. For any T-model M , any primitive formula A, and any i, M
verifies 3

iA ∧ 3
i¬A iff M verifies (3iA ∧ ¬A) ∨ (3i¬A ∧ A).

Proof. Obvious in view of the T-semantics.

Let prim(A) be the set of all primitive formulas that occur in A, and let
at(A) = prim(A) ∪ {¬B | B ∈ prim(A)}.

Lemma 2. For any T-model M , and any A ∈ WM , if there is no B ∈
prim(A) such that M verifies ∃(3iB ∧ 3

i¬B) for some i, then there is a
T+-model M ′ such that M verifies A iff M ′ verifies A.

Proof. Suppose that the antecedent holds true.
Case 1: M verifies A. Suppose that no singleton model M ′ verifies A.

It follows that, for some B ∈ prim(A), B is true at some world of M , and
¬B at another. But then, M verifies ∃(3iB ∧ 3

i¬B), for some i, which
contradicts the main supposition. Hence, some T+-model verifies A.

Case 2: M verifies ¬A. As prim(A) = prim(¬A), this case is entirely
analogous to the previous one.

Theorem 2. ⊢T+ A, iff there are B1, . . . , Bm ∈ Fa and there is an i such
that ⊢T A ∨ Dabi{B1, . . . , Bm}. (Theorem Adjustment Theorem.)

Proof. We first consider the left–right direction. If ⊢T A, the theorem
obviously holds. So, suppose that ⊢T+ A, and 0T A. As at(A) is finite,
A ∨ Dabj(at(A)) is a wff (for any j). Consider any T-model M .

Case 1: M verifies ∃(3iB ∧ ¬B) for some B ∈ at(A), and some i. It
follows that M verifies Dabi(at(A)).

Case 2: M falsifies ∃(3iB ∧ ¬B) for any B ∈ at(A) and for any i.
Suppose that M falsifies A. By Lemma 1, M then falsifies ∃(3iB ∧3

i¬B),
for any B ∈ prim(A). Hence, by Lemma 2, some T+-model falsifies A. But
this contradicts the supposition that A is T+-valid.

For the right–left direction, suppose that there are B1, . . . , Bm ∈ Fa and
that there is an i such that ⊢T A ∨ Dabi{B1, . . . , Bm}. As T+ extends T,
⊢T+ A∨Dabi{B1, . . . , Bm}. Any T+-model falsifies Dabi{B1, . . . , Bm}, and
hence verifies A, whence |=T+ A and ⊢T+ A.

Theorem 3. A1, . . . , An ⊢T+ B, iff there are C1, . . . , Cm ∈ Fa and there is
an i such that A1, . . . , An ⊢T B ∨ Dabi{C1, . . . , Cm}. (Derivability Adjust-
ment Theorem.)

Proof. As both T+ and T are derivability-compact, this follows from The-
orem 2.
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Theorem 3 will provide the basis for the dynamic proof theories. It war-
rants that whenever B is T+-derivable from A1, . . . , An, there are C1, . . . , Cn

such that B is T-derivable from A1, . . . , An or one of the Ci behaves abnor-
mally with respect to A1, . . . , An. This suggests that we derive B from
A1, . . . , An, on the condition that none of the Ci behaves abnormally. The
following examples illustrate Theorem 3:

(1) 3
i¬p ⊢T ¬p ∨ (3i¬p ∧ p)

(2) p ∨ q,3i¬p ⊢T q ∨ (3i¬p ∧ p)
(3) 3

i(p ∨ q) ⊢T (p ∨ q) ∨ (3ip ∧ ¬p) ∨ (3iq ∧ ¬q)
(4) 3

i−1(p ∨ q),3i¬p ⊢T q ∨ (3ip ∧ ¬p) ∨ (3i¬p ∧ p) ∨ (3iq ∧ ¬q)

The proof of the following theorem is nearly identical14 to the proof
presented in [19] (which relies on the simplified version of the method first
presented in [6]).

