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Summary 

The standard procedure of maximum likelihood estimation is stated. 
This procedure is applied to derive maximum likelihood estimators in 
some seismological problems, namely amplitude and phase corrections, 
group and phase velocities of surface waves and derivatives of travel- 
time curves dt/dA. The formulas for confidence regions for these func- 
tions are obtained. 

1. Introduction 

The maximum likelihood method is intensively used in mathematical statistics. 
Advantages of this method consist in its universality and in the fact that its esti- 
mators are the most efficient under rather general conditions. The maximum likeli- 
hood method has been applied successfully in some seismological problems [see 
(1)-(5)]. As a rule this method gave better results than other methods, and its only 
disadvantage consisted in larger computations. 

In this paper we shall state the standard maximum likelihood procedure for 
parameter estimation and illustrate its application in several seismological problems. 
When applying this procedure we encountered a difficulty rather typical in seis- 
mology: observed data often contain, besides parameters we are interested in, some 
incidental parameters, whose number increases as the volume of data increases. 
The maximum likelihood estimators in such situation are not guaranteed to be 
consistent. In our case we have proved the consistency and asymptotic normality 
of the maximum likelihood estimators (m.1.e.) directly. The question whether the 
m.1.e. in that case are efficient or not is open. 

2. Standard maximum likelihood estimation 

Let us suppose that a sample X,, ..., X ,  of random variables is given, whose 
probability distribution depends on parameters a,, . . ., a,,,. The parameters can vary 
in some domain A. Let us suppose further that the density function of random 
variables under question exists and denote it by f ( z , ,  ..., z,/a,, ..., a,,,). Substi- 
tuting for the arguments of this density the sample X,, ..., X, we get: 

L = f ( X , ,  ..., Xn/al ,  ..., a,,,). (1) 
Function (1) (or sometimes its logarithm) is called the likelihood function for the 

parameters a,, . . ., a,,,. 
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308 V. F. Pisarenko 

The m.l.e.'s of the parameters a,, ..., a,,,, according to this definition, are equal 
to those values bl,, ..., a,,, that give the maximum value to the function (1). We 
shall consider only the situations where the maximum of the function (1) over 
a l ,  ..., a, under fixed X , ,  ..., X ,  is achieved with probability 1 in a unique point. 
If the function (1) is differentiable, then its maximum in the domain A is achieved 
in the point where 

Sometimes it is more convenient from the computational point of view to con- 
sider the system of equations that is equivalent to (2): 

= 0 ,  k = l ,  ..., m. (3) 
a logf(X1, ..., Xn/a l ,  ..., a,) 

The equations (3) are called the likelihood equations. Thus the problem of finding 
the m.1.e. for a,, ..., a,,, is reduced either to solving the system (3) or to finding 
directly the maximum of the function (1). From the computational point of view 
this problem is often rather complicated, in particular when m is large. Some 
methods of solving such problems can be found in (6)-(8). Under rather general 
regularity conditions on the density function (I) the m.1.e. &,, ..., a,,, are consistent, 
asymptotically-normal and asymptotically-efficient [see e.g. (7, 9)]. This means 
that, as n + CO, the estimators bl,,  ..., a,,, 

A 

A 

(a) converge in probability to the true values of parameters a,, ..., a,, 
(b) are asymptotically-normal variables after normalization of order n-*, and 

(c) the variances of their limit normal distribution are less than the corresponding 

The covariance matrix B of the limit normal law for Jn(bl, - a,), . . ., Jn(&,,,- a,) 
can be found from the following condition. If we denote an element of the inverse 
matrix B-' by p k j ,  then 

variances of any other regular estimators. 

where the symbol E means mathematical expectation, i.e. the result of averaging 
with density f ( X l ,  ..., Xn/a l ,  ..., a,,,); 

x f ( X l ,  ..., Xn/al ,  ..., a,,,)dXl, ..., dX,. ( 5 )  

The matrix { p k j }  is called Fisher's information matrix. 
The limit density function $(y,, ..., y,) of the random variables 

