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Abstract—The predicted capacity gain of a traditional co-

located MIMO system is often severely limited in realistic 

propagation scenarios, especially when the number of 

antennas becomes large. Recently, a generalized paradigm 

for multiple-antenna communications, distributed MIMO, is 

proposed as a remedy. In this paper, through asymptotic 

large-system analysis, we provide solid justifications on the 

advantages of distributed MIMO over co-located MIMO 

when communication channels are subject to spatial 

correlation and shadow fading. We also exploit inherent 

macrodiversity in distributed MIMO to devise a cost-

effective link adaptation scheme that achieves significant 

performance gain. 

Index Terms—capacity, distributed antenna, MIMO 

systems, shadowing, spatial correlation

I. INTRODUCTION

Recently, the remarkable capacity potential of wireless 

systems with antenna arrays at both the transmitters and 

receivers, called multiple-input multiple-output (MIMO) 

systems, was unveiled [1][2]. The capacity gain of 

MIMO systems is realized through spatial multiplexing; 

in the ideal scenario, an N by N MIMO system can 

increase spectral efficiency by a factor of N relative to 

single-antenna systems. Substantial effort has been 

devoted to incorporating MIMO technology into 

emerging communication standards, including the high-

speed downlink packet access (HSDPA) mode of third-

generation cellular networks (UMTS), IEEE 802.11n for 

next-generation wireless local-area networks (WLAN), 

and IEEE 802.16 for outdoor fixed/nomadic wireless 

wide-area networks (WWAN) [3]. 

MIMO techniques are anticipated to be widely 

employed in future wireless networks to address the ever-

increasing capacity and quality demands. The main 

question is whether the enormous gains predicted can be 

achieved in realistic environments. In other words, if we 

keep adding antennas into MIMO systems, can we keep 

obtaining expected returns even if the increased cost in 

deployment, hardware and computation can be afforded? 

                                                           
Part of this work was presented at the IEEE International Conference on 

Acoustics, Speech and Signal Processing 2006, Toulouse, France, May 

2006 [19]. © 2006 IEEE. This work was supported in part by the US 

National Science Foundation under Grant CCF-0515164.   

Unfortunately the answer is no, if the antennas are to be 

packed together with spacing on the order of wavelength 

in the traditional way. 

The leading reason comes from spatial correlation due 

to existence of few dominant scatterers, small angle 

spread, and insufficient antenna spacing [1]. Usually 

situations are more stringent at the base station side for 

outdoor deployment, where antennas are elevated and 

unobstructed by local scatterers, and antenna spacing has 

to be reduced due to environmental concerns when more 

antennas are added. Generally, spatial correlation 

increases the condition number (i.e., spreads out the 

singular value distribution) of the channel matrix. The 

loss thus incurred can be measured in two ways. The 

concept of effective degrees of freedom proposed in [4] 

discards eigenmodes with negligible capacity at a given 

signal-to-noise ratio (SNR), while in [5] the loss in 

growth rate (spectral efficiency per antenna) is evaluated 

as the number of antennas goes to infinity. In the extreme 

case (e.g. the keyhole effect [1]), the channel rank is 

hard-limited by the few independent propagation paths, 

so putting more antennas can by no means increase 

spatial degrees of freedom, though other advantages like 

diversity and array gains may still be preserved. 

Another reason may be less obvious. Current study of 

MIMO systems seldom explicitly addresses the shadow 

fading issues, though it is natural to expect severely 

diminished link quality when unfavorable shadowing is 

experienced. Multiple antennas sited in the same locale 

experience the same shadowing thus cannot improve the 

situation. 

A generalized paradigm for multiple-antenna 

communications, distributed MIMO (D-MIMO), has been 

proposed to address the problems inherent in the 

traditional co-located MIMO (C-MIMO) systems [6][7]. 

