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1. Introduction. In the study of principal actions of a group G, a
fundamental role is played by the classifying space Bg. Thus it is natural
to seek algebraic invariants which describe the geometrical properties of these
spaces. For the purpose of studying their homology and cohomology, Rothenberg
and Steenrod [15] introduced a variation of the Eilenberg-Moore spectral sequence
and gave several applications. Hodgkin [11] and Anderson and Hodgkin [2]
recast the cohomological form of this spectral sequence into K*-theory and used
it to study the K*-theory of Lie groups and Eilenberg-MacLane spaces.

It is our purpose here to extend the homological form of the spectral se-
quence to arbitrary multiplicative generalized homology theories and give
some brief applications. Since the constructions require a Kiinneth isomorphism,
we must introduce cyclic groups of coefficients and investigate the existence of
associated multiplicative structures. This is done in §2 and follows the correspond-
ing constructions of Araki and Toda [3] for cohomology. In §3 the spectral
sequence is described and the E*-stage and edge homomorphism are identified.

The applications are given in §4. These include the computation of the
K-groups of certain Eilenberg-MacLane spaces, using results of Anderson and
Hodgkin [2]. The implications of these computations in complex bordism are
noted briefly. Finally we give the following generalization of a theorem of
Borel [5]: If A4 is a multiplicative homology theory, p is a prime, hy(pt.; Z,)=R
is zero in odd dimensions and G is a group having ky(G; Z,) an exterior algebra
over R on a finite number of odd dimensional generators, then A4(Bg; Z,) is a
modified polynomial algebra over R on corresponding generators of one dimen-
sion higher.

We assume throughout that spaces are in the category A of spaces having
the homotopy type of a CW complex with finite skeleta and that all homology
theories are additive. It is a pleasure to acknowledge recent conversations
with Gary Hamrick on this and related subjects.

2. Multiplicative homology theories. Let &y be a generalized homology
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theory [18], [9]. A multiplicative structure in hy is an associative bilinear pairing
p: b X, AYQh(Y, B) — (X, Z) X (Y, B))

for all pairs of spaces (X, 4) and (Y, B) subject to the following requirements:
(i) u is natural with respect to maps of pairs;
(it) there is a two-sided unit 1k (pt.);
(i) 2(ou(®)®y)=c4(w(xD3)) and
Ty (s @04(3))=(—1)os(u(xD )

where xeh,(X, A), yeh,(Y, B), o4 is the suspension isomorphism and
T: (X, A)yx,0l)x(Y, B)—(I, d]) X (X, A) X (Y, B) reverses the first two coor-
dinates. For representable homology theories such products arise naturally from
pairings of the associated spectra [18].

Let ¢ be a positive integer and denote by 7T, an homology Moore space of
type (Z4, 1). Then define

ho(X, A; Zg) = hari((X]A) AT )

where it is understood that if 4=¢, then X/A=X*=X U pt. Asis well known,
this defines an homology theory, the 44-homology with Z, coeflicients. Follow-
ing techniques of Anderson [1] and Araki and Toda [3] we want to show that
under certain conditions there is an associated multiplicative structure for
hi( 5 Zo)

From the cofibration sequence

Xq r b

S S s Ty 87— e

there follows the corresponding sequence for any pair (X, 4),

(XIAHNS' —— an x q(X/A)/\S‘ an (X/A)/\T i/-\i

Its exact homology sequence may be abrieviated to give the universal coefficient
sequence

2.1y 00—k (X, ARZy—> h(X,A; Z))—> Tor (h,-(X,A),Z;)—> 0.
The homomorphism
pg = (FdN1r)s: b (X, A)— h(X, A; Z,) is reduction mod ¢

and
= ([d A\b)s:h (X, A;Z;) —> h,. (X, A) is the mod ¢ integral Bockstein.