Theorem 4. If M is a T-model of Σ, then there is a Tsm-model M ′ of Σ
such that Abi(M ′) ⊆ Abi(M). (Strong Reassurance)

Corollary 1. If Σ has T-models, then Σ has Tsm-models. (Reassurance)

The proof of the Reassurance Theorem and Strong Reassurance Theorem
for Tc follows immediately from the above. The proof of these theorems for
Tsr is obtained by the reasoning from [6, §4].

Given these theorems and corollaries, one easily proves a set of interesting
properties of the considered adaptive logics. We prove some of them for Tsr.
The proofs for Tsm are analogous. The proofs for Tc are nearly obvious in
view of the latter (the T-models of Σ that verify the numerically smallest
set of abnormalities are all Minimally Abnormal models of Σ).

Theorem 5. If Γ0 is consistent and no A ∈ Γ0 ∪ . . . ∪ Γn is inconsistent,
then Σ = 〈Γ0, . . . , Γn〉 has Tsr-models.

Proof. If the antecedent is true, Σ obviously has T-models. By the Reas-
surance Theorem for Reliability, Σ has Tsr-models.

Theorem 6. If Γ0∪. . .∪Γn is consistent, then Σ |=Tsr A iff Γ0∪. . .∪Γn |=CL

A.

14 The only change required with respect to the proof in [19] is that, in the definition of
∆i+1, one replaces ¬∃(3A∧3¬A) by ¬∃(3iA∧ ¬A), where i is the largest j (1 ≤ j ≤ n)
for which M ′ verifies ¬∃(3jA ∧ ¬A). Theorem 1 warrants that, if there is such a j, then
M ′ verifies ¬∃(3kA ∧ ¬A) for all k < j, as required.
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Proof. If Γ0 ∪ . . . ∪ Γn is consistent, U i(Σ) = ∅ for all i (0 < i ≤ n). As
the Tsr-models of Σ only verify abnormalities that are members of some
U i(Σ), no abnormalities are verified by any Tsr-model of Σ. It follows that
vM (A,wi) = vM (A,w0) for all A ∈ W and for all wi ∈ W . But then the
set of Tsr-models of Σ coincides with the set of T+-models of Σ, and hence
with the set of CL-models of Σ.

Tsr is non-monotonic. So, it is important that one can prove the follow-
ing theorem:

Theorem 7. If 〈Γ0, . . . , Γn〉 |=Tsr A, then 〈Γ0, . . . , Γn, Γn+1〉 |=Tsr A.

Proof. Obvious in view of the fact that σn+1(MΣ) ⊆ σn(MΣ).

Not all CL-consequences of Γi+1 that are compatible with the Tsr-conse-
quences of 〈Γ0, . . . , Γi〉 can be Tsr-consequences of 〈Γ0, . . . , Γi+1〉. This is
easily seen from Example 1. The Tsr-consequences of 〈{p}, {¬p ∨ q}〉 are
the CL-consequences of {p, q}; both ¬q ∨ s and ¬q ∨ ¬s are compatible
with these but their conjunction is not. For this reason, it is important to
spell out which CL-consequences of Γi do enter into the Tsr-consequences
of 〈Γ0, . . . , Γi〉.

The proof of the following lemma is immediate in view of the proof of
the left–right direction of Theorem 2.

Lemma 3. ⊢T (3iA ⊃ A) ∨ Dabi(at(A)).

Theorem 8. Where Σ = 〈Γ0, . . . , Γn〉, if A ∈ Γi (1 ≤ i ≤ n), A ⊢CL B, and
at(B) ∩ U i(Σ) = ∅, then Σ |=Tsr B.

Proof. If A ∈ Γi and A ⊢CL B, then all T-models of Σ verify 3
iB. Hence,

by Lemma 3, they all verify B∨Dabi(at(B)). So, if at(B)∩U i(Σ) = ∅, then
all Tsr-models of Σ falsify Dabi(at(B)) and hence verify B.

The full effect of this theorem appears from:

Theorem 9. CnTsr (Σ) is CL-closed.