Jn(d , -a l ) ,  .-*, Jn(am-am) 
can be expressed by means of p k j :  
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Applications of the maximum likelihood method 309 

In order to obtain a confidence region for the true values u l ,  ..., u, one can 
consider the statistic x2: 

The distribution of this statistic tends, as n -+ 00, to a x’-distribution with m 
degrees of freedom. Consequently the inequality 

x2 G x m z ( y ) ,  (8) 
where xm2(y)  is the quantile of level y for x’-distribution with m degrees of freedom, 
specifies a confidence region of codidence level y for al,  ..., u,. This region is an 
ellipsoid, because the matrix { B k j }  is positive-definite. In order to be able to use 
the confidence region (8) in practice one needs B k j ,  and B k j  depends according to 
(5 )  on unknown parameters u l ,  ..., urn. This seems to be a vicious circle. A way 
out consists of substituting for the unknown u l ,  ..., ci, in ( 5 )  the approximate values 
a,, ..., a,: 

f l k j  = I.../ aaj 
m 

a logf’(X1, ..., x n / a 1 7  ..., 8,) a logf(X1, . * * ,  Xn/&,, ..., a m )  

-03 

x f(X,, ...) x,/a,, ..., LQddX,, ..., dX,. (9) 
The statistic 2’: 

like x2, tends to a x2-distributed variable with m degrees of freedom, so that one can 
take a confidence region of confidence level y in the form: 

R2 G xm2(y)- (1 1) 

Let us consider now the case when n is not too large, so that the asymptotic theory 
stated above does not yet hold. 

We suppose that the parameters u l ,  ..., u, are random variables themselves and 
vary from experiment to experiment according to some u priori density function 
t,b(ul, ..., u,). Such a situation can occur, e.g. when u l ,  ..., u, are signal parameters 
on a seismogram and vary in a random manner from earthquake to earthquake. 
In this situation one can find a confidence region for ul ,  . . ., urn from the u posteriori 
distribution of these parameters, i.e. from their conditional distribution under the 
condition that the observed sample is X1, ..., X,. According to Bayes formula 
[see e.g. (9)] we have for this a posteriori density: 

g(u1, * * * ,  um/Xlt * * * ,  Xn) 

(12) 
- S(X1, Xn/u1, urn).t,b(U1, *.., am) 

03 
- 

J.. . j f(Xl,  . . ., X,/E,, . . ., Zm).t,b(Z1, . . ., Em) & I , .  . . , dE, 
--m 

Having the function g it is possible to choose in the multidimensional space of 
the parameters al, ..., urn a region a, such that the integral of the function g over 9l 
would have the prescribed confidence level y. The choice of such a region 2l is 
not unique, but one usually chooses it near maximum values of g, i.e. one finds a 
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310 V. F. Pisarenko 

constant C so that 

[...I g(al, ..., a m / x l ,  ..., xn)dal, ..., dam = y. 
9 ’ C  

Now the region 2l defined by the inequality 

g(al, ..., a,/Xl, ..., X n )  > C (14) 
is a confidence region of confidence level y for a,, ..., a,,,. The main difficulty in 
using formulas (12)-( 14) (besides computational difficulties) is caused usually by 
ignorance (or incomplete knowledge) of the a priori distribution $(a1, . . ., a,,,). The 
function $ can sometimes be estimated from previous experiments. Sometimes it is 
desirable to manage without, as follows. The formula (12) shows that the aposteriori 
density g is the likelihood functionfweighted with weight $ and normalized. Accord- 
ing to standard maximum likelihood theory the likelihood function tends to a &function 
as n --t co, the &function being concentrated in the vicinity of the true values of 
al ,  ..., a,. On the other hand it is often known in advance that the function $ varies 
smoothly as compared to the 6-type function f. Because of the normalization (12) 
it does not matter what the function $ is and it can be put equal to a constant. Then 
we have 

- 
J . . . I f ( X 1 ,  ..., Xn/El,  ..., E,)dEl, ..., da,,, 
-00 

It should be noted however, that the parameters al, ..., a, cannot always be 
considered as random variables, because sometimes they do not vary from experi- 
ment to experiment or vary systematically. 