As depicted in Fig. 1, the key difference between D-

MIMO and C-MIMO is that multiple antennas for one 

end of communications are distributed among multiple 

widely-separated radio ports, and independent large-scale 

fading is experienced for each link between a mobile-port 

pair. As understood in Fig. 1 from a downlink viewpoint, 

a D-MIMO system can be represented with a triplet of 

( , , )K M N , while a C-MIMO can be viewed as a 

(1, , )KM N D-MIMO. The multiple ports may have the 
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same functionality as base stations in today’s cellular 

system, or may be realized as remote antennas, i.e., small 

devices containing antennas and electric-optic converters 

which relay the radio signal to a control unit in the access 

network. Our illustration will focus on this downlink

cellular scenario, but our results will apply largely to 

other situations as well, such as distributed MIMO 

equivalently formed through cooperation among mobile 

users or wireless sensor nodes. Unless noted, we will 

mainly consider a ( ,1, )M N  D-MIMO for simplicity, and 

compare it with a (1, , )M N  C-MIMO. 

Fig. 1 Distributed MIMO Systems 

The generalization from C-MIMO to D-MIMO offers 

many advantages. In this paper, the aforementioned 

spatial correlation and shadow fading issues will be 

particularly addressed. D-MIMO can also be regarded as 

a generalization of distributed antenna system (DAS), 

whose study dates back to [8], and has attracted attention 

recently due to its power and capacity advantage over the 

centralized configuration in broadband wireless network 

[9]. Most work on DAS so far has emphasized on its 

advantages in practical employment, such as lower 

transmit power, uniform and enhanced coverage, and ease 

of cell planning.  

This paper is organized as follows. In Section II, some 

preliminaries on MIMO systems, including their capacity 

and modeling, are given. Our analysis on the impact of 

spatial correlation and shadow fading is presented in 

Section III and IV, respectively. In Section IV, it is also 

shown how macrodiversity inherent in D-MIMO can be 

effectively explored to adapt the data transmission for 

better system performance with reasonable cost. Finally, 

Section V concludes the paper with some future research 

directions. 

II. MIMO SYSTEM

A.  MIMO Capacity 

Consider a general MIMO system given by  

y Hx n , (1) 

where y is the received vector corresponding to the 

outputs of N  receive antennas, x contains the substreams 

transmitted by M  transmit antennas,  H is an N M

random matrix that captures the channel characteristics 

between transmit and receive antenna arrays, whose 

modeling is detailed in II.B, and n is an N -dimensional 

noise vector of independent and identically distributed 

(i.i.d.) zero-mean complex Gaussian random variables 

with unit variance.  The total transmit power is 

constrained as tr( [ ]) tr( )HE xx . For sake of 

illustration, we will focus on the flat-fading channel with 
white Gaussian noise in this paper. But the results are 

readily extended to the wideband frequency-selective 

fading and/or non-white noise scenarios. 

The mutual information of the instantaneous MIMO 

channel (1) is given by 

( ) log det HI H I H H  (2) 

with a Gaussian codebook. If channel H is known at the 

transmitter, water-filling power allocation achieves the 

instantaneous channel capacity, denoted as ( )C H .

Otherwise, equal power allocation ( / ) MM I  is 

often assumed, yielding ( )eqI H .

For fading channels there are two distinct notions of 

capacity: ergodic capacity and outage capacity [2]. 
Ergodic capacity is the maximum mutual information 

averaged over all channel states. When the channel is 

perfectly known both at the transmitter and the receiver, 

the ergodic capacity is given by [ ( )]WFC E CH H . When 

the channel is known at the receiver but not at the 
transmitter, it is known 

                    
: ( )

( / ) arg max [ ( )]M
tr

M E I
H

I H ,

and the ergodic capacity is given by [ ( )]eq eqC E IH H .

We will mainly assume equal power allocation among 
transmitted substreams in our study. 

For delay-constrained applications where the data rate 

cannot be adapted with channel variations, it is often 

meaningful to study the outage capacity ( )pC , defined 

with respect to an outage probability p implicitly through 
( )( ) pp P I CH .

B.  Channel Modeling 

MIMO capacity depends crucially on the realization of 

the channel matrix. In indoor environments with rich 

scattering, the channel matrix can be safely modeled as 

wH , each column of which is i.i.d. with distribution 

( , )M0 ICN
1.

