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SOME ADMISSIBLE EMPIRICAL BAYES PROCEDURES!

By GLEN MEEDEN
Iowa State University

1. Summary. This paper considers some empirical Bayes procedures which
have been discussed by H. Robbins, E. Samuel, and M. V. Johns. These pro-
cedures are shown to be inadmissible relative to a class of priors and by using
some of the results of Rolph [6] admissible procedures are found for two exam-
ples. For an introduction to the empirical Bayes approach see Robbins [5].

2. Introduction. Let X be a discrete random variable with a family of possible
probability distributions indexed by 1 € 2, an interval of real numbers. When
the parameter is 2, X has the specified probability function f;. We are faced
with a specified statistical decision problem which is given by D, the space of
possible decisions, and L, a nonnegative loss function. If ¢ is a decision func-
tion then its risk function is #(d, 1) = X7, L(6(x), 2) f3(X).

In the Bayes approach the parameter 2 is the realization of a random variable
A, distributed according to some a priori distribution function G on Q. The
Bayes risk of a decision function § relative to the a priori distribution G is
R(3, G) = §or(9, 2) dG(2). Any decision function, d,, satisfying R(d,, G) =
R(G) = min; R(9, G) is called a Bayes decision function relative to G.

In the empirical Bayes approach the Bayes problem just described occurs
repeatedly and independently with the same unknown G throughout. At the
time when the decision about 2, _, is to be made we have obsereved (X ™, X, ,,)

where X™ = (X, - - -, X,) (the values 1,, 4,, - - - always remaining unknown).
Therefore, we can use for the decision about 4,,, a decision function

(1) o(x™, +).

A sequence 8 = {d,} where each 6,, n =1, 2, - .- is of form (1) is called an

empirical decision procedure. For each n the risk is given by
R(3,, G) = L.m R@,(x™, G) fe"(x™)

where

Ja" (™) = fa(X) fo(Xa) - - - fo(Xa) 5
fo®) = §afi(x) dG(2) for i=1,.--,n
and 4, (x™) denotes the decision function 4,(x, »). Iflim,__ R(J,, G) = R(G)

we say that 8 is asymptotically optimal (a.o.) relative to G or that it is empirical
Bayes. (See Robbins [5].)
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Let 4, be given by (1) and £ be a class of possible a priori distributions on
Q. 4, is said to be inadmissible relative to Z if there exists another decision
function, 6,*, of form (1) such that R(d,*, G) < R(d,, G) for all Ge &, and
with strict inequality for at least one G. If 4, is not inadmissible relative to
Zit is said to be admissible relative to <. A sequence 8 = {d,} is admissible
if each 4, is admissible.

Samuel [7], Johns [1], and Robbins [4] have exhibited procedures which are
a.o. relative to a large class of possible a priori distributions, say <. It will
be shown that these sequences are inadmissible relative to <~ because each
member of the sequences, with the possible.exception of the first, is inadmis-
sible relative to . It is not surprising that these sequences are inadmissible
since they were developed for their asymptotic properties. However, other
considerations being equal, we would prefer an admissible a.o. sequence to
one that is not.

3. The inadmissibility of some sequences. The proof of inadmissibility is based
on the following observation. Let d, (n fixed) be an element of some empirical
decision procedure 8, then

©) R, G) = Tawr Y r3,(x), 2) dG(D) £ (™) ,

where 8, (x™) denotes the decision function §,(x™, «). If for some fixed vector
x,™, 8,(x,™, +) is inadmissible then there exists a decision function ¢’ such
10, 2) < r(0,(x™), ) for all 2 € Q with strict inequality for at least one 4. If
r(d, 2) is a continuous function 2, then the previous inequality must be strict
on some interval of ’s, say I contained in Q. If §'(x*), x,,) = &'(x,;,) when
x™ = x,™ and equals §(x™, x, ,) otherwise, then R(3,’, G) < R(d,, G) for any
G which puts positive probability on / and with fi™(x,'™) > 0. Hence d,, is inad-
missible relative to any class & which contains such an a priori distribution G.

ExAMPLE 1. Suppose X is geometric on the positive integers with fi(x) =
(1 — 2)a=—*for 1€ [0, 1) = Q. Consider the testing problem H,: 2 < 2* against
H,:2 > 2*. Letd,be the decision that we accept H; for i =0, 1. A decision
function & is a function such that 0 < d(x) < 1 for all x where d(x) denotes
the probability of deciding d, given that X = x is observed. The loss function
is L(d,, ) = A — 2* or 0 as 2 > A* or 2 < 2* and L(d,, /) = 2* — 2or0as
A < A* or 2 = A*. By Theorem 3 on page 72 of Lehmann [3] and the com-
pleteness of the family of distributions, any test not given by (x) = 1 orOas
x > cor x < c for some c is inadmissible.