There is a general method of deriving confidence regions when the likelihood 
function is known [see (7)]. It should be noticed however that as  a rule this method 
involves very cumbersome computations, particularly when n and m are not too 
small. For every fixed vector (a1,  ..., a,) we choose a region C(al, ..., a,) in X-space 
so that the condition 

would occur with probability y, i.e. 
( X I ,  * - * ,  Xn)EC(al,  *.*, a m )  (15’) 

f ( z , ,  ..., z,/a,, ..., a,)dzl, ..., dz,  = y S*-S 
(21 ,  ..., Z ” ) E  C(a1, .... a,,,) 

for every (al, ..., a,). 
Now we insert in (15’) the observed sample X , ,  ..., X ,  and try all vectors 

(a1, ..., a,). The set of those vectors (a1, ..., a,) for which (15’) holds will constitute 
the confidence region of confidence level y. 

We mention briefly methods of deriving confidence regions, not connected with 
maximum likelihood estimators. These methods are not universal. Their general 
idea is to find some statistic T ( X , ,  ..., X,;  al, ..., a,,,) whose distribution does not 
depend on a l ,  ..., a, and can be evaluated. The examples of such statistics are 

(1) Student’s statistic for an unknown mean value of a normal population; 

(2) Xz-statistic for an unknown variance of a normal population; 

(3) Multidimensional version of Student’s statistic-Hotelling statistic [see (lo)]; 
and 
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Applications of the maximum likelihood methud 31 1 

(4) Bartlett-Wilks-Linnik statistic for parameters of multidimensional linear 

Knowing such a statistic T, it is easy to construct a confidence region of y-level 

regression [see (10, ll)]. 

for al,  ..., a, by inverting the inequalities 

TI < T(Xl, ..., X,;  al, ..., a,) < T2, (16) 

(17) 

where Tl and T2 are chosen so that the inequalities (16) would hold with probability y ;  

B{Tl < T ( X , ,  ..., X,;  al ,  ..., a,) < T2} = y. 

3. Derivation of m.l.e.3 in some seismological problems 

3 .1  Relative amplitude and phase corrections 

by 
Let us denote the complex Fourier transforms of records at two seismic stations 

where s,(o) is the spectrum of the signal of the k-th earthquake at the first station, 
H(o)-s,(o) is the spectrum of the signal of the k-th earthquake at the second station; 
n,(o), M,(o) are Fourier transforms of the noise at the first and second stations 
respectively. The 
noises are assumed to be Gaussian stationary independent processes with correlation 
functions B(z) and R(z) for the first and second station respectively. Mean values 
of the noises are zero. The function H ( o )  is the frequency response of a linear filter 
connecting undisturbed signals at the first and second stations. For example, in 
the case of the determination of the interstation phase velocity of surface waves the 
argument of the complex function H ( o )  is equal to the phase difference at frequency 
o. Let us fix for a while a frequency o and derive the m.1.e. for IH(o)l = r and 
argH(o) = 8. The likelihood function is 

The total number of earthquakes under consideration is N. 

wherez stands for the ratio of the noise variances at the second and first stations 
for frequency o. If the time interval of the records is (- T, T) then z(o) can be 
written in the form 

T T 

z(o) = (1 R(t-s) efo('-S)dtds B ( t - s )  e'W('-S)dtds. 
-T -T 

The unknown complex signals s, are incidental parameters whose number increases 
as N + 00; we are interested only in the parameters r, 0. 

Representing complex values on a plane we can give the following geometrical 
reformulation of our problem (see Fig. 1). There are unknown vectors s,; they are 
subjected to a rotation through an angle 8 and to a dilatation (compression) by a 
factor r. However both original vectors sk and transformed vectors H . sk are known 
only approximately. We have to provide estimators for the angle 8 and the dilatation 
coefficient r, using N pairs of approximate vectors. 
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312 V. F. Pisarenko 

FIG. 1 .  Geometrical representation of sk and Hs,, where H = rete. 

