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Kroonenberg and de Leeuw (1980) have developed an alternating least-squares method 
TUCKALS-3  as a solution for Tucker 's  three-way principal components  model. The present 
paper offers some additional features of their method. Starting from a reanalysis of Tucker 's 
problem in terms of a rank-constrained regression problem, it is shown that the fitted sum of 
squares in TUCKALS-3  can be partitioned according to elements of each mode of the three-way 
data  matrix. An upper bound to the total fitted sum of squares is derived. Finally, a special case of 
TUCKALS-3  is related to the Carroll/l-Iarshman C A N D E C O M P / P A R A F A C  model. 
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Introduction 

Kroonenber# and de Leeuw (1980) have offered an alternating least-squares solution 
(TUCKALS-3) for the three-mode principal component model developed by Tucker 
(1963, 1964, 1966). Their solution is based on the observation that the optimal core matrix 
can be expressed uniquely and explicitly in terms of the data and the component matrices 
for the three modes. The latter component matrices are optimized by an alternating 
least-squares algorithm. 

The present paper is aimed at offering some results for TUCKALS-3 in addition to 
those given by Kroonenberg and de Leeuw. First, it will be shown that the fitted sum of 
squares in TUCKALS-3 can be partitioned according to elements of each mode. This 
result is based on a rederivation of TUCKALS-3 in terms of a rank-constrained regres- 
sion problem. Next, an upper bound to this fitted sum of squares will be derived. Finally, 
a relationship between a special case of TUCKALS-3 and the Carroll/Harshman 
C A N D E C O M P / P A R A F A C  model (see Harshman & Lundy, 1984a, 1984b and Carroll & 
Pruzansky, 1984) will be demonstrated. 

In the next section the main features of TUCKALS-3,  as given by Kroonenberg and 
de Leeuw (1980), will be revisited. 

The Tucker-3 Model and the TUCKALS-3 Solution 

Let Z be a three mode data matrix of order ~ x m x n with elements Zijk, i = 1, . . . ,  
d; j = 1 . . . . .  m; k = 1 . . . . .  n. The least-squares fitting of the Tucker-3 model implies 
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minimizing the residual sum of squares 

(z,~ k - ei~k) 2, (1) 
i , j , k  

where iij k is a weighted sum of elements of an E x s matrix G, an m x t matrix H, an 
n x u matrix E, and an s × t x u core matrix C (Kroonenberg & de Leeuw, 1980, p. 70). 
In TUCKALS-3  the matrices G, H and E are restricted to be column-wise orthonormal.  

Let Z e be the f x mn matrix containing the m lateral ~ x n planes of Z, then the 
associated fitted parts of Z can be collected in the f x mn matrix 

2e = GC~(H' ® e ' )  (2) 

where C, is the s x tu matrix containing the t lateral s x u planes of C, and ® is the 
Kronecker  product. Clearly, minimizing (1) is equivalent to minimizing 

I(G, H, E, C) = II z g  - 2,112 = II z ,  - GCs(H' ® E') lI 2. (3) 

For  fixed G, H, and E the minimizing C s is uniquely defined as 

C~ = G'Ze(H ® E) (4) 

(Penrose, 1956, p. 18). Hence minimizing (1) reduces to minimizing 

g(G, H, E) = II Z ,  -- GG'Ze(HH' ® EE')II 2 (5) 

which, in turn, is equivalent to maximizing 

p(G, H, E) = tr G'Ze(HH' ® EE')Z'¢ G ~ tr G'PG. (6) 

In a completely parallel fashion, it can be shown that 

p(G, H, E) = tr H'Z,,,(EE' ® GG')Z',,, H a= tr H'QH, (7) 

where Z,, is the m × •n matrix containing the n transposed frontal ~ x m planes of Z, and 
that 

p(G, H, E) = tr E'Z,,(GG' ® HH')Z" E ~ tr E'RE, (8) 

where Z,  is the n x Em matrix containing the E horizontal n x m planes of Z, (Kroonen- 
berg & de Leeuw, 1980, p. 72). 

The TUCKALS-3  solution consists of iteratively improving G for fixed H and E, H 
for fixed G and E, and E for fixed G and H, starting from Tucker 's  final solution for G, H 
and E (Tucker, 1966, p. 297). That  is, initially G consists of the principal s eigenvectors of 
ZeZ'e; H consists of the principal t eigenvectors of Z m Z ' ,  and E consists of the principal 
u eigenvectors of Z,,Z',,. The procedure terminates when a necessary condition for a 
maximum is satisfied, that is, when simultaneously G contains the s principal eigenvectors 
of P, H contains the t principal eigenvectors of Q, and E contains the u principal eigenvec- 
tors of R. We shall now rederive the TUCKALS-3  solution from a generalized per- 
spective. 