Proof. A T-model verifies A iff vM (A,w0) = 1 and it is obvious in view of
the T-semantics that {A | vM (A,w0) = 1} is CL-closed.
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9. Dynamic Proof Theories

As is usual for adaptive logics, lines of a proof have five elements: (i) a
line number, (ii) the formula A that is derived, (iii) the line numbers of the
formulas from which A is derived, (iv) the rule by which A is derived, and
(v) a (possibly empty) ‘condition’. The condition specifies which formulas
have to behave normally in order for A to be so derivable.

If A is conditionally derived in the proof (that is, on a line the fifth
element of which is not ∅), then the condition will be a couple: a set of
formulas and a ‘level’ i (0 < i ≤ n), indicated by a subscript (as in ∆i).
Sometimes a condition will be compounded from several other conditions by
taking the union of their first members and the maximum of their second
members, which will be denoted by max(. . .).

We now list the generic rules that govern dynamic proofs from Σ =
〈Γ0, . . . , Γn〉. They are the same for all three logics.

PREM If A ∈ Γi, then one may add a line consisting of
(i) the appropriate line number,
(ii) 3

iA,
(iii) “−”,
(iv) “Prem”, and
(v) ∅.

RU If B1, . . . , Bm ⊢T A and B1, . . . , Bm occur in the proof with the
conditions ∆1

j1
, . . . , ∆m

jm
respectively,15 then one may add a line

consisting of
(i) the appropriate line number,
(ii) A,
(iii) the line numbers of the Bi,
(iv) “RU”, and
(v) (∆1 ∪ . . . ∪ ∆m)max(j1,...,jm).

RC If B1, . . . , Bm ⊢T A ∨ Dabk(Θ) and B1, . . . , Bm occur in the proof
with the conditions ∆1

j1
, . . . , ∆m

jm
respectively, then one may add a

line consisting of
(i) the appropriate line number,
(ii) A,
(iii) the line numbers of the Bi,
(iv) “RC”, and
(v) (Θ ∪ ∆1 ∪ . . . ∪ ∆m)max(k,j1,...,jm).

15 If ∆i = ∅, we shall consider it to have the (invisibly written) subscript 0.
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It is obvious in view of the rules that A is derivable on the condition ∆i

in a proof from Σ iff A ∨ Dabi(∆) is T-derivable from Σ.
The three logics are distinguished from each other by the marking def-

initions. While the selection of models proceeds in terms of the minimal
Dabi-consequences of Σ, the marking definitions proceed in terms of the
minimal Dabi-formulas that have been derived in the proof (at the stage).
Obviously, Dabi(∆) is a minimal Dabi-formula at a stage iff, at that stage,
it has been derived on the condition ∅ and Dabi(Θ) has not been derived on
the condition ∅ for any Θ ⊂ ∆.

From the set of minimal Dabi-formulas at stage s, one defines U i
s(Σ),

Φi
s(Σ), and Φi#

s (Σ) in the same way as U i(Σ), Φi
Σ, and Φi#

Σ were defined
from the minimal Dabi-consequences of Σ. Next, we define the marked lines
(for each stage) for the three logics.

Definition 14. Marking for Tsr: Line i is marked at stage s iff, where ∆j

is its fifth element, ∆j ∩ U j
s (Σ) 6= ∅.

Definition 15. Marking for Tsm: Line i, with A as its second element and
∆j as its fifth element, is marked at stage s iff (i) there is no ϕ ∈ Φj

s(Σ)

such that ϕ ∩ ∆j = ∅, or (ii) for some ϕ ∈ Φj
s(Σ), there is no line k that

has A as its second element and has as its fifth element some Θj such that
ϕ ∩ Θj = ∅.

Definition 16. Marking for Tc: Line i, with A as its second element and
∆j as its fifth element, is marked at stage s iff (i) there is no ϕ ∈ Φj#

s (Σ)

such that ϕ ∩ ∆j = ∅, or (ii) for some ϕ ∈ Φj#
s (Σ), there is no line k that

has A as its second element and has as its fifth element some Θj such that
ϕ ∩ Θj = ∅.

