SOME APPLICATIONS OF LANDWEBER-NOVIKOV OPERATIONS¹

DAVID M. SEGAL

ABSTRACT. Previous results on the characteristic numbers of Sp-manifolds are extended in three different ways. I. It is shown that the primitive symplectic Pontrjagin class evaluated on a $4(2^j - 1)$ dimensional Spmanifold always gives a number divisible by 8. This forms an analogue to a well-known result of Milnor concerning U-manifolds. II. It is shown that some of the results of Floyd as well as an analogue of the previous result can be obtained for 'pseudo-symplectic' manifolds. III. Results are generalised to (Sp,fr) manifolds.

1. $4(2^j - 1)$ dimensional Sp-manifolds. Let $s_{\pi}(p)[M]$, π a partition of $n = n(\pi)$, M a $4n(\pi)$ dimensional stably symplectic manifold, denote the normal symplectic Pontrjagin number of M corresponding to the π -symmetrised polynomial in a system of indeterminates for which the symplectic Pontrjagin classes are the elementary symmetric polynomials. Throughout this section we will set $k = 2^j - 1$ and M will denote a 4k dimensional stably symplectic manifold.

THEOREM 1.1. 8 | $s_{(k)}(p)[M]$.

REMARKS. 1. The unitary analogue, $2 | s_{(k)}(c)[N]$, N stably unitary is well known; it could be proven by the techniques used below.

2. The techniques of [3] are not adequate by themselves to prove Theorem 1.1.

PROOF. Actually we will prove slightly more: Let π be any partition of k all of whose parts are themselves integers of the form $2^s - 1$. Then $8 \mid s_{\pi}(p) \mid M$.

If $\pi = (a_1, \ldots, a_r)$, let $D(\pi) = \prod_i [(2a_i + 2)!/2]$. Well known fact. 2 | $\sum_{n(\pi)=k} (s_{\pi}(p)[M]/D(\pi))$. This is the 'Todd genus' relation of Stong [4] who put things in an 'abnormal' form; using normal rather than tangential numbers makes computation manageable. In particular, we can see that for a fixed k the denominators $D(\pi)$ with maximal number of factors of 2 will be just those for which all parts of π are of the form $2^s - 1$.

By Proposition 4 of [3] it is automatic that $4 | s_{\pi}(p)[M]$ for all π , $n(\pi) = k$. If we can show that $8 | s_{\pi}(p)[M]$ whenever $\pi = (a_1, \ldots, a_r), n(\pi) = k, r > 1$

© American Mathematical Society 1976

License or copyright restrictions may apply to redistribution; see https://www.argspog/journal-terms-of-use

Presented to the Society, January 26, 1975; received by the editors November 1, 1974 and, in revised form, January 24, 1975.

AMS (MOS) subject classifications (1970). Primary 57A70; Secondary 55B20.

Key words and phrases. Landweber-Novikov operation, symplectic manifold, pseudo-symplectic manifold, symplectic-framed manifold.

 $^{^{1}}$ This research was supported by the Research Foundation of the City University of New York.

and all a_i of the form $2^s - 1$, then it will follow from the above that $8 \mid s_{(k)}(p)[M]$.

Now assume inductively that Theorem 1.1 holds in dimensions less than 4k; by [4] it certainly holds in dimensions 4 and 12. Let $\overline{\pi} = (a_1, \ldots, a_r)$ be a partition of k with r > 1 and all a_i of the form $2^s - 1$. Since $\overline{\pi}$ is a partition of an odd number into odd parts there is a number k' which occurs exactly f times as a part of $\overline{\pi}$, f odd. Let $\overline{\pi}'$ denote the partition obtained from $\overline{\pi}$ by deleting one occurence of k'. Let $S(\overline{\pi}')$ denote the symplectic Landweber-Novikov operation corresponding to $\overline{\pi}'$. Then from the results of [1] on the action of such operations,

(1.2)
$$s_{(k')}(p) [S(\bar{\pi}')M] = fs_{\bar{\pi}}(p) [M] + \sum_{\pi} a(\pi, \bar{\pi}, \bar{\pi}')s_{\pi}(p) [M],$$

where the summation on the right runs through all partitions π obtained by adding k' to one of the parts of $\overline{\pi}'$, and the coefficients $a(\pi, \overline{\pi}, \overline{\pi}')$ are integers which are in fact even as a consequence of the fact that the parts of $\overline{\pi}'$ are all of the form $2^s - 1$. Then by Proposition 4 of [3] (and since $n(\pi)$ is odd), 8 divides the summation term. But by the inductive hypothesis, 8 divides the left side of (1.2). Our assertion and the theorem then follow from the oddness of f.