(2.2) If hy is a multiplicative homology theory and q=£2 (mod 4) then there
is a multiplicative structure p, in hy( 3 Z,) with the property that u,(p(x)Qpa(y))
=p (xR y)). Furthermore if 1 is a unit for p, p,(1) is a unit for p,.
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Proof. Let i: pt.—S' be the inclusion of the base point and consider
the two cofibration sequences

X qAid d bAid XqAid
sar, NG g g TN BN e 2N o,
g lz'd f DI jz‘d
d id

i I\ i i
PNT, —— S'AT, > S'ANTy — pt ANTy——— S*NT,

A result of Barratt [4] states that for ¢g=£2 (mod 4) the map XgAid: S'AT,—
S'A T, is null homotopic. Thus by taking g to be the constant map, the first
rectangle commutes up to homotopy. According to Puppe [14] this implies the
existence of a map f so that the second rectangle is homotopy commutative, i.e.
fo(r A\id) is homotopic to the identity on S* A T,. Note that since the homotopy
class of f is not necessarily uniquely determined, the same may hold true for
the resulting multiplication.
Now define g, to be the composition.

h(X; Z) (Y3 Z0) = By X AT @i Y AT)
: ©

: sl (XX V) ATAATS)
" GdA s

: el (XX Y)Y AS'ATY)
O'*_l

i - /
hr+s(X>< Y; le) - hr+s+1((X>< Y)'—/\ Tq)

The basic properties of the multiplication follow.

For the case g=2 (mod 4) there are considerable difficulties in defining a mod
g multiplication with the desired properties. Following techniques of Anderson
[1], we now give some partial results for this case. A multiplicative homology
theory hy is said to be pre-associative if the ring A=h4(pt.) is associative and for
all X, h4(X) is both a left and right A-module. We immediately conclude the
following:

(2.3) If hy is a pre-associative multiplicative homology theory, then for
each n there is an isomorphism

(™)@ ha(X) —> ha(S"x X)) .

From now on we assume that our multiplicative theory A, is pre-associative.
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(24) Let

st pt gt g

be a cofibration sequence tn which o *(1)& hy(S*) lies in the kernel of 1. Then
there is a natural short exact sequence for any X

00— h(X) —> Bl QAX) —2 Byyn (PAX) — 0

such that oy~ *"o(jA1)xo] is the identity on h,(X) and Hodpy is the identity on
huren(PAX). )
Let Beh, .,(Q) with ju(B)=0a4*"(1), and define j(x)=p(BRx). Then

o F(F A DG (x) = o * (A Du(u(BR))
= o (o (1)®4))

=x.
To see that this is natural, let g: X—Y and x€#£,(X). Then
(A8 (%) = (1A D)u((BR)) = (BB ga(x)
= j(g+(x)) -
Now suppose that P=S" and

i ¢ J

Sk 8" 75 0, Sk

is the corresponding cofibration sequence. Suppose further that pA1: S"AT,
—0, AT, stably has order ¢g. Then in the exact sequence

. A UATAD* ,
[S*AT A Tq Q. ANS*'AT,] >[S*AS' ATy QNS ATy

XD on o :
S [S*AS AT, Q,AS* AT

we have (X ¢)*(¢ A 1)=0, sothere exists stably amap f: S"AT,ATy—0,AS'AT,
such that the following diagram is homotopy commutative

S"ATNT, -—> O, AS'AT,

\ TATAL / PAIAL

S"AS'AT,.

We may now define a mod g multiplication in A4 corresponding to the map
7. The product p, is given by the following composition:
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B X ATYR Il Y AT~ Ty s (XX YY) ATGAT)

n
0%

: Byiesinisl (XX YV AS*AT,ATY)
g (IASAT)
: 4 .

ﬁr+s+n+2((XX Y)+ A Qﬂ/\ S'A T‘l)

¢
oy D

. - v
hr+s+1((X>< Y)+ A Tq) D — hr+s+n+2((XX Y)+ A S”/\ S? A T‘l)

Note that this is analogous to the previous construction in that for ¢==2(mod 4),
every element of [S” A Ty, O T,] has order g and we may take % to be null homo-
topic. Then ¢ becomes the identity and we have the situation in (2.2)

To check that this has the desired properties of a mod ¢ multiplication, we will

show that p¢(p(%)®p(¥))=p(1(*® y)).

nlp(HDP()) = (L ADKDDIAPA(D))
= o PN fA Do (L ADKRDD(LAP())
= o " BN f A Dsos (AT A DRI A LA u(x@ )
= o OGN FADKIAANA Dsos (L AT AR 5p(x@ )
= ax " PAAPATA D" (A TAT) (xR )
= o "IN AN (E®Y) = p(u(x®7)) -

The fact that p(1) is a unit for p, follows similarly. Using the notation above, we
have established the result:

(2.5) If ¢=2(mod 4) and 7: S*—S" is a map such that n4(o«*(1))=0 and
PdNAL: S"ATq—Q, AT, stably has order q, then there exists a mod q multiplication
for by as in (2.2).