Now we assume that 1 is a random variable and we are faced with the em-
pirical Bayes situation. Samuel [7] defines the sequence (0,) as follows

3) 0,(x™, x,,0) =1 for fo(Xuir + D/fu(Xun) > 45
=0 otherwise,
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where f,(x,.,) = f.(x*™, x,,,;) = (number of indices i,i =1, 2, - - -, nfor which
X; = Xx,,,) and shows that (d,) is a.0. relative to the class of all a priori distri-
butions on [0, 1). Denote this class by . Let n > 2 be a fixed integer, then
there exists a vector x,™ such that f,(1) =1, f,(2) = 1, and f,(3) = 0 and
therefore d,(x,™, +) is inadmissible and by the remarks following (2) 4, is
inadmissible relative to <.

Samuel also constructs a.o. sequences for the corresponding Poisson and
negative binomial testing problems. The preceding argument proves inadmis-
sibility in these cases too.

ExaMpPLE 2. Let X be a Poisson (1) variable with 1¢ (0, +o0) = Q. For
estimating 1 with squared error as the loss function it follows from Karlin and
Rubin [2] and the completeness of the Poisson family that any estimator which
is not a non-decreasing function is inadmissible.

Assume now that we are faced with the empirical Bayes situation. Robbins
[5] defines the sequence (d,) as follows:

Bn(x"”, xn+1) = (xn+1 + l)fn(xn+l + 1)/(1 + f”(x”‘”)) ’

where f,(x,,,) is asin Example 1. Johns [1] shows that (d,) is a.0. relative to
every member of the class &= {G: {5 2dG(2) < oo}. Let n be a fixed positive
integer. As in Example 1 it is easy to find a vector x, such that 4,(x,", +)
is inadmissible and so 4, is inadmissible relative to <.

If in Example 1 we had wished to estimate 2 with squared error loss Robbins
[5] has exhibited a sequence of empirical estimators which is a.o. relative to
the class of all a priori distributions on [0, 1). The preceding argument also
shows the inadmissibility of this sequence.

4. Admissible empirical Bayes procedures. In this section we will give two
examples of admissible a.0. procedures. These procedures are constructed by
treating the choice of 4, as a Bayes decision problem with risk R(d,, G), G
playing the role of the unknown parameter. A prior distribution for G over
the family & is introduced and we choose a d,* which minimizes the “posterior
risk”, that is, minimizes the average of R with respect to the posterior distri-
bution over <. The Bayes nature of the solution can be expected to assure ad-
missibility. If, as usually happens, the posterior distribution converges to the
degenerate distribution at G, the true prior distribution for A, then it can be
expected that R(d,*, G,) will converge to R(G,) and {5, *} will be empirical Bayes.

The prior on & is constructed following Rolph. Any such prior will do,
although subjective considerations may motivate a particular choice of the
h;’s introduced below.

Let & be the set of distribution functions on [0, 1) and D be the subset of
the infinite dimensional unit cube [0, 1]~ whose elements are the possible
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moment sequences for members of <. Let D" be the projection of D onto its
first N coordinates. If (m,, - - -, m,) € D¥ then there exist numbersm,, < m,,,
(depending only on (m,, - - -, my)) such that m,, is a possible N 4 1st moment
ifandonlyifmy,, <my,, < my,,whenm, < my ortmy , =m, 6 =my,
whenm,,,=m,,,. Rolph constructs an “a priori” distribution on £ by working
with the moments. A distribution p* is defined by its conditonal densities on
the ith moments and extended to the entire space of moments by the Kolmogorov
extension theorem. If 4y, h,, - - - are everywhere positive densities with respect
to Lebesgue measure on [0, 1) then p* is defined by

IA

@) prm|my, e me) = hm)[SEhmydm if m < m <,

=0 elsewhere.

Since the moments of a distribution on [0, 1) determine it uniquely, ¢* induces
an a priori distribution p on <.