2. Pseudo-symplectic manifolds. We call a U-manifold pseudo-symplectic if some nonzero multiple of its class in MU_* is in the image of MSp_* ; this will be the case if and only if every Chern number of the manifold involving an odd Chern class vanishes. Let Ps_* be the subring of MU_* consisting of such classes. Let j, p, d be the maps in the cofibration sequence of spectra

$$MSp \xrightarrow{J} MU \xrightarrow{p} MU / MSp \xrightarrow{d} SMSp.$$

There is a well-defined map h_*^{Ps} : $Ps_* \to H_*(MSp)$ obtained by restricting the Hurewicz homomorphism h_*^{MU} : $MU_* \to H_*(MU)$ to Ps_* and then composing with j_*^{-1} . We regard the sympletic Pontrjagin numbers as defined on Ps_* . Note that Im $h_*^{Sp} \subset Im h_*^{Ps_*} \subset H_*(MSp)$ (inclusions strict) and that Im $h_*^{Ps}/Im h_*^{Sp}$ gives the torsion elements of Im p_* in the (MU, MSp) long exact bordism sequence.

LEMMA 2.1. Let $S(\pi)$: $MSp \to S^{4n(\pi)}MSp$ be a symplectic Landweber-Novikov operation. Then we can find some U-bordism operation T: $MU \to S^{4n(\pi)}MU$ such that $T \circ j = S^{4n(\pi)}j \circ S(\pi)$.

PROOF. Treat $S^{4n(\pi)}j \circ S(\pi)$ as a class in $MU^{4n(\pi)}(MSp)$. Now $d_*(S^{4n(\pi)}j \circ S(\pi)) = 0$ in $MU^{4n(\pi)+1}(MU/MSp)$ (since that group is trivial), so by exactness there must exist $T \in MU^{4n(\pi)}(MU)$ such that $j_*(T) = S^{4n(\pi)}j \circ S(\pi)$.

This 'compatibility' lemma implies that Im h_*^{Ps} is closed under the action of the symplectic Landweber-Novikov operations.

THEOREM 2.2. Let M be a 4k dimensional pseudo-symplectic manifold. Then (i) $2 | s_{\pi}(p)[M]$ if $n(\pi)$ is odd or if $\pi = (2^{j})$;

(ii) $4 | s_{(k)}(p)[M]$ if $k = 2^j - 1$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

REMARK. Floyd first studied pseudo-symplectics (they are the 'related

manifolds' of the title of [2]) and part (i) was proved by him by rather different methods.

PROOF. Exactly as for symplectics in [3] except that one has weaker low-dimensional divisibility properties to feed into the machinery so that statements involving 4 become statements involving 2 while those involving 2 become vacuous. By the same token, part (ii) is done on the model of Theorem 1.1 above.

3. (Sp, fr) manifolds. Let $h_*^{Sp,fr}: MSp/fr_* \to H_*(MSp/fr)$ be the Hurewicz map for MSp/fr, the spectrum representing (Sp,fr) bordism. We wish to obtain divisibility conditions on characteristic numbers of (Sp,fr) manifolds. One would expect to use a compatibility lemma which showed that Im $h_*^{Sp,fr}$ is closed under the action of symplectic Landweber-Novikov operations, find some 'starting' conditions and proceed as with the symplectic and pseudosymplectic cases.

Actually something happens which makes our work easier (and our results stronger). If $n(\pi) > 0$ then $S(\pi)$ can be lowered to a map $S(\pi)'$: $MSp/fr \rightarrow S^{4n(\pi)}MSp$ so that $S(\pi)$ actually sends the (Sp,fr) classes into full-fledged *Sp*-classes. Thus *all* the divisibility conditions of [3] hold equally for (Sp,fr) manifolds except in the starting dimensions:

THEOREM 3.1. Let M be a 4k(Sp,fr) manifold. Then

(i) $4 | s_{\pi}(p)[M]$ if $n(\pi) > 1$ and odd or if $\pi = (2^j), j > 1$;

(ii) $2 | s_{\pi}(p)[M]$ if $n(\pi) > 2$ and $\equiv 2$ (4) or if $\pi = (2^{j}, 2^{j}), j > 1$.

The proof of Theorem 1.1 does not carry over to the (Sp, fr) case.

BIBLIOGRAPHY

1. J. F. Adams, S. P. Novikov's work on operations on complex cobordism, University of Chicago Lecture Notes, 1967.

2. E. E. Floyd, Stiefel-Whitney numbers of quaternionic and related manifolds, Trans. Amer. Math. Soc. 155(1971), 77-94. MR42 #8509.

3. D. M. Segal, Divisibility conditions on characteristic numbers of stably symplectic manifolds, Proc. Amer. Math. Soc. 27(1971), 411-415. MR42 # 5282.

4. R. E. Stong, Some remarks on symplectic cobordism, Ann. of Math. (2)86(1967), 425-433. MR36 #2162.

DEPARTMENT OF MATHEMATICS, CITY COLLEGE, CITY UNIVERSITY OF NEW YORK, NEW YORK, NEW YORK 10031

Current address: Department of Mathematics, New York Institute of Technology, Old Westbury, New York 11568