Definition 15 is most easily understood with respect to the semantics.
For all the proof tells one,16 each ϕ ∈ Φj

s(Σ) comprises the abnormalities
verified by a minimally abnormal model of Σ. So, line i is marked iff (i) it
does not witness that A is verified by some minimally abnormal model of
Σ (if there is no minimally abnormal model of Σ in which all elements of
∆j are normal), or (ii) the proof does not witness that A is verified by all
minimally abnormal models of Σ (there is a minimally abnormal model of
Σ for which it has not been shown in the proof that it verifies A). Similarly
for Definition 16.

16 Actually, this may be made precise in terms of block-formulas—see [3]. Each ϕ ∈
Φj

s(Σ) comprises the abnormalities verified by a minimally abnormal model of the block
formulation of Σ determined by the stage of the proof.
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If, at stage s of a proof from Σ, A is the second element of an unmarked
line, then we say that A is derived at stage s. Suppose that A is derived on
an unmarked line i of a proof. Obviously, it is possible that line i is marked
in an extension of the proof. If any extension of the proof can be further
extended in such a way that line i is unmarked, we say that A is finally
derived at line i. And we say that A is finally derivable from Σ iff there is
a proof from Σ in which A is finally derived. For all three logics we finally
define:

Definition 17. Where A ∈ W, Σ ⊢ A iff A is finally derivable from Σ.

10. Some Applications

We first present a proof from Σ = 〈{p, q}, {(¬p ∧ r) ∧ (q ⊃ s)}〉. A boxed
number s at the far right of the line indicates that the line is marked at
stage s of the proof.

1 p − Prem ∅
2 q − Prem ∅
3 3((¬p ∧ r) ∧ (q ⊃ s)) − Prem ∅
4 3¬p 3 RU ∅
5 3r 3 RU ∅
6 3(q ⊃ s) 3 RU ∅
7 ¬p 4 RC {¬p}1 10

8 r 5 RC {r}1

9 q ⊃ s 6 RC {¬q, s}1

10 3¬p ∧ p 1, 4 RU ∅
11 s 2, 9 RU {¬q, s}1

As 3¬p∧p is the only minimal Dab1-consequence of Σ, and this formulas
has been derived at line 10, no other Dab1-formula can possibly be derived
in the proof. It follows that, except for line 7, none of these lines will be
marked in any extension of the proof. Remark that it does not make any
difference which of our logics is applied: U1(Σ) = {¬p} and Φ1

Σ = Φ1#
Σ =

{{¬p}}. As the premises have obviously been ‘exhausted’, CnTsr (Σ) =
CnTsm (Σ) = CnTc (Σ) = CnCL({p, q, r, s}). The reader may easily check
that CnALEXP

(Σ) = CnAL
∗

EXP
(Σ) = CnCL({p, q}).

It is useful to construct a proof from Σ = 〈{p, q}, {(¬p ∧ r) ∧ (p ⊃
s)}〉 or from Σ = 〈{p, q}, {(¬p ∧ r), (p ⊃ s)}〉. In these cases CnTsr (Σ) =
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CnTsm (Σ) = CnTc(Σ) = CnCL({p, q, r}); s is not finally derivable from Σ
because 3¬p ∧ p is a minimal Dab1-consequence of Σ.

Let Σ = 〈{Pa,Qa, Pb}, {(∀x)(Px ⊃ ¬Rx)}, {(∀x)(Qx ⊃ Rx)}〉. This
simple predicative example illustrates expectations with exceptions. We
shall see that the proof displays a very interesting feature. To improve
readability, we abbreviate ∃3

iA ∧ ¬A by !iA. Also, we do not present an
elegant proof, but rather one that illustrates what is going on.