A common approach to account for spatial correlation 

in the physical channel is to model the channel matrix as  

H
R TH A A , (3) 

                                                           
1

( , )0CN  denotes a circularly symmetric complex Gaussian 

distribution with zero mean and covariance matrix . ( , )N  denotes a 

real Gaussian distribution. 
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where 1 2[ , ,.... ]T T T TLA a a a  is an M L  matrix 

representing scattering characteristics at the transmit end, 

while 1 2[ , ,.... ]R R R RLA a a a  is a corresponding N L

matrix at the receive end, and L  denotes the number of 

significant paths between them. Depending on the local 

scattering conditions, the columns of TA  and RA  can be 

modeled as fixed array-response vectors (no scattering), 

white Gaussian vectors (rich scattering), or correlated 

Gaussian vectors (fading correlation). This generalized 

channel model includes many interesting scenarios in 

practice, such as the separable correlation model and the 

keyhole effect.  

In this paper, without loss of generality, we will focus 

on spatial correlation at the base stations or radio ports, 

i.e., the transmit side, so R wA H . This readily 

addresses outdoor cellular macrocell environments, 

where mobile terminals are surrounded by rich scatterers 

while antenna arrays at the base stations are elevated 

above urban clusters and far away from local scattering. 

Extensions to other scenarios are straightforward. In 

particular, we will consider the following two models.  

(1) An extreme scenario where 1L  and TA  is the 

single dominant fixed transmit steering vector. 

(2) L M  and 1/ 2
w TH H R  with some deterministic 

Hermitian matrix TR . That is, each column of TA  is 

i.i.d. with distribution ( , )T0 RCN , and TR  is thus called 

transmit correlation matrix. In this paper, uniform linear 

arrays are assumed, dictating a Toeplitz structure for TR :

*{ }
i jT ij j iR . (4) 

 To address the large-scale fading effect, we introduce 

a diagonal matrix . Without loss of generality, we 

exclude the path loss effect and assume i.i.d. shadow 

fading for different ports of D-MIMO. Thus for C-MIMO 

MI ; while for D-MIMO 1diag( , , )M .

The shadow fading coefficient is usually modeled as 
Ye  where 2~ ( , ( ) )L LY N , with L (dB) the 

area mean, L (dB) the decibel spread, and ln10 /10 .

The cumulative distribution function of  is given by 

ln
( ) 1 L

L

x
F x Q , (5) 

where ( )Q  is the standard Gaussian tail function. We 

also have 
2 2

2{ }
L

L

E e  and 
2 22 22{ } L LE e . (6) 

To avoid confounding effects, in Section III we will 

focus on spatial correlation by assuming model (3), while 

in Section IV we will study the impact of shadow fading 

by assuming  
1/ 2

wH H . (7) 

A joint study on both effects constitutes our future work. 

Our study focuses on the asymptotic scenario that the 

total number of transmit or receive antennas goes to 

infinity. Besides analytical tractability through laws of 

large numbers, central limit theorem, and random matrix 

theory, the study of large system performance also has 

practical advantages: what is revealed in the asymptotic 

limit is fundamental in nature, which may be concealed in 

the finite case by random fluctuations and other transient 

properties of the matrix entries; moreover, the 

convergence to the asymptotic limit is typically rather 

fast as the system size grows. We also focus our study on 

the high SNR regimes. 

In the following, when convergence of a sequence of 

random variables is involved, shorthand notation “D”

stands for in distribution, and “a.s.” for almost surely. 

“log” is used for logarithm with an arbitrary base, and 

“ln” for base e.

III. IMPACT OF SPATIAL CORRELATION

First, let us consider the extreme model (1) in II.B for the 

channel between each radio port and a mobile. Essentially 

a C-MIMO system sees a rank-1 channel and assumes no 

advantage in spatial multiplexing gain over a single-input 

single output (SISO) system. In contrast, based on the 

geometry of D-MIMO, each radio port provides at least 

one independent link even in the absence of remote 

scattering objects. If K M , the single-user D-MIMO 

channel is guaranteed to have full rank. This is verified in 

Fig. 2 with a 4 4 configuration. We can see that C-

MIMO achieves only 1 more bits/s/Hz in ergodic 

capacity for every 3 dB gain in SNR. On the other hand, 

the channel rank and thus the communication dimensions 

quickly build up with antennas distributed among 

separated radio ports in D-MIMO, achieving 2 and 4 

more bits/s/Hz for every 3 dB gain in SNR for (2, 2, 4)