An Alternative Approach to the Least Squares Fitting of the Tucker-3 Model 

Kroonenberg and de Leeuw (1980, p. 70) noted that it is merely a matter  of con- 
venience to have G, H and E constrained to be or thonormal  column-wise, This point will 
now be elaborated in a generalized approach to the Tucker-3 model, in which the ortho- 
normality constraints are omitted. The derivation to be given below applies equally to G, 
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H and E but we shall only consider G in full detail. The derivations for H and E are 
completely analogous. 

Let H and E be fixed matrices of rank t and u, respectively, and let F __a H ® E. Then 
the TUCKALS-3  problem can be reduced to the problem of minimizing 

h(G,  C,)  n= II Z ' t  - -  FC'~ G' II 2, (9) 

refer to (3). Although it is possible to express the minimizing G in terms of Cs and vice 

versa, we shall simply address the problem of finding the optimal product C' s G' n_ W and 
consider the function 

h ( W )  = II Z'e - F W  112. (10) 

The solution to this problem depends critically on the relative sizes of s, d, and tu. 

Because d > s and because s < tu  (Tucker, 1966, p. 288) we only need to consider the case 
> tu  > s  and the case t u >  f _> s. In the former case, solving (10) as an ordinary un- 

constrained least squares problem yields the well-known minimizing solution W = 
( F ' F ) -  XF'Z'e which generally has rank tu  > s, because W is of order tu  × t ~. If tu  > s then 
this W cannot possibly be expressed as W = C'~ G' where G' has rank s. Therefore, the 
unconstrained least-squares solution is not generally valid as a solution for (10) in the case 
E > t u > s .  

Conversely, if t u  >_ g >_ s then (F 'F)-xF'Z'e generally has rank E > s which is again 
incompatible with having a W of rank s or lower. In order to find a generally valid 
minimizing solution for (10) we shall want to minimize (10) subject to the constraint that 
W have rank s or lower. This constraint guarantees that W can always be expressed as 
C '  s G'  with G' of rank s. Let r denote the rank of the optimal W, r.__< s. 

In order to minimize (10) subject to its constraint, let W be expressed in terms of an 
r-dimensional basis A, or thonormal  in the metric (F'F). That  is, let 

w = A B  (11)  

for some tu  x r matrix A satisfying ( A ' F ' F A )  = I t ,  and some r x d matrix B. This takes 
care of the constraint on W, and makes for a straightforward solution. Combining (10) 
and (11) shows that we are to minimize 

h ( a ,  B)  = H Z'e - -  F A B  H 2. (12) 

For  any A meeting the constraint the minimizing B can be uniquely expressed as the 
unconstrained least squares solution 

B = ( A ' F ' F A ) -  t A ' F ' Z ' t  = A ' F ' Z '  e .  (13) 

Therefore, it remains to minimize 

h(A)  = I[ Z'¢ - -  F A A ' F ' Z '  e it 2 = tr Z e  Z '  e - -  tr A ' F ' Z ' ¢  Z t  F A ,  (14) 

or, equivalently, to maximize 

h * ( A )  = tr A ' F ' Z ' e Z  e F A .  (15) 

Consider the singular value decomposition 

( F ' F ) -  X/2F'Z'¢ = U F V '  (16) 

with U ' U  = V ' V  = I and F diagonal, nonnegative, and ordered. Combining (15) and (16) 
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yields 

h*(A) = tr A' (F 'F)  1/2 UF 2 U'(F'F)I /2A.  (17) 

Since (F 'F) I /2A  is a column-wise or thonormal  matrix of rank r < s, (17) is maximized if 
and only if (F 'F)I /2A contains the first s columns of U, p"ossibly rotated. Let U s be the 
tu x s matrix containing the first s columns of U. Then (17) is maximized if and only if 

A = ( F ' F ) -  1/2U s T (18) 

for some orthonormal  s x s matrix T, and hence the maximizing B is 

B = T'U's(F'F)-~/2F'Z'I  = T ' U '  s U F V ' =  T ' F  s V '  s, (19) 

where F s is the upper left s x s submatrix of F, and V~ is the : x s matrix containing the 
first s columns of V. It  follows that (9) is minimal for 

C' s G' = A B  = ( F ' F ) -  1/2 Us Fs V,s. (20) 

This leaves us with an infinity of possibilities for determining C s and G. For instance, we 
may take 