1 Pa − Prem ∅
2 Qa − Prem ∅
3 Pb − Prem ∅
4 3(∀x)(Px ⊃ ¬Rx) − Prem ∅
5 33(∀x)(Qx ⊃ Rx) − Prem ∅
6 (∀x)(Px ⊃ ¬Rx) 4 RC {¬Px,¬Rx}1

7 ¬Ra 1, 6 RU {¬Px,¬Rx}1

8 ¬Rb 3, 6 RU {¬Px,¬Rx}1

9 (∀x)(Qx ⊃ Rx) 5 RC {¬Qx,Rx}2 10

10 !2¬Px∨!2¬Qx∨!2Rx∨!2¬Rx 1, 2, 4, 5 RU ∅
11 Qa ⊃ Ra 5 RC {¬Qa,Ra}2 12

12 !2¬Pa∨!2¬Qa∨!2Ra∨!2¬Ra 1, 2, 4, 5 RU ∅
13 Qb ⊃ Rb 5 RC {¬Qb,Rb}2

14 ¬Qb 8, 13 RU {¬Qb,Rb,¬Px,¬Rx}2

No unmarked line will be marked in any extension of the proof. Although
the union of the premises is inconsistent, ¬Ra is finally derivable because
Γ1 has a higher priority than Γ2. A more important feature concerns the
abnormality derived on line 10. This shows that, given the priorities, the
premise (∀x)(Qx ⊃ Rx) does not hold in general. There are objects for which
it does not hold, and, as appears from 12, a is such an object. This, however,
does not prevent one from deriving ¬Qb. The reason is that Qb ⊃ Rb cannot
only be derived on the condition {¬Qx,Rx}2, which leads to marking in view
of 10, but also on the more specific condition {¬Qb,Rb}2 which does not lead
to marking.

It is instructive to look at Example 5 from a proof theoretic point of
view.

1 p − Prem ∅
2 q − Prem ∅
3 r − Prem ∅
4 3((¬p ∨ ¬q) ∧ (¬p ⊃ s)) − Prem ∅
5 33¬p − Prem ∅
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6 33¬r − Prem ∅
7 3(¬p ∨ ¬q) 4 RU ∅
8 3(s ∨ ¬q) 4 RU ∅
9 s ∨ ¬q 8 RC {s,¬q}1 11

10 s 2, 9 RU {s,¬q}1 11

11 !1¬p∨!1¬q 1, 2, 7 RU ∅
12 33(s ∨ ¬q) 4 RU ∅
13 s ∨ ¬q 12 RC {s,¬q}2

14 s 2, 13 RU {s,¬q}2

15 !2¬p 5, 1 RU ∅
16 !2¬r 6, 3 RU ∅

The interesting point here is that s is finally derivable because it is deriv-
able on a condition of level 2 and, at level 2, ¬q behaves normally. Indeed,
although !2¬p∨!2¬q is obviously derivable, it is not a minimal Dab2-formula
in view of 15. Please compare this with the comment in Example 5.

Finally, let us consider the Σ from Example 4 to illustrate the difference
between the Minimal Abnormality strategy and the Counting strategy from
Section 7. We shall not introduce any marks but comment on them after
the proof.

1 p − Prem ∅
2 q − Prem ∅
3 r − Prem ∅
4 3(p ⊃ ¬r) − Prem ∅
5 3(q ⊃ ¬r) − Prem ∅
6 3(p ⊃ s) − Prem ∅
7 p ⊃ ¬r 4 RC {¬p,¬r}1

8 q ⊃ ¬r 5 RC {¬q,¬r}1

9 p ⊃ s 6 RC {¬p, s}1

10 s 1, 9 RU {¬p, s}1

11 !1¬p∨!1¬r 1, 3, 4 RU ∅
12 !1¬q∨!1¬r 2, 3, 4 RU ∅

Remark that Φ1
12(Σ) = {{¬p,¬q}, {¬r}} and that Φ1#

12 (Σ) = {{¬r}},
and that the sets remain the same in all possible extensions of the proof.
p ⊃ s and s have not been derived, and actually cannot be derived, on some
condition that does not contain any member of {¬p,¬q}. So, lines 9 and
10 are marked on the Minimal Abnormality strategy. As the conditions of
line 9 and 10 do not overlap with the only member of Φ1#

12 (Σ), these lines
are not marked on the Counting strategy from Section 7. It follows that
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s (and hence also p ⊃ s) is finally Tc-derivable from Σ but is not finally
Tsm-derivable from Σ.