and (4,1, 4)  D-MIMO, respectively. It is found in [11] 

that unlike the SISO case, delay spread channels offer 

advantages over flat-fading channels in terms of ergodic 

capacity for C-MIMO systems. This conclusion is a result 

of the assumption that delay paths tend to increase the 

total angle spread, and thus improve the channel rank. In 

D-MIMO, however, the full rank can be obtained even 

with the flat-fading channel, due to its inherent large 

angle spread and wide antenna spacing. 
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Fig. 2 Ergodic capacity of 4 4  MIMO systems in rank-deficient 

propagation environments  
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We now turn to model (2) in II.B for more in-depth 

analysis. We follow the approach in [5] to study the 

asymptotic capacity loss per spatial dimension due to 

fading correlation. For ease of exposition we consider a 

square channel matrix ( M N ) with equal power 

allocation, and examine 

0
( ) 1

lim lim log det
eq H

w T w
M M M

I
I

M M

H
I H R H . (8) 

As is known from random matrix theory, (8) is 

insensitive to channel realizations for large M. At high 

SNR, the loss in 0I  can be nicely quantified as 
1

0

0
log ( )TI S f df , (9) 

where 2( ) j if

T i

i

S f e  is the spectral density of the 

Toeplitz matrix TR . The underlying rationale is that the 

distribution of the eigenvalues of TR  asymptotically (as 

M ) approaches ( )TS f  on [0,1]  [10]. 

First let us consider a somewhat simplified model for 

TR  for some complex number  with | | 1 :

i

i . (10) 

In this case  
2

2
2

1
( )

1
T

i f
S f

e
. (11) 

A complex integral calculation reveals  
20 log 1I . (12) 

This simple model tells quite a bit about capacity loss due 

to spatial correlation: it is a monotonic decreasing 

function of the correlation coefficient  between two 

adjacent antenna elements, and the loss goes without 

bound as in (12).  

Next let us examine a more practical model [11] 
22 cos( )j i i

i e q , with 
2(1/ 2)(2 sin( ) )

q e , (13) 

where  is the relative antenna spacing with respect to 

the wavelength,  is the mean angle of departure, and 

 is a parameter reflecting the angle spread, all for the 

transmit array. In this case we have 

3( ) ( ( cos ), )TS f f q  (14) 

where 3( , )  is the third-order theta function given in 

[12]. Using the following expansion 

2 2 1 2(2 1)
3

1

( , ) (1 )((1 2 cos 2 )n n n

n

u q q q u q , (15) 

  we get  

0 2 '
1

1

1 1 1
log(1 ) log (0, ) log

3 2 12

n

n

I q q q , (16) 

where '
1( , )  is the derivative of the first-order theta 

function. A schematic demonstration of (16) is given in 

Fig. 3. 
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Fig. 3 Capacity Loss due to Fading Correlation 

Again, it is a monotonic decreasing function of q, but 

by the definition of q and the above quantitative results, 

we will be able to directly relate the capacity loss with the 

environmental and system parameters including the angle 

spread and antenna spacing. Specifically, we observe that 

D-MIMO simultaneously enlarges the antenna spacing 

and angle spread , rendering a q small enough to incur 

negligible loss. We can also calculate the critical antenna 

spacing, or the optimal antenna number for a given 

aperture and propagation environment, just to name a few 

applications.  

IV. IMPACT OF SHADOW FADING

Properly normalized, shadow fading should not have 

impact on the ergodic capacity for C-MIMO, but its 

induced variance should deteriorate the outage capacity. 

Our results of the impact of shadow fading on outage 

capacity are presented in IV.A.  In the analysis, we will 

use the fact that, if 2( ) ~ ( , )I H N , the outage 

probability 
( )(( ) )pp Q C . (17) 

A. Outage Capacity 

We differentiate two scenarios, (1) large M and fixed 

N, (2) large M and N with their ratio fixed, and 

summarize our results as two theorems below, whose 

proofs are deferred to the appendix. 