As a specific case, let 7: §*—S? be the Hopf map. We will compute the
order of pA1E€[S*N Ty, O, A T,] where g=2 (mod 4). From the cofibration
sequence

S AT, — SNT;— O NT,— S'AT,
we obtain the exact sequence

Al Al
[S2AT,, S°A Tq]—("—ﬁ» [SZA T, SEAT,] (15—_);"[32/\ T, O,AT,]

78
UADs ron,, SATY.
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According to [3, Theorem 4.1}, we have
(i) [S*ATy, S*AT,)~Z, generated by (1Ar)ob,
(i) [S*ATy S*ATg~Z,, generated by 1,
(i) [S?AT, S'AT]=0.
By using [3, Theorem 1.1] we get the relation

(A D((AIAT)ob) = q-1[S ATy, SEAT,}.
Hence we can easily see that
PA1€[S*AT,, O, ATy« has order q.
Combining this result with (2.5) gives a more specific result.

(2.6) If the homology theory hy in (2.2) has nx(o+*(1))=0 where 7: S*—S*
is the Hopf map, then the hypothesis that q==2 (mod 4) may be dropped.

The following weak form of the Kunneth formula may be established by the
technique in [6, §44]:

(2.7) If X and Y have the homotopy type of CW complexes of finite type and
h(X; Z,) is a free R=hy(pt.; Z,)-module, then the mod q multiplication defines an
isomorphism

pet h(X; Z)Qrhs(Y; Zg) — k(XX Y; Zy).

3. Thespectral sequence. The results of this section are due to Rothen-
berg and Steenrod [15] [16]. Since the details of their proofs have at present
only appeared in the form of mimeographed notes [16], some of their arguments
are reproduced here.

Let G be a group in A4 with identity e. A right action of G on a space X
is a continuous function ¢: XX G—X such that ¢(x, e)=x and ¢(P(x, £,), £2)
=d¢(x, g,g,) for all g, g, G, x=X. A space X together with such an action is
a G-space. X is a filtered G-space if there is a sequence X, Cc X, C---CX,C--

of closed G-invariant subspaces such that X4 ¢,X= UX, ; and X has the topology
i=0

of the union. A filtered G-space X is acyclic if X, is contractible to a point in
X,41; it is free if for each n there exists a closed subspace D, X,,<D,cX,,

”
such that the restriction of the action mapping gives a relative homeomorphism

¢'n: (Dm Xn—l) X G E— (Xm Xn—l) .

A filtered G-space which is both free and acyclic is a G-resolution.
Let & be the Milnor resolution for G [12]. Then & is a universal G-space
and the decomposition space B=¢&|G is a classifying space for G. If p: E->B is
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the identification map, then B is filtered by setting B,=p(€,). Then B,_, isa
deformation retract of a neighborhood in B, and p restricts to a relative homeomor-
phism p: (D, €,.,)—>(B,, B,-,) for n>0.

Let hy be a multiplicative homology theory as in (2.5) and ¢ an integer
for which h4(G, Z,) is a free R-module where R=hy(pt.; Z,;). Then the Kunneth
isomorphism of (2.7) gives h«(G; Z,) the structure of an R-algebra and A«(X; Z,)
the structure of a right h4(G'; Z,)-module.

The space X=X X € may be filtered by setting (X;),=XXs€,. Note
that if X is a point, X;=B is the corresponding classifying space. This filtra-
tion of X produces a natural filtration of A«(Xg; Z,) which yields a convergent
spectral sequence E*(X) in the usual way. We now want to establish some of
the basic properties of this spectral sequence as in [16]. These results dualize
those of Anderson and Hodgkin [2] [11].

Since &,-, is contractible to a point in &, we have a long exact sequence

d d d
(31) /> h*(enﬂy &yt Zq) I h*(gm 8n—1; Zq) —_—
d d &
e ——> k*(gn & Zq) - h*(Eo; Zq) —> R—>0

where each d is the boundary operator of the respective triple and € is induced
by the map onto a point.

(3.2) If hi(G; Z,)1s a free finitely generated R-module then the sequence given
in (3.1) is a free hy(G; Z,) resolution of R.