C' s = ( F ' F ) - 1 / 2 U  s and G' = F s V'  s, (21) 

which implies that C' s is column-wise or thonormal  in the metric (F'F),  or we may take 

C'~ = ( F ' F ) -  1/2 Us Fs and G' = V' s , (22) 

and so on. 
Parallel expressions to (21) and (22) can be obtained for updating the pair (H, C) and 

the pair (E, C) by keeping G and E and G and H fixed, respectively. As a result, taking G, 
H, and E column-wise or thonormal  does not constrain the function (3). In addition, if G, 
H and E are taken column-wise orthonormal,  then so is F = H ® E. In that case, C s in 
(22) reduces to a row-wise orthogonal matrix. Clearly, parallel expressions hold for the 
core matrix "flattened" in the other two directions, which means that after convergence of 
TUCKALS-3  with or thonormal  G, H and E the core matrix C is "orthogonal in every 
direction." This property of "all-orthogonality" has first been noted by Weesie and van 
Houwelingen (1983, p. 7), who derived an alternative for TUCKALS-3  which can handle 
missing data. 

In TUCKALS-3  only the matrices G, H and E are explicitly updated according to 
(22) with column-wise or thornormal  F, and its parallel expressions. However, C is not 
updated until convergence. This can be explained by the fact that C can be expressed in 
terms of G, H and E, see (4). When G, H or E is updated, C is updated implicitly. 
Therefore, TUCKALS-3  can be interpreted as an iterative procedure of updating the pairs 
(G, C), (n ,  C) and (E, C), respectively. 

The present rederivation of TUCKALS-3  provides us with certain explicit expressions 
which facilitate a further examination of the fit in TUCKALS-3.  This will be elaborated 
below. 

Partitioning the Fit in TUCKALS-3  

Since p(G, H,  E) is the sum of squares of 2 it can be interpreted as a measure of fit in 
TUCKALS-3.  It can be shown that, as in ordinary linear regression analysis, the residual 
sum of squares and the fit add up to the total observed sum of squares. That  is, 

[[ Ze [I 2 + [I Z t  - 2e [I 2 = j[ Z :  I[ 2. (23) 
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Instead of proving (23) we shall prove a stronger result, based on a partitioning of the 
fit over separate elements of each of the three modes. Our argument strengthens and 
generalizes results of Harshman and Lundy (1984a, p. 198) on the interpretation of 
squared PARAFAC loadings as variances. 

P r o o f  Let it be assumed that the pair (G, C) has been updated by (20), thus 
minimizing (9) for fixed H and E. Then the fitted part of Z) is 

2 )  = F ( F ' F ) -  1/2 U~ F~ V'~. (24) 
A! 

Consider the i-th column of Z e, which is the fitted part of Z associated with the i-th 
^, 

element of the g-mode, i = 1 . . . . .  (. Let this column be denoted by Z eel, where e i is the 
i-th column of the Y × f identity matrix. Then we have from (24) 

2 )  e i = F ( F ' F ) -  1/2 Us Fs Vs ei" (25) 

It will now be shown that the sum of squares of the i-th column of Z) equals the sum of 
fitted and residual sum of squares. That  is, 

! t At 
I[ Ze  e~ fl 2 = tl 2 )  e i [l 2 + tl Ze  el - Z¢ e i II 2, (26) 

or, equivalently, 

e' i Z e 2)  e i = e' i 2 e Z) e~. (27) 

It follows at once from (25) that the right-hand side of (27) equals e' iV~F 2 V'~ei. In 
addition, from (25) and (16) we have 

e iZe~ ,ee  i , , - 1 / 2  , , r , p 2 t ' ' = e ~ Z e F ( F  F) U~F~ V~ei = e i V F U  Us["  s V s e  i = e i ~ F~ V~e~, (28) 

which completes the proof of (27). []  

It follows that the fitted sum of squares can be partitioned over elements of the 
Y-mode, when the pair (G, C) has been updated according to (20). Parallel expressions can 
be derived for the m-mode and the n-mode. Hence after convergence of TUCKALS-3 the 
fitted sum of squares can be partitioned over the elements of each mode. Obviously, (23) is 
an implication of this result. It should be noted that the result does not require column- 
wise orthonormality of G, H, and E. 

A property that does require G, H and E to be column-wise orthonormal is the 
equality 

It C II 2 = II C~ II 2 = p(G, H,  E), (29) 

which readily follows from (4) and (6). This property guarantees that squared elements of 
the core matrix can be interpreted as contributions to the fit, which parallels the interpre- 
tation of squared singular values as "port ions of variance explained" in ordinary PCA. It 
should be noted that (29) merely requires C~ to be optimal given orthonormal G, H and E, 
see (4). The special two-mode case of this property is well-known from ordinary regression 
analysis. That  is, for an orthonormal set of predictors the fit equals the sum of squared 
regression weights. 