Theorem 1: For large M ,  and fixed N, as M , the 

outage capacity  

(1) for C-MIMO with pure Rayleigh fading is given by 
( ) 1

, 1 1 ( )
p

C RC Q p ; (18) 

(2) for C-MIMO with Rayleigh fading and Log-normal 

shadowing is given by 

( ) 2 2 2 2 2 1

, 1 1( log ) log ( )
p

C S L LC N e N eQ p ;

  (19) 

(3) for D-MIMO with Rayleigh fading and Log-normal 

shadowing is given by 
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2( )

2 2

2

, 1

1

2
log

log [(1 ) ] ( ).

p
L

L

L

D SC N e

N
e N e N Q p

M

 (20) 

In the above  

1 log(1 ) logN N  (21) 

 and 

1

log
log

(1 )

N e N
e

M M
. (22) 

Proof: See Appendix A. 

Remark: In all cases, the first term denotes the mean 

(ergodic) capacity due to symmetry of involved 

distributions, whose difference is somewhat related to the 

artifacts in the definition of shadowing parameters. What 

is of more interest is the difference in the second term. 

We observe that there is a non-vanishing component in 

the coefficient of 1( )Q p in (19) when M , verifying 

the detrimental effect of shadowing fading on the C-

MIMO outage capacity. The corresponding part fades 
away in D-MIMO thanks to its inherent macrodiversity. 

Theorem 2: For large M, N, , as ,M N , with 

/M N ,  the outage capacity 

(1) for C-MIMO with pure Rayleigh fading is given by 
( ) 1

, 2 2 ( )
p

C RC Q p ; (23) 

(2) for C-MIMO with Rayleigh fading and Log-normal 

shadowing is given by 
( )

, 2

2 2 2 2 2 1

2

( min( , ) log )

min ( , ) log ( );

p

C S L

L

C M N e

M N eQ p
 (24) 

 (3) for D-MIMO with Rayleigh fading and Log-normal 
shadowing is given by 

( )

( )

, 2

2 2 2 2 1
,

2

1

( log )
1

log ( )

( ) 1

p

p

D S L

D S
L

D D

C M e

C M eQ p

Q p

 (25) 

where  

2 2log {log(1 )} logD N E C C
e

, (26) 

with 2C  the solution to 2 2(1 ) 1E C C , and 

D  is the standard deviation of 
1
log

N

ii
, with { }i

the nonzero eigenvalues of H

w wH H .

In the above 

2

1 1 1
log log log 1

1

log 1

log ( 1) log 1
1

M
e

N
e

N
e

 (27) 

and (  is the Euler constant) 

                2

1
log ln 1

1

log ln 1 1

log ln 1.
1

e

e N

e

 (28) 

Proof: See Appendix B. 

Remark: Though more involved, these results are 

qualitatively similar to those in Theorem 1. An 
improvement in outage capacity is observed again for D-

MIMO with shadow fading for 1 . Closed-forms 

results for 1 are not available currently, but similar 

improvement is expected. 

B. Link Adaptation 

In last subsection, advantage of D-MIMO over C-

MIMO in terms of outage capacity subject to shadow 

fading is demonstrated, due to inherent macrodiversity in 

D-MIMO. In this section, we explore a relevant topic, 

link adaptation for D-MIMO. Our scheme only utilizes 

the knowledge of large-scale fading, which is locally 

stationary and varies much more slowly than the detailed 

small-scale fading requested by the optimal approach 
based on singular value decomposition (SVD) of the 

channel. Therefore, estimation, feedback and update of 

channel state information (CSI) can be done on the order 
of the coherence time of the large-scale fading, with a 

fairly reasonable system overhead.  

For simplicity, we only consider uncoded modulation, 
and the adaptive transmission parameters are the data 

rates and power levels of links between a mobile and its 

surrounding ports. Implicitly, the number of 
simultaneously transmitted data streams (and thus 

actively utilized antennas and radio ports) is also adapted 

according to the channel conditions.  