For a fixed G,e Z'let X}, X,, - - - and X be a random sample with probability
function f; where f; (2) = {3 (1 — )4*7dG,(2) for z = 1,2, ... . Let v, be
the measure induced by f, on X, the space of X and v, be the product measure
induced by v, on (Xx Xx - --). Let z, , (which depends on x’) denote the pos-
terior distribution on Z’given X» = x" and X = x. Let p, be a point mass
at G,. Then it follows from Theorem 6 of Rolph [6] that for each fixed x (except
possibly a v, null set) z, . — 15 a.0. v7 in the sense that for every continuous

function ® on ¥’
) §, ®dy,,— §, ©dG,,
where the topology on <’is the one induced by moment convergence.

Let X be a geometric random variable with parameter 2 as in Example 1.
Assume that 2 is a random variable with distribution function G. For estimat-
ing 4 with squared error loss the Bayes estimator d, is given by
(6) 05(¥) = Eo(A X = x) = fo(x + D)/ fo(%) -

Now suppose that we are in the empirical Bayes situation with & = {d,} an
empirical decision procedure. For a given 4, it is easily seen that

R(3,, G) = Y.m §3 2. (6,(x™, x) — D)*fi(x) dG(2) f,"(x™)
(7) = 2etm 2p (0u(¥™5 %) — fo(x + 1)/ f6(x))" () fo"(x™)
+ Zam §o Do (Jo(x + DIfa(x) — D2 u(x) dG(A) f5"(x™) -
Hence to choose 3* = {,*} which for each » minimizes the average, over &,
of R(d,, G) with respect to y it is enough to minimize the first term on the

right-hand side of (7) term by term. For fixed x* and x this is done by defining
0%(x™, x) to be the expectation of fi(x + 1)/f,(x) with respect to the posterior
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distribution on ¥, i.e.,

(8) 0,*(x", %) = §o (fo(x + D)/ fo(¥)) dpr, -

Since p puts positive probability on any open set of &, d,* is admissible.
By (8), (5) and (6) we have that
) lim, . 0,*(x™, x) = 5 (x) a.e. v~.

Since the loss function is continuous and bounded we have by (9) and the
Lebesgue dominated convergence theorem thatlim, ., R(3,*, G,) = R(G,). (For
details see Section 3 of Robbins [5].) Hence 8* = {9,*} is an admissible a.o.
procedure. ’

In much the same way an admissible a.o. sequence can be constructed for

the testing problem of Example 1 by noting that °
(10)  R@,, G) = {}s (1* — 2) dG(2)
+ Zlam Lo 0,(™, )(A7e(¥) — fo(x + DIS"(™) -
If 8* = {9,*} is given by
o, (™, x) =1 if §o (Afe(x) — folx + 1)) dp, ., <0
=0 otherwise ,
then J,* minimizes the p-average of (10) over <. As before 8* = {4,*} isan
admissible a.o. sequence since for a given G the Bayes test d, is given by
dg(x) = 1 if  fo(x + D/fe(x) > 2*
=0 if fo(x 4+ D/fe(x) < 2%

A more convenient expression for the estimate in (8) can be found as follows.
Given X™ = x™ and X = x let n; be the number of times j was observed.
The sample can be written (n,, n,, - - -, n,, 0, - - -) where ¢ is the largest obser-
vation. Since f,(x) = m,_,(G) — m,(G) where m;(G) denotes the jth moment
of G the joint frequency function of (n,, n,, - --) given n and m, - - -, m, for
N=cis

f(nl, Tty nc, c e 'Il’l, ml’ D) mN) = (n:b+:;c) H;=l (mz—-l - mx)’"z .
If 4¥* denotes the marginal density of x* on D" then the posterior density of
(my, - -+, my) given (n,, -+, n, ---)on D" is
gN(ml, ...,mN|n1, ceey Ry, )

= 1521 (myy — my) N (my, - - - my)dmy, - -« dmy[I(ny, - -, 1,y -2 )
where

I(nl’ <o, n,, ...)
= pn [Locs Moy — my)tep*¥(my, - -, my)dmy, - -, dmy .
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It is easily seen that the estimate given in (9) is
(11) 0, ¥(x™, x) =I(n!, - n'y )y, -+, 0, 1),

wheren,' =n, — 1,n,,, =n,,+ landn/ =n, for j+ xand x + 1.

The estimate in (11) is not difficult to compute if # and ¢ are not too large
and the A;’s in (5) are simple. For example, if A; is the uniform density on
[0, 1) fori=1,2, ... and x® = (1, 2) and x = 1 then

3,%((1,2), 1) = I(1,2,0, ---)/I(2,1,0, ---) = %.
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