11. Some Open Problems

We hope to have shown that the adaptive logics Tsr, Tsm, and Tc are
attractive for explicating specific forms of diagnostic reasoning. We also
made clear the difference with chunking logics (which are also characterized
by adaptive logics and) which are attractive for different forms of diagnosis.

The confines of this paper did not enable us to spell out all the proofs.
Most central are the soundness and completeness of the dynamic proof theory
with respect to the semantics. Their proofs proceed by techniques from [4],
[10] and [19], but it seems interesting to spell them out. In Section 8, we
mentioned some interesting properties of the logics. It seems worthwhile to
perform a systematic study of the logics in this respect.

The import of the present results does not only depend on the applica-
tion of the logics to diagnosis. The adaptive logics Tsr, Tsm, and Tc have
different applications as well17 and deserve to be studied from an abstract
point of view, as prioritized consequence relations. Special attention should
be paid to computational aspects, for example to criteria that enable one to
decide, in specific cases, that some formula is finally derived in a proof at
a stage. The consequences of Theorem 1 may be explored to obtain useful
derivable rules for the dynamic proof theories.

Our last comment concerns some interesting further prioritized conse-
quence relations. The central difference between the Rescher–Manor conse-
quence relations on the one hand and the adaptive logics Tsr, Tsm, and Tc

on the other, is that the former proceed by selecting certain members of the
different Γi whereas the latter proceed by selecting certain CL-consequences
of those members. Remark, however, that the CL-consequences of the mem-
bers of the Γi do not comprise all CL-consequences of the Γi themselves.
Forthcoming work by Liza Verhoeven concerns an adaptive logic that selects
certain CL-consequences of the Γi.

18 The price to be paid is that this logic
delivers the trivial consequence set as soon as one of the Γi is inconsistent.

The situation suggests that a very different approach is attractive. The
matter is most easily explained in semantic terms. Let a PT-model be like
a T-model, except that any world that is different from w0 is governed by

17 See [18] on the generation of questions in an inconsistent environment.
18 Intuitively, according to this approach a T-model M verifies Σ = 〈Γ0, . . . , Γn〉 iff M

verifies {3iA | Γi ⊢CL A} (0 ≤ i ≤ n).
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some paraconsistent logic P. A PT-model M may then be said to verify
Σ = 〈Γ1, . . . , Γn〉—remark that we start with Γ1—iff M verifies {3iA |
A ∈ Γi} (1 ≤ i ≤ n). From PT, an adaptive logic is build by selecting
models. This selection should fulfil two requirements. First, a model of
Σ should only be selected if it verifies 3

iA whenever A is an inconsistency-
adaptive consequence of Γi. Next, the selections should agree with one of the
selections from Sections 5–7. This construction has the following advantage.
If some Γi is consistent, then its inconsistency-adaptive consequences are
identical to its CL-consequences. If some Γi is inconsistent, many CL-
consequences of subsets of Γi are still derivable. The presuppositions of
this construction clarify the situations in which its application is suitable.
Most importantly, the members of some Γi are considered as forming a
coherent whole, not just a set of suppositions that turn out to have the same
preference.

On the Rescher–Manor consequence relations, either some Γi is rejected
or accepted as a whole, or each member of the Γi is accepted or rejected
as a whole. The consequence relations from Sections 5–7 save as much as
possible from each member of some Γi. The approach from the previous
paragraphs saves as much as possible from each Γi. Given the variety of the
prioritized consequence relations that are available, it is important to spell
out such features. Whether a consequence relation is suitable for a certain
application depends on them.19
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