Given large-scale fading coefficients { }k  of the M

links in D-MIMO, our bit and power allocation with 

1

M

kk
b B  and 

1

M

kk
P P  mainly comprises the 

following two steps: 

1. Total transmit bits are allocated over subchannels so 

that the total transmit power is minimized for the same 

target bit error rate (BER). The basic idea is to put each 

unit of bits to the subchannel with least required energy. 

Initially bits will be assigned to the best subchannel (with 

largest channel gain), but later on there is a tradeoff in 

putting additional bits to loaded good subchannels and 

unloaded not-so-good subchannels, as the required energy 

to transmit one more bit increases as the modulation 

constellation size increases. Mathematically, the bit 

loading is done recursively as follows. 
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* *

* 2

0, 1

While 0,

{

   arg min ( ( ) ( )) / ;

   ;

   ;

}

k

k k k
k

k k

b k M

B

k P b b P b

b b b

B B b

where ( )kP b  is the required energy to transmit kb  bits for 

a target BER with some type of modulation, and b  is 

the bit allocation base unit.  

2. After bit allocation, the total transmit power is 
allocated among the links in such a way that each link 

achieves the same minimum Euclidean distance in 

modulation and thus the same BER. Intuitively the 
system performance is limited by the worst subchannel. 

Therefore, the aggregate performance is approximately 

maximized with equal BERs in all used subchannels. 

This link adaptation scheme can be readily extended to 

the scenarios when more detailed channel knowledge is 

available. For the SVD approach, we replace { }k  by 

{ }k , the singular values of the channel matrix.  

SVD signaling scheme requires feedback of 

instantaneous channel information, which may consume 

significant system bandwidth. Alternatively, computation 

can be done at the receiver side, and the information of 

the selected link adaptation modes is fed back only when 

they are different from the currently used ones. This 

approach trades the computational complexity at the 

receiver side for the system feedback overhead. But a 

MIMO receiver typically involves computations for 

decoupling and detection of the simultaneously 

transmitted data streams anyway (like V-BLAST), so link 

adaptation can be efficiently incorporated at the receiver 

side. We thus propose a link adaptation scheme based on 

zero-forcing (ZF) V-BLAST detection at the receiver. 

Assuming no error propagation, ZF V-BLAST 

successively decomposes the channel into a set of 

subchannels given by 

* * , 1H H

k k k k ky x k Mw r w n , (29) 

where kr  is the detection vector for the -k th  substream, a 

consequence of subtracting previously detected 

substreams from the received vector, and 
H

kw  is the 

nulling vector for the non-detected interfering substreams 

with 1H

k kw h . Therefore, the link adaptation algorithm 

above can be readily applied, with 
2{ }k  substituted by 

2
1 kw , which is proportional to the post-detection 

SNR of the subchannels in ZF V-BLAST detection. 

To illustrate the effectiveness of our proposed link 

adaptation methods for D-MIMO, the BER performances 

of the above signaling schemes are compared for a 

(1, 4, 4)  C-MIMO and a (4,1, 4)  D-MIMO as shown in 

Fig. 4, with spectral efficiency of 8 bits/s/Hz. For 

simplicity we consider only square QAM modulation, 

indicating 2b  in link adaptation algorithms. The 

detection technique is ZF V-BLAST except for the SVD 

signaling, where decoupled subchannels are seen. 
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Fig. 4 Performance of link adaptation Schemes in C-MIMO and D-

MIMO 

As we see, for a rank-deficient C-MIMO channel (rank 

2 in this case), the equal-power equal-rate signaling 

exhibits much inferior performance as not all independent 

substreams can be recovered after passing through the 

channel. For a full-rank C-MIMO channel, there is a 

significant performance gap between equal-power equal-

rate signaling and optimal SVD signaling (about 15 dB at 

a BER of 510 ), indicating the advantages of having CSI 

at the transmitter side to enable link adaptation 

techniques. 

The most exciting result we obtain is that, link 

adaptation only based on macroscopic channel 

knowledge in D-MIMO (lower bound for link adaptation 

in D-MIMO) performs even better than link adaptation 

based on SVD in C-MIMO (upper bound for link 

adaptation in C-MIMO) in a large range of interest. This 

advantage results from the macrodiversity in D-MIMO, 

which is not available in a C-MIMO system. As we 

mentioned, this link adaptation scheme can be efficiently 

implemented, offering an excellent tradeoff between 

performance and complexity. 