It is easy to find max L over all r,  0, sl, ..., sN. Let us introduce complex vectors, 
with their inner product and norm, according to the formulas: 

1 
Then the m.l.e.'s of r and 0 have the form 

P = d+J(dZ+z); 

8 = tan- '(u/b); 
where d =  Ib'llz-zllxl'2 ; 

u = Im (y, x); b = Re (y, x). 
2 I (x, Y)l 

The estimators P, 8 are consistent, asymptotically-normal and uncorrelated. This 
can be proved, though not from known theorems of m.1.e. properties, which are 
not applicable because of the incidental parameters. These results must be proved 
individually, using the asymptotic normality of (y,  x), IIxI12, llyll 2, which behave 
like sample moments of independent and identically distributed random variables. 

Asymptotic confidence intervals for r, 0 have the following form 

9{lr-Pl + t,.s> % 2y-1 (24) 

B le-81 < 2 . 6  P g 2 y - 1  (25) ( " 
where t ,  is the quantile of level y of the normal distribution. The statistic 6 is defined 
by the following expressions: 

[2z + (2 +P2). PI (26) 6 2  = N - 1  p-2 
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Applications of the maximum likelihood method 313 

The details of the derivation of (22)-(27), and their examination by means of 
some artificial examples with pseudo-random numbers can be found in (12), (13). 

Let us consider now the questions of the confidence region for the values of the 
function H(w) at some prescribed points wl, ..., wM and of the smoothing of 8(w). 
We shall need the following formulas for noise covariances n(wj), n(w,); m(wj), 

- m  
T 

Rje = Em(wj)rn*(we) = ss R( t - s ) exp( iw , t - iw , t )d tds  
- T  

= T 2  fp(w) WT(w-oj )  WT(w-oe)dw, 
-m 

and B(w), p ( o )  are Fourier transforms of B(t),  R(t) .  Supposing we have m.l.e.’s 
8, = A(ol), ..., 8, = B(oM) we want to smooth them using some complex weights 
wkj: 

The mean-square deviation of the smoothed function from the true value 
H k  = H ( 0 k )  is 

where {bje} stands for the asymptotic covariance of the m.l.e.’s Gj and A,. The first 
term on the right-hand side of (29) is the systematic bias of the smoothed estimator 
Rk; the second one is the variance of the random deviation of Rp What are the 
weights w k j  minimizing (29) ? After some algebraic computations we get: 

M 

c = l  
wkj = H k  c B/*e H,*, (30) 

{bj,+HjH,*}, j ,  e = 1, ..., M. (31) 

where {Bje} is the inverse of the matrix 

It may be noticed by the way that similarly we could minimize an arbitrary linear 
combination of the two terms on the right-hand side of (29). In the same way one 
can find the weights fcr smoothing amplitudes PI = I ~ , l ,  ..., PM = IRMl and/or 
phases 8, = argA,, ..., 8, = arg8, if one is interested separately in amplitudes 
and/or phases. In that case it is more natural to take real weights. Let us consider 
for example the smoothing of phases with real weights u k j :  

M 

j = 1  
B(O,) = 8 k  = c UkjoJy  k = 1, e.., M .  (32) 

6 
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314 V. F. Pisarenko 

The optimum weights minimizing the mean-square deviation are defined by 

where {Y,~} is the inverse of the matrix 

{Cjc + 0, ee l  (34) 
and {C,,} is the asymptotic covariance-matrix of the m.l.e.’s 8, and 8,. Now we 
give approximate formulas for the asymptotic covariances of the m.l.e.’s 

R,; P, = IR,~; 8, = argR,. 