To prove this consider the pair (D, &,.,) where D,= {¢} ¢, ,~Cé¢,_, and
e=G is the identity. The map

¢n: (Dm En—x) XG ——> (Sm en—l)

induced by the action of G is a relative homeomorphism. Using the right action
of G on the second factor of (D,, &,-,)X G, we see that

qu: h*((Dm En—l)x G; Zq) - h*(Em 6”—1; le)

is an isomorphism of A.(G; Zz)-modules. The Kiinneth formula (2.7) gives an
isomorphism

trat H(Doy Eness Za)R el G Zg) —> ha(Dos Er) X G Z3)

of hy(G; Z,)-modules, where the action on the left side is given by acting on the
second factor.

Thus to show that (€, €,_,; Z,) is a free hy(G; Z,)-module it is sufficient
to show that hy(D,, &, 15 Zo)~hi(CEpry Enr; Z)~hu( 6,3 Z,) is a free R-
module. Since €,_, is a join of copies G and k«(G; Z,) is a finitely generated
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free R-module, it is sufficient to show that if 24(X; Z,) and 7+(Y; Z,) are finitely
generated free R-modules, then so is (X0 Y; Z,).

Here the argument of Milnor [12, lemma 2.1], together with the mod ¢
Kunneth formula (2.7), establishes an isomorphism

ﬁ*(X° Y; Zq)%E*(X; Zq)@Rﬁ*(Y; Zq)

of degree —1. We conclude that hy(E,, §,_,; Z,) is a free hy(G; Zg)-module.
Finally since the boundary operator on a cross product 9(xX y)=0(x)
X y for x a relative class and y an absolute class, the homomorphisms d of (3.1)
are hy(G; Z,;)-module homomorphisms. This completes the proof of (3.2).
It is now possible to determine the E’-stage of the spectral sequence for
Xg. Consider the diagram

hia( X5 Z)R phs(Dyy €45 Zg)
h
hs( X3 Zg)R rhs(D oy €n-15 Z)Rrhx(G5 Zy)
A~ Lid ®(Pwropa)
ha( X5 Z)Q ghs(Epy En-13 Z4)
~ | g _ b (X5 Zg)Rhs(Eny Enss Za)
h*(G; Z,)

4
h*(Xxgm XX Epis ZII)

Px
h*(XX Gefn XX ng—l; Zq)

where I{(x®y)=x@y®1 and 7 is the natural map onto the quotient. It isa
standard fact that since id @(¢,*ou,) is an isomorphism, the composition 70({dQ
(¢puropg))oh is also an isomorphism. On the other hand, a diagram chasing ar-
gument shows that pyopue0(id @ (¢ ,,omq))ok is just the composition

y12
il X3 Z)@ hs(Dos En-s; Za) —— ha( XX (Dyy €015 Z)
Px| =
h*(XX Gem XXGEn—l); Zﬂ)

where py is an isomorphism since the restriction of p is a relative homeomorphism.
This allows us to conclude:

(3.3) The homomorphism moug'c py defines a natural isomorphism from
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Pl X X 6y XX 6Ey-15 Zg) 10 (X3 Z0) @i 2, 4(E s En-15 Za) -
As an immediate consequence we have:
(3.4) Denoting the R-algebra ho(G; Z3) by A there is a natural isomorphism
B3 4(Xe)~ Tor 34(he(X; Z2), R).

We make the following observation concerning the edge homomorphism in
E*(X;):

(3.5) The edge homomorphism given by the composition
Es, x(Xe) —> Efx(Xo) —> E§(Xq)
h*(fXx ¢G;Zy) h*(zX Z)® AR ]oR* — hy(Xes q)
h*(X Z,)
1s induced by the inclusion

X = XXGG:(XXG€)0—> XXGE.

4. Applications. Our first application is to dualize the results of Anderson
and Hodgkin [2] by applying the spectral sequence of §3 to the problem of
computing the Ky groups of Eilenberg-MacLane spaces. For the moment let
p be an odd prime.

Denote by Ky the Z,-graded homology theory associated with the unitary
spectrum [10] [1]. Let = be a finite abelian group and denote by B Milnor’s
realization of B,=K(w, 1). The multiplication in the group = defines a product
m: B X B—B so that for any prime power g=p", K«(B; Z,) becomes an algebra
over R=K(pt.; Zs)~Z,.

(4.1)  The algebra structure in K,(B; Z,) is dual to the coalgebra structure in
K*(B; Z,).