Finally we notice that more detailed channel 

knowledge at the transmitter side of D-MIMO can be 

traded for even higher performance gain. The gap 

between SVD-based and post-SNR based schemes may 

be partly due to the error propagation in V-BLAST 

detection. 

V. CONCLUSION AND FUTURE WORK

This work provides some quantitative results to 

demonstrate the benefits of employing distributed MIMO 

systems in correlated fading and shadowing 

environments.  Though the results rely on asymptotic 

analysis, they match simulation results quite well, as 

observed in literature and our work [13]-[18].  

Extensions of current work include joint study of 

correlated fading and shadowing, the cooperative 

processing potential, and the outage capacity-scheduling 

gain tradeoff in D-MIMO. 
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APPENDIX A PROOF OF THEOREM 1

Proof: By Theorem 2 in [14], for C-MIMO with pure 

Rayleigh fading 

1

1

0,1
( ) DeqI H

N . (30) 

So (18) follows readily from (17). 

When shadow fading is considered for C-MIMO, it is 

observed that the instantaneous channel capacity 

conditioned on  is Gaussian distributed with mean 

1( ) logN  and standard deviation 1 . So the 

outage probability is given by 
( )

1 ,

1

log
p

C SN C
p E Q , (31) 

where 2ln ~ ( , ( ) )L LN  for Log-normal shadow 

fading. (19) is obtained through  

2
{ ( )}

1
E Q X Q  (32) 

with ~ 0,1X N .

For D-MIMO, following a similar approach as in [14] 

(through applications of laws of large numbers and 

central limit theorem), it can be shown that 

'
0,1

'

( ) DeqI H
N , (33) 

where 

' log(1 { })N E , (34) 

and

2 2 2 2log ( ) { } { }
'

(1 { })

e N N E N E

M E
. (35) 

At high SNR, through (6), we have  
22

1 2
' logL

L
N e , (36) 

and

2 2

' log [(1 ) ]L
N

e N e N
M

. (37) 

APPENDIX B PROOF OF THEOREM 2

Proof: By Theorem 3 in [14], for C-MIMO with pure 

Rayleigh fading 

2

2

0,1
( ) DeqI H

N . (38) 

So (23) follows readily from (17). (24) is obtained 

through the same approach as Appendix A.  

For D-MIMO, following similar steps in [13][14], it 

can be shown that  

( ) ''
0,1

''

DeqI H
N , (39) 

and we are left to calculate the mean ''  and standard 

deviation ''  of ( ) log det H

eq w w
M

I H I H H .

If  1 , we have  

2 2 2 2
2

2 2 2 2
2

'' {log } {log }

log .L

M E E

M e

 (40) 

If 1 we can only express ''  as D .

Determination of ''  is facilitated through random 

matrix theory. Define the empirical distribution function 

of the eigenvalues of a square matrix A of size M as 
1( ) #( )
M

F x xA
A (referring to the proportion of 

eigenvalues of A that lie below x). Then (c.f. (5)) 

. .

( ) ( )
a s

F x F x as M . (41) 

By results of [15][16], as ,M N , with /M N ,   

. .
(1/ )

( ) ( )
H

w w

a s
N

F x G x
H H

, (42) 

where ( )G x  is a deterministic distribution function such 

that its Stieltjes transform :Gm 2, defined as  

1 1
( ) ( )G Gm z E dG x

X z x z
, (43) 

satisfying  

1
( )

1 ( )

G

G

m z

z E
m z

, z . (44) 

Define  

( ) Gm . (45) 

Following a similar approach as in [17], it can be shown 
that 

. .

( ) log 1 log ( 1) log
a s

eqI N E eH .

  (46) 

Furthermore, at high SNR, we have 

1/ 2 1

1

1 1

2

1 1

( ) ( ) 1

( ) 1,

C O

C o

 (47) 

where 1 {1/ }C E , and 2C  is the same as given in 

(26). Plug (47) in (46) we can obtain the expression for 
the mean in (25) after some manipulation. 
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