In these formulas indices j ,  e refer (as before) to the frequencies w,, we respectively. 

cov (&, 8,) r - cov (P,, Pe) - - 
rj r e  

-- Hr H e  cov (pi, Pe) +Hi* He cov (a,, fie), (38) 
re 

where 

Knowing the covariance matrices {cov (Rj, Be)}, {cov (P,, Pe)}, {cov (8,, 8,)} it is 
easy to construct a confidence region for a set H , ,  ..., H ,  (or for rl,  ..., r ,  or for 
el, . . . , O M ) .  The sum 

j ,e=l 5 s,e(H,-i f ,)(He-fie)* (40) 

has a X2-distribution with 2M degrees of freedom. Here T,, stands for the inverse 
matrix of {cov(~,,~?~)}.  The confidence region with confidence level y for 
HI, ..., H M  is 

M 
1. c e = 1  s j e < H j - f i j > .  ( ~ e - f i c ) *  xzMZ(y)- (41) 

For a set of phases O,,  . . ., OM we get a similar confidence region 
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Applications of the maximum likelihood method 315 

where {A,,} is the inverse matrix of {cov (a,, a,)}. The sum in (42) has M degrees of 
freedom, because all its terms are real, while the sum (41) has 2 M  degrees of freedom, 
because all its terms are complex. For r , ,  .. ., rM we have a confidence region 

M 
1. c e =  P , e ( r , - f w . e - ~ e )  X M 2 ( Y ) ,  (43) 

where {P,~} is the inverse matrix of {cov (Pi, P,)}. The formulas (35)-(39) contain the 
unknown quantities H,, ..., HM7 Cje. One can substitute for them in (41)-(43), 
(30), (33) their consistent estimators 8,, . . ., GM and 

where xl ’ ) ,  yk(I) are the values of the spectra of the k-th earthquake at the j-th 
frequency o, for the first and second stations respectively. 

The problem just stated can be generalized to the case when there is an array of 
(k+ 1) stations and we want to determine the relative amplitude and phase cor- 
rections H,(o),  ..., Hk(W) of the k stations with respect to one central station. For 
simplicity we shall consider such a generalization only for one frequency o. Let 
xi(w) stand for the Fourier-spectrum of the k-th earthquake at the central station 
and y / ’ ) ( o ) ,  ..., y / k ) ( o )  for the Fourier spectra of the i-th earthquake at the rest 
of the k stations. The likelihood function for a fixed frequency o is 

where C is a constant, and the other notations are as above. We have to maximize 
L over all complex vectors s = (s,, ..., sN) and complex numbers H,, ..., Hk. It 
can be shown that this problem is equivalent to the problem of the determination of 
the normalized eigen-vector of the Hermitian matrix 

k 

gle = i = 1  c yj(‘)(ydi))*(z,ze)-f+x,xe*, 

fl,(o) = c= c 1 y!i)ue*ze-’, 

j ,  e = 1, ..., N (46) 

corresponding to the largest eigen-value. 
m.1.e. for H k ( 0 ) :  

Denoting this vector by ue we get the 

N 
j = 1, ..., k. (47) 

It should be noted that an estimator of H,(o) can be got by means of formulas 
(22), (23) and using only the spectra of the central and j-th stations xi(o), y/’)(o),  
i = 1, ..., N. The latter estimator would be worse (its mean square deviation is 
larger) than the estimator (47). 

3.2 Group and phase velocities of surface waves 

Let us consider now an application of the m.1.e. method to the determination of 
group and phase velocities of surface waves. We suppose that from a preliminary 
analysis [e.g. by means of the very efficient procedures developed by M. Landisman 
et al., (17)-(18)] it is known that a seismogram x(t),  (- T G t G T )  contains M 
modes of surface waves of some type. Let &.(a) denote the spatial frequency of 
the k-th mode. It is well known that the group and phase velocities of the k-th 
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mode are defined by the equations: 

We now introduce for every function &(m) its own parametrisation, i.e. we assume 
that &(a)) can be represented with sac ien t  accuracy in the form 