It appears that this need not be true for H-spaces in general; the proof given
here depends on certain properties of the space B. In view of the determina-
tion in [2] of the coalgebra structure in K*(B; Z,), this relationship will enable
us to make the desired computations.

Note that from the results of [17] and the universal coefficient theorem,
K«(B; Z,) is additively isomorphic to K*(B; Z,). If we denote by V and A the
product and coproduct respectively, the problem may be stated as follows: if
vyeK*(B;Z,)and a, B K «(B; Z,) then show that (A(7),a @ B>=<7, V(a®B)>,
where the brackets denote the mod ¢ Kronecker index.

We recall briefly the definition of the coproduct A. First the mod ¢ multipli-
cation in cohomology is defined [1] [3]. This may be done by first finding a map
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J: SPAT—T AT, as in §2, such that the composition (bA1)of is homotopic to
the identity. 'Then from the ordinary cohomology multiplication g, the mod
g multiplication 7 is defined by the composition

K"(X; Z)@K™(Y; Z) —> R*X* AT)RR™HY*AT)

7
et R (XX YY" ATAT)
. l(id NFY*
: -2
KXY Zg) e R™ (X X VY ATASY).

Now since K*(B; Z,) is a finitely generated free Z,-module [2] we have A defined
by the composition
*

K*(B; Zg) —— K¥(Bx B; Z)~K*(B; ZQK*(B; Z,)
where the second homomorphism is the inverse of the Kunneth isomorphism.
The product Vv is given by the composition

m*
K(B; Z)RK4(B; Z)) 5 K(Bx B; Zo) —> K(B; Zo).

So in order to prove (4.1) it will be sufficient to show that if a = K,(B; Z,),
BEK|(B; Z,), veK"(B; Z;) and 8 K°(B; Z,) then

(4.2) r®8, a®B) = {ul(7R8), pla®B).

First note that since K'(B)=0 and K°(B) is torsin free, the mod g reduction
homomorphism

(IAb)*: K*B)——> K*(B; Z,) is an epimorphism.

So we choose elements v’ and &’ with (1 Ab)*(y")=1v and (1 Ab)*(8")=8.
Following the notation for the unitary spectrum used in [10], we assume that
the elements a, 3, v’ and &’ are represented by the maps

h: S*"" " — S BATAU,
g: S"M—S BATANU,,
k: B— U,
l: B—U,

respectively.
The Kronecker index {(1Ab)*(7"), a) is represented by the composition
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1A 1
43) sas s apaTaU, DA AAL BATATAU,

(AABATIAL
EAIAL
SEATAU,,, «— SEAU,ATAU, —> BAS!ATAU,

Note that the composition of the second and third maps is homotopic to the
identity. Similarly the Kronecker index {(1 Ab)*(8’), 8> may be represented by
the composition

Ng

1A IAIA
(44) SIAS™+ 5 SPABATAU,, AN e TAUAT,

Sz/\ T/\ Us+m

On the other hand, the Kronecker index <{u?((1Ab)*(v")Q(1Ab)*(3")),
na®PB)> is represented by the composition

O ST A Gt
INENg
S‘ABATANU,ABATAU,
(4.5) ll/\f/\l
S”/\S”/\B/\B/\ TAS'AU,ipm Qf—» BABAS*ATATAS AU,
Eldentlty IAFAL
BABAS'AS'ATAS'A U,,m(l/\b)/\(l/\b)MB/\B/\ TATAS' AU,
l(k/\l)/\(l/\l)/\l
UNUAS*AS*ANTAS' AU,

Un+m+r+s+5 /\ T .

It can be checked that the rectangle commutes up to homotopy where the dotted
map is the identity. However, this shorter composition represents the pro-
duct in K (pt.; Z,) of the previously defined Kronecker indices (4.3) and (4.4).
This establishes (4.2), and (4.1) follows.

Denote by 7, the p-component of z. Then Anderson and Hodgkin [2] have
shown that K*(B,; Z;)~K*(B,,; Z)~Z,[x}] for any g=p". Here Z[z]] is
the group ring of the character group = of =,. So assume that = is a p-group
and let 1=u,, u,, :*+, u; be the the characters in z*. 'The coproduct [2] is given
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by

Alu;) = u;Qu;

for each 1.

Define elements w,, w,, -+, w, in Ky (B; Z,) by requiring that {u;, w;>
=6;;&2Z,. Thus Ky(B; Z,) is the free Z,-module with basis w,, w,, ***, W;.
From (4.1) it is then a simple matter to determine the product in Ky(B; Z,).