It should be noted that the overall fit partitioning (23) has been derived from the 
optimality of C only, for fixed but not necessarily optimal G, H and E. On the other hand, 
the element-wise fit partitioning (26) has been obtained from the joint optimality of C and 
G, C and H, and C and E. Specifically, (26) was derived from (20), see (24). The question 
arises whether or not (26), like (23), could have been obtained from the optimality of C 
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only. If only C is optimal then we have a minimum for a function of the form f ( X )  = 11B 
-- A X C  II, for fixed A, B and C, in the notation of Penrose (1956, Corollary 1). It can be 
verified that the minimizing X generates a best least squares approximation /~ = A X C  
which is orthogonal to (B - B'), when B and (B -- B) are strung out as vectors. However, 
this does not imply that each column of /~ is orthogonal to the corresponding column of 
( B -  B~ and, in fact, counterexamples to this proposit ion can be constructed. For  this 
reason, we do have to assume joint optimality of C and G, C and H and C and E to 
justify the element-wise fit partitioning (26). 

An Upper  Bound to the Fitted Sum of Squares 

Tucker 's  original solution for the Tucker-3 model consists of performing a separate 
s-, t-, and u-dimensional component  analysis on Z e Z '  e, Z ,  Z ' ,  and Z,  Z',, respectively. 
The sums of the largest s, t, or u eigenvalues of these matrices can be taken as th ree - -  
possibly different--measures of fit in Tucker's method. In TUCKALS-3  there is only one 
measure of fit (see (6), (7) or (8), and the previous section). The following lemma specifies a 
relationship between Tucker's three measures of fit and the fit in TUCKALS-3.  

Lemma 1. Let 2oh denote the g-th eigenvalue of Z h Z~,, h = f,  m or n, then 

(p~=l'~P'' tl)~qm' ~=1 ) p(G, H, E)__<_ min E 2,, , (30) 
q =  r 

where G, H, and E are column-wise or thonormal  matrices of order f × s, m × t, and 
n x u, respectively. 

Proof. Consider 

p(G, H, E) = tr G'Ze(HH' ® EE')Z'e G, (31) 

as in (6). Since (HH' ® EE') is symmetric and idempotent, it has singular values which are 
either unity or zero, hence it is a suborthonormal  matrix (ten Berge, 1983, Lemma 2). In 
addition, G is a suborthonormal matrix of rank s. It  follows at once from the n = 3 case of 
Theorem 2 of ten Berge (1983) that 

/A1/2A1/2~ tr Aes, (32) p ( G , H , E ) < t r v . ¢ ~  ,-e~ J =  

where A1/2 is the diagonal matrix containing the first s singular values of Z e in the upper • L~, s 

left diagonal places, and zeroes elsewhere. Clearly, the squared singular values of Z e are 
eigenvalues of Z e Z' e, hence 

p(G, H, E) < tr Aes = ~ 2pc. (33) 
p = l  

The remainder of the proof  can be given in a parallel fashion, by expressing p(G, H, E) in 
terms of Z., and Z , ,  respectively, see (7) and (8). This completes the proof  of Lemma 1. []  

It  was pointed out by an anonymous reviewer and by J. C. van Houwelingen (per- 
sonal communication) that Lemma 1 merely provides a formal proof  for a result that is 
intuitively obvious. Consider the approximation of Z t ,  for example, where TUCKALS-3  
provides the best least squares estimate Z t ,  which is constrained to satisfy (2). In the 
parallel unconstrained case the best fitting 2 e entails [1 2 b 112 = tr Aes (Eckart & Young, 
1936). It  follows that tr Aes is an upper bound to p(G, H, E) in TUCKALS-3.  
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L e m m a  1 can serve as a guideline for improving the fit in TUCKALS-3 .  That  is, if 
the two-mode  fit is relatively low in one particular mode,  one might  increase the rank of  
the componen t  matrix G, H or  E for that  very mode  in T U C K A L S - 3 ,  as suggested by 
Kroonenbe rg  (1983, p. 95). 

A Relationship Between T U C K A L S - 3  and C A N D E C O M P / P A R A F A C  

There has been much discussion in the recent literature of  the relationship between 
the T U C K A L S - 3  model  and the C A N D E C O M P / P A R A F A C  model  of Carroll  and 
H a r s h m a n  (compare Kroonenberg ,  1983, chap. 3; and H a r s h m a n  & Lundy,  1984a, pp. 
169-178). One  of the reasons for studying this relationship is that  it may  provide insights 
into the type of  solution C A N D E C O M P / P A R A F A C  obtains, when it is applied to data  
that satisfy the T U C K E R - 3  model  (Harshman & Lundy,  1984b, pp. 271-280). Another  
reason is that  in some special cases the relationship between the two models is rather 
simple. 