(49) r k ( @ )  = ,=1 3 a k j 4 j i ( o ) ,  

where $,(o) are known functions (for example 4,(o) = o j ) ,  and akj are unknown 
coefficients. Having &(a) in the form (49) it is possible to calculate by means of 
known methods a synthetic seismogram yc(t; akl) for the k-th mode. The mode 
n(t; ak,, Bk,) can depend also on some incidental parameters corresponding to 
the source and the medium. Now we assume that the observed seismogram x(t)  
has the form 

where n(t) is Gaussian noise with correlation function B(t,  s) and zero mean. Let 
x(t)  be digitalized in points t, ,  ..., tN.  Then the likelihood function for the unknown 
parameters {ak,, &} is 

where C is a constant and {ye,} is the inverse matrix of {B(t,,  tj)}. 
Now one can apply the standard method of m.1.e. stated above and find confidence 

regions for {a,,}, and consequently for uk(o), ck(o). However, finding the maximum 
of L in (57) is very difficult from the computational point of view. Therefore it is 
reasonable to attempt to apply the m.1.e. method not directly to the seismogram, 
but to functions obtained from the seismogram after some processing. Such an 
attempt is the method of the contour diagram in the period-velocity plane for the 
determination of group velocity, due to M. Landisman et al. [see (14)-(17)]. In 
this method a function of two variables y ( t ,  o) is obtained from a seismogram x(t).  
Here w is the frequency of interest and t is the ‘ arrival time of period 2 n / o  ’; the 
value oft is proportional to the inverse of the group velocity u ( o )  since u(w) = R/ t (o ) ,  
where R is the distance from the source to the station. We assume now that our 
seismogram x(t)  contains only one mode and we try to derive a confidence region 
for u(ol), ..., u(wM). We shall consider a so-called frequency version of the determi- 
nation of contour diagrams. In this version the complex function y ( ~ ,  w) is calcu- 
lated: 

a0 

y(z,w) =; 1 1 X Q . H  (?) 0 - A  exp(-iAr)dl, 

0 

where X ( l )  is the Fourier transform of x(t)  over the time interval in question 
(- T d t < T); H ( o )  is the ‘ frequency window ’. M. Landisman et al. (cit. above) 
took the window in the form: 

The values of ly(z, o)l are inscribed in the plane (T, w )  for some prescribed grid of 
arguments (T,, u k ) ;  then contour lines of constant levels of ly(z, o)l are drawn and 
the crest line is marked. We assume that the spectrum of the observed seismogram 
has the form: 

~ ( o )  = exp ( - a d ) .  (53) 

X ( 4  = s ( 4  + n(4, (54) 
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Applications of the maximum likelihood method 317 

where s(o) is the Fourier transform of the mode of surface wave under consideration 
and n(w) is the Fourier transform of a realisation of Gaussian noise with spectral 
power density $(o). Both transforms are taken over time interval (- T, T). We 
have 

m 
1 

7c2 
I Y ( T ,  o)12 = - [ 1 [Re s(A) cos Az + Im s(A) sin or]. H (q) dA 

0 

+ [[Ren(A) cosAz+Imn(A) sinAz1.H (";I) - dA)' 
0 

W 

1 
n2 

+ - ( 1 [- Re s(A) sin h + I m  s(A) cos Az] . H  (G) d l  
0 

+ [-Ren(A)sinAz+Imn(A)cosAz].H - dA)2. 
0 i (55)  

Let us denote the first, second, third and fourth integrals on the right-hand side of 
(55) by fl (7, w), nl(z, o), f2(z ,  o), n2(z, w) respectively. Further, let zo(o) stand 
for that value of z where the function f12(z, o)+fZ2(z ,  o) achieves its maximum, 
and let z(w) stand for that value of z where the function ly(z, o)I2 achieves its maxi- 
mum over z. Now we state an essential assumption about the smallness of the 
noise: we assume that derivatives anl/az, an2/az are so small that in the vicinity of 
z 0 b )  

~ 0 ( 4 - b o ( 4 - z ( 4 I  < 7 < ~ 0 ( 4 + l ~ 0 ( 4 - ~ ( 4 l  

the function f12(z, 0 ) + f ~ ~ ( 2 ,  o), with probability close to 1, can be approximated 
with sufficient accuracy by a parabola of the second degree in (zo-z). In such a 
case it is easy to show that 

Thus the presence of noise results in shifting the argument of the maximum of 
ly(z, o)I2 over z, as compared to the argument of the maximum off12+f22 (when 
the noise is absent), by some random value, which is equal to the second term on the 
right-hand side of (56). Moreover zo(o) itself has a bias relative to the function 
R/u(ok). This bias b(w) = zo(o)-R/u(w) can be evaluated by means of substi- 
tuting for s(o) in fl(z, w) and f2(z ,  o) some proper theoretical spectrum of the 
mode in question and comparing zo(w) and R/v(o) .  