<um V(wz®w1)> = <Aum wi®wi>

lifi=j=n
= Cthy 0,3+ ity 035 = { g

0 otherwise .
Thus V(En,-w,-@Emjw,-):é (n;m))-w; for any n;,,m;=Z, 'The unit &: Z,

i=0

—Ky(B; Z,) is the dual of the augmentation of the coalgebra and is given by
E()y=w,+w,+---+w,. The augmentation n: K«(B; Z,)—Z, given by
1if¢=20
0 otherwise

() = {

gives Z, the structure of a Ky(B; Z,)-algebra and it is a simple exercise to verify
that

(4.6) For q a power of the prime p, Z, is a projective K(B; Zg)-module.
As an immediate corollary we have

(4.7) For any Ky(B; Z;)-module M and integer n>>0,
TorXxB4(M, Z,) = 0.

This fact may now be applied to the spectral sequence in §3 to make the
desired computations as in [2, §4]. As the group G in §3 we take the CW group
B. Its classifying space will then be a K(7, 2). So in the spectral sequence we
take X to be a point so that X is a K(=, 2).

The spectral sequence of §3 collapses since by (3.4) and (4.7)

E% +(Xg) = Tor £5770(Ky(pt.; Z4), Za)
~ Ky(pt.; Z,,)@K*(ZB?Zq)z Zy.
Hence the edge homomorphism (3.5)
Ky(pt., Z)) — Ky(K(w, 2); Z,)

is an isomorphism. This completes the proof that

(4.8) For any finite abelian group = and any prime power g,
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Ru(K(7,2);Z)=0.

Note that this result and the following one are stated for all primes.
Special arguments for the case p=2 may be made using the universal coefficient
theorem and results of Anderson and Hodgkin [2]; however, the preceding
approach cannot be employed due to the absence of the maps f and f.

The same result for K(z, n) may be proved inductively, for if G=K(z,n—1)
has Ky(G; Z,)=0 then Ky(G; Z,)~Z, is a finitely generated free Z,-module and
trivial as a Z -algebra. Thus by the same argument

Kulpts 2Q_  Zg— Kul(K(m, n); Zo)

e

is an isomorphism. Thus

(4.9) For any finite abelian group =, integer n>>2 and prime power ¢, Ky
(K(m, n); Z4)=0.

As in [2] we may extend (4.9) to the case of = a countable torsion group.

Note that it is an immediate consequence of the universal coefficient theorem
that K(K(r,n); Z,)=0 for all prime powers ¢ implies K(K(=,n)) is both torsion
free and divisible. If 7 is a finite abelian group, H,(K(=, n)) is finite for all 7, so
that from the Atiyah-Dold-Hirzebruch spectral sequence for Ku(K(z,n)) we
have K(K(r, n)) is a direct limit of finite groups. Thus every element must be
a torsion element and we conclude

(4.10) For = a countable torsion group, n>2, K (K(z, n))=0.
These results may be extended following [2] to show that if x is a countable
torsion group and #>3, then

Kw(K(z, n))~K(K(= R0, n)) .

We now briefly interpret these results in terms of the complex bordism of
Eilenberg-MacLane spaces. Let Uy(X) denote the weakly complex bordism
of the space X [8]. There is a natural transformation

i U )— Kyl )

which when restricted to the coefficient groups becomes the Todd genus T': Uk
—Z. Giving a Ux-module structure to Z via T, we state the theorem of Conner
and Floyd (see [8] for a proof):

(4.11) 7 induces a natural isomorphism for each X
U X)®u,Z —> K(X)

Denote by I < Uy the kernel of the homomorphism 7" and note that I con-
tains no non-zero homogeneous elements of degree zero. As an immediate
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corollary of (4.10) we have

(4.12) If = is a countable torsion group, n>2, then every element ac Uy
(K(x, n)) may be written in the form a=@B-v where B<I and v< Uy(K(x, n)).
Hence I™- Uy(K(r, n))= U (K(r, n)) for all positive integers m.