Consider  the case where the third mode  in T U C K A L S - 3  has only one componen t  
(u = 1) and the first two modes have the same number  of  components  (s = t). Then the 
core matrix contains only one frontal s x s plane C 1 = C. There are some simple theoreti- 
cal results in this case on the relationship between the T U C K A L S - 3  and the C A N D E -  
C O M P / P A R A F A C  model  due to de Leeuw (compare Kroonenberg ,  1983, pp. 57-60). 
Here we show that  if u = 1 and s = t, and T U C K A L S - 3  has converged to a global 
min imum of (1), then C is a diagonal  matrix. It follows that  in this case the T U C K A L S - 3  
p rog ram computes  a P A R A F A C  solution. 

Let it be assumed that T U C K A L S - 3  has converged to a global minimum. F r o m  (4) 
we have 

C~ = G ' Z e ( H  ® E), (34) 

for certain column-wise o r thonormal  G, H and E. Consider  the tu  x tu permuta t ion  
matrix 1-11, which transforms C s into an s × tu matrix C. = CsH~, containing the u frontal 
s x t planes of  C. Also, consider the m n  x m n  permuta t ion  matrix 1-I2, which transforms 
Z e into an ~ x mn matrix Z.  = Z e H2, containing the n frontal E x m planes of Z. It can 
be verified that  

rIh(H ® E)r h = (g ® H). (35) 

Hence we have 

C,  = C s H 1 = G ' Z  e rI  2 II~(H ® E ) I - I  1 = G ' Z , ( E  ® H )  (36) 

as parallel expression to (34) in terms of  frontal planes of  C and Z. 
Consider  the special case of  T U C K A L S - 3  with s = t and u = 1. Then C contains 

only one frontal plane C = C, and we have 

c o ® ) = e k Z k H ,  (37) 
\ k = l  

where Z k is the k-th frontal plane of Z and e k is the k-th element of the n x 1 vector E, 
k = 1 . . . . .  n. Consider the singular value decomposi t ion 

( ~=lekZk) = (38) 

with M ' M  = N ' N  = I,, and D diagonal,  ordered, and nonnegative.  Then we have, after 
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convergence of TUCKALS-3 ,  

C = G ' M D N ' H ,  (39) 

and  the TUCKALS- f i t  equals 

tr CC' = tr G ' M D N ' H H ' N D M ' G  = tr M ' G G ' M D N ' H H ' N D ,  (40) 

see (4), (6), and  (39). The maximizing G and  H satisfy the inequal i ty  

2 (41) tr ( M ' G G ' M ) D ( N ' H H ' N ) D  < dpp, 
- -  p = l  

because ( M ' G G ' M )  and  ( N ' H H ' N )  are subo r thono rma l  and  have rank  s at the most  (ten 
Berge, 1983, Lemma 4, Theorem 2). Let it be assumed that  the s largest elements of D are 

distinct. Then  it can be shown that  (41) holds as an  equali ty if and  only if 

M ' G G ' M  = N ' H H ' N  = ( ~  ~ ) .  (42) 

Because G and  H are globally optimal ,  they mus t  satisfy (42). F r o m  (42) it follows that  

M ' G = ( T 1 )  and  N ' H = ( T 2 )  (43) 

for certain o r thonormal  s x s matrices T 1 and  T 2 . Therefore, we have 

C = T'~D s T 2 , (44) 

where D~ is the upper  left s × s submatr ix  of D. F r o m  the a l l -or thogonal i ty  of C it follows 
that T'ID ~ T 1 and  T~ D 2 T 2 are d iagonal  matrices. This  implies that  both  7"1 and  T 2 are 

d iagonal  and  hence C is a d iagonal  matrix. 
F r o m  the diagonal i ty  of C it follows that  the fitted par t  of the k-th frontal  p lane of Z 

can be expressed as 

2 ,  = GCe k H'  = GCk H',  (45) 

where C k d = e k C, k = 1 . . . . .  n. As a result, this special case of T U C K A L S - 3  can be 
interpreted as a C A N D E C O M P / P A R A F A C  model,  with the addi t ional  const ra int  that  G 
and  H be column-wise o r thonormal ,  and  that  the C k be propor t iona l  (Harshman,  1970). 
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