Let us denote the random term on the right-hand side of (56) by &(a), and the 
covariance cov [~(ok), &(oj)] by dkj. Now we are able to write the likelihood function 
for u(o1), . . ., 4oM), 

where C is a constant, {yki} is the inverse matrix of {dkj}. There is no difficulty of 
principle in finding covariances dkj.  It ought to be taken into account only that 
the noise spectra Re n(o) and Im n(o) constituting n,'(z, o), n2'(r, o) can be expressed 
in the following form [see (19)]: 
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where dg(A), &(A) are uncorrelated stochastic spectral measures with orthogonal 
increments, connected with the spectral power density $(A) by the following relations: 

Eldg(3,)I2 = Eldh(A)Z)12 = 4(A)dA. (60) 
Knowing the likelihood function (57) one can construct a confidence region for 
U(o1), ..., u ( o M )  because the quadratic form on the right-hand side of (57) has a 
x2 distribution with M degrees of freedom. We point out once more that expression 
(57) has been derived under the assumption of smallness of the noise. But if the 
noise is not small then it seems to be unreasonable to use the method of the contour 
diagram at all. 

Similar considerations can be used for the determination of the interstation phase 
velocity based on two records xl(t) and x2(t)  at two stations. The phase difference 
A 4 ( o )  in this case is: 

and an estimator of the phase velocity for frequency o is 
= argy,(t, w)-argy,(z, 4 (61) 

where AR is the distance between the stations. As for the case of the group velocity 
under the condition of smallness of the noise, the disturbed functions arg y ,  (7, w), 
argy2(z, o) can be linearized and a confidence region for values of the phase velocity 
C(w,), ..., C(wM) can be constructed. At the end of this paragraph we shall consider 
the construction of confidence regions for group velocity, obtained by the method of 
peaks and troughs [see (IS)]. 

Let the arrival times of visible periods T,, ..., T, on a seismogram x(t)  be 
t , ,  ..., t,. We assume that the noise n(t) is small enough, so that it shifts the peak 
of period Tk insignificantly to a value Atk and that in the vicinity of t k  the signal 
peak can be approximated with sufficient accuracy by a parabola of the second 
degree. Denoting the true time of arrival of the peak of Tk by f k  we can write: 

x( t )  = s(t)+n(t) ,  x ’ ( t k )  = s ‘ ( f k ) + n ’ ( t k )  = 0, (63) 

(64) 
( t k  - f k ) 2  

s ’ ( f k )  s(fk)+s’(fk)- ( f k - f k ) + S ” ( t k ) .  - 2 .  

Substituting (64) into (63) and taking into account that s ’ ( f k )  = 0 we get 

Denoting the covariance of the derivative of the noise n’(fk) at the points t k ,  ti 
by dkj ,  we obtain the likelihood function for u( T,), . . ., u( TM), 

where C is a constant and { Y k j }  is the inverse matrix of { d k j } .  A confidence region 
for u( Tl), . . ., u( T,) can be easily derived from (66), because the quadratic form on 
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the right-hand side of (66) has a X’-distribution with M degrees of freedom The 
curvatures s” ( ik )  in (66) ought to be estimated by some proper procedure. 