It would be natural to ask if this spectral sequence could not be used to
determine the homology of K(w,1). Indeed, if # is a finite group, then hy(=;Z,)
is isomorphic to R[] the group ring of =, a finitely generated free R-module,
where R=hy(pt.; Z;). In this case the E? stage becomes the homology of the
group 7 with coeflicients in R. If the spectral sequence collapses, this gives the
standard relationship between the homology of the group = with coeflicients
in the z-module R and the singular homology with coefficients in R of the clas-
sifying space B,. However for the interesting cases the spectral sequence does
not collapse and the desired results require a deeper analysis.

For the final application we require the following definition. Let R be
a graded commutative ring with unit. A modified polynomial algebra A over
R on generators x,, x,, --+, %, of degrees m,, m,, -+, m, is the free R-module
generated by elements x{"Vx{"2’.--x"», for all collections of non-negative integers
71, **+, 1, Of degree rom,+r,m,+---+7,m,, in which the multiplication is given by

({7 Px 2 e 1Y) o (285 0R ST 0, 5)

<f1+31) (Tz+52) ( TutSn ) 80T 0850 L g0 (FH55)
2 ” .

Let 4, be a multiplicative theory, p a prime and G a groupin 4. If p=2
assume /iy isasin (2.5). 'We may now prove a generalization of a theorem of Borel

[51 [13]-

(4.13) If h(G; Z ,)=E is an exterior algebra over R=hy(pt.; Z,) on a finite
number of odd dimensional generators and R is zero in odd dimensions, then
h«(Bg; Z,) is a modified polynomial algebra over R on corresponding generators of
one dimension higher.

Aside from complications of notation; the proof in general is the same as the
proof for two generators. So suppose that E is an exterior algebra over R
on generators ¥ and y of dimension 2z—1 and 2m—1, respectively.

Define a free E resolution of R as follows

4 3 2 1 8
4.14) - i E; g E, g E, i E, R 0.

Let E,, be the free E-module on (m--1) generators denoted by a6, a™~ b,
-, a6, Define the homomorphism

Bm: Em" Em—l
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by setting
Bm(a(k)b(m—k)) — x,a(k-—l)b(m—k)_l_y,a(k)b(m—k—l)

where a“b*? is understood to be zero if either j or [ is less than zero. Using
the fact that xy=—yx it is not difficult to check that this is a free E-resolution of
R. Note that the bidegree of a™®b™~* is (m, k(2n—1)-+(m—k)(2m—1)), so that
the total degree is always even.

Tensoring the resolution (4.14) throughout with R over E results in a
complex having each differential identically zero. It follows immediately that
TorE«(R, R) is a free R-module of rank (k+1) whose basis we identify with a®>
b(o), ey a(o)b(k)-

We now determine the multiplicative structure inductively. Consider the
product complex

a, a,
—> XVE,QE;— D E.QE;— E,QE—— RQR

llllz lﬂq ll‘/o lm
8. B,

~— E, —— E, ——> E, ——> R

The multiplication m can be lifted to a sequence of homomorphisms {x;}, unique
up to chain homotopy, so that each rectangle commutes.
It is apparent then that

0y/0
OO ) gOB@Y . OO __ @
266 R ab®) = a®b (O)<0)a b5 .

Now let 7 >>0 and suppose that for any 2 <r and any integers i </<k and j<k—/,

Mk(a(iybcl-~i)®a<j)b(k—1—j>) — (i +]> <k7 i _J> aGTPpkTi=
? —1

Consider then 2=a®b""?>Ra9b" !~ where i<I<r and j<r—I. We have
8,(2) = x-(a% DB PQR DB =4 gBPI DR g I Opr=1=5)
‘l‘ y(a(i)b(l—i—1)®a(j)b<f—l—j)+a(i)b(l—i)®a(j)bcr—1—j—1)) .
So by the inductive hypothesis,

.u'r—xar(z)

— e i+j_1) r—i—j) G+ -5 i+j_1) r—i—J\ c+i-n (’—i—‘)]
x[(i—l =i )T o i (l—i)“ T

150 (DD Lt aehat U (Vi) Rt e
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e (]
(S|

Hence it is natural to choose inductively
p(2) = ("H) (7'_ ’_]> QG PRI =i=
Z l—i

This establishes the multiplication in Tor£ «(R, R).

Note that since all non-zero elements have even total degree the spectral
sequence must collapse. Finally it may be checked that this product corre-
sponds to the product in h4(Bg; Z,) so that hy(Bg; Z,) is the desired modified
polynomial algebra on generators corresponding to a6 and @b of dimension
2n and 2m respectively.

THE UNIVERSITY OF TEXAS
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