If the times t , ,  ..., t, are smoothed by means of weights W,: 
M 

j = 1  
j k  = c, wkj t j  

then the covariances of the smoothed values tl,  . . ., 1, are equal to 

The systematic bias ?k as compared with true value t k  is 
M 

E?&- = c W k j  t j -  2,. 
j=1 

The weights minimizing the mean-square deviation E ( j k -  rk)’ are specified by 
M 

j = 1  
~~j[dj,S”(fj)S”(t,)+fj.~,] = f k . f , ;  m = 1, ..., M. (70) 

3.3 Derivative of travel-time curve d t /dA 
We are given arrival times of N earthquakes at two stations, t1(’), ..., t i 1 ) ;  

tl(’), . . ., t i ’ ) ,  and corresponding epicentral distances A1(l ) ,  . . ., ANc1); A:’), . . ., AN(’). 
These values have been measured with errors. We denote the corresponding exact 
values by 

Ti(,) ,  ..., ti1’; ti(’), ..., TN”); 61“), ..., 6 ~ “ ) ;  61(’), ..., 6, (2). 

We suppose further that the following relations hold true: 
- t i ’ )  = 7;’) - +tk; 

A ; ~ ) - A  k (1) = 6 k k ( l ) + c k ;  (73) 
where &, t fk,  [k  are independent Gaussian variables with zero mean and variances 
f2, g2, h’ respectively. It is to be noted that, although the left sides of (72), (73) 
are functions of the same random variables At’), A i l ) ,  the assumption of inde- 
pendence of tfk and c k  is nevertheless quite natural. It is due to the fact that the 
sum and the difference of random variables with equal variances are always uncor- 
related. We suppose next that in the range of epicentral distances of interest the 
true derivative of the travel-time curve, dt/dA, is represented with sufficient accuracy 
by a parabola of the m-th degree: 

dt m - = c a, A‘. d A  e = O  
(74) 

Lastly we suppose that our stations are so close to each other that the following 
approximation is true: 
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Now we put down the likelihood function: 

One can apply the maximum likelihood method to (76) to estimate the unknown 
parameters uo, . . ., am and the incidental parameters ~5k(~)-bk('), +(6~2)+6,")), 
k = 1, ..., N. It should be noted that in the case m > 1 the m.1.e. can be biased. 

An alternative approach to this problem could consist in using some a priori 
density for the incidental parameters 8i2)-Bk('), +(S,(')+Bk(')), say q5(x), JI(y). 
Then the density of 

is 
t,'Z)-t (1). A i 2 l - A  (1). 6k(2)-&(1); +(6,(2)+Sk(l)); +(AJ2)+Ak(i)) 

k ,  k ?  

- j p  [u - 4 2  .f$(x) .$(y) dx dy du du 

over all k we get the conditional density of all t i 2 ) - t i 1 ) ,  k = 1, ..., N under fixed 
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The values of a,, ..., a,,, giving a maximum to (79) are the conditional m.l.e.’s. 
A confidence region for a,, ..., a,,, can be derived with the help of the density (79) 
as it was done above in the second paragraph. 

Problems of such kinds are very difficult from the computational point of view. 
They are related to the so-called confluence analysis [see (20), (21)], which differs 
from regression analysis in the fact that there are errors both in the values of observed 
function and in the values of its arguments. 

4. Conclusion 
In this paper the standard method of m.1.e. has been stated, including the con- 

struction of confidence regions based upon m.1.e. This method has been applied 
to derive formulas for m.l.e.3 in some seismological problems: determination of 
relative amplitude and phase corrections; determination of group and phase veloci- 
ties of surface waves; estimation of the derivative of the travel-time curve. The 
main theoretical difficulty when applying the method of maximum likelihood consists 
in finding an adequate probabilistic setting of the problem and in finding a likelihood 
function for the parameters of the problem. This difficulty is not always easy to 
overcome. For example, so far no reasonable likelihood function has been found 
for arrival times corresponding to a multiloop travel-time curve. 

When using the method of m.1.e. in practice one encounters also the real difficulty 
of computation (determination of the maximum of a function of many variables). 
Sometimes this difficulty is aggravated by the presence of many incidental para- 
meters. Nevertheless the application of the method of maximum likelihood either 
directly to observed seismograms or to some ‘ semi-manufactured ’ functions derived 
from seismograms leads in practice to good results. 

Institute of Physics of the Earth, 
Moscow. 
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