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1. Introduction

Tﬁe recent developments on the limited aependent variables and
censored dependent variables in econometric models attempt to deal with the
problems of systematic missing dataz cn the dependent variables for cross
sectional survey data. The most co-mon cases are the existence of some
selection processes which determine the observed samples. Conditional on
the appropriate set of exogenous variables, if the dependent variable cn
potential outcome in a regression =mocel is correlated with the selection
processes, conventional estimation techniques will not provide consistent
estimates of the parameters. The co-mon solution in the literature is to
specify the joint probability distritutions of the random elements in the
selection processes and the regression equation. Under the hypothesis that t=z=
distribution is the correct one, the —maximum likelihood method is consistent
and asymptotically efficient under very general conditions, see for example,
Amemiya [1973] for the bivariate normal distribution case. Multivariate
normal distribution is the most cormonly specified assumption in those models.
Under this distributional assumption, computationally simple limited information
method which corrects directly the source of least squares bias has also been

developed, see, for example, Amemiva {[1974], Heckman [1976], Lee [1976]

among others.



The limited information method cited above utilizes only the

4

information on the first two incomplete moments of the distribution. s a

AT

simple example, consider a two equations model with a random sample of size X,

Yig T ¥B oy (1.1
* = + = 1'2
Yi z;Y €5 i=1,...,N.
where x5 and z; are exogenous variables, E(ui) = 0, E(ei) =0 and var(z,) = 1.

The joint distribution of u, and S5 conditional on X and z is bivarizte
normal, N(0O, 0, cuz, 1, p), where p is the correlation coefficient. The
dependent variable y% is unobservable but has a dichotomous observable

realization Ii which is related to yi as follows:

I, =1 4if and only if yv* > O

1 < g .
I, =0 if and only ifyv* < 0.

1 1

The dependent variable V14 conditional on X and z, has well-defined =arzinal
distribution but Y14 is not observed unless Y% > 0. Without lost of gezerzlity,
let us assume the non-censored observations vy of v, are the first Xl

observations.

= i > 5 i= 1.2
vy xiB +u, if and only if z,y > e, 1 l,...,N1 (1.2

Since Uy and e, are bivariate normally distributed, the conditional expectation

of u, given e, is linear in £, and u, = 2o (e, - uw )/o + v, where
i i i i u i e e i
1 .
Mo = E(si) and 052 = var(ei).—/ Furthermore; e; and v, are independent.

Equation (1.1) can then be written as



Vi = %48 :cu(ai - ue)/cE +v, , i=1,...,N (1.%)

= = i ¥ = e [ g = =
where o, 1 and He 0. Since M(ei[ziy > ei) ¢(ziy) and E(Vi‘zi' > z.) 0
where ¢(ziY) is the standard normal density function evaluated at z_, . The
4

limited information method is to use the implied equation,
., = X.B - pc :(z.v + 3 i=1,...,% 1.3
v; = %8 - ec 2z 1) /o + o fo_+ &, d=l,...,8

where £, = v, + po (e, + ¢(z,7))/5 and E(&,]z_y > ¢g.) =0, after the correction
i i u i i £ i1 — i
of selection bias term. Olsen [1980] has pointed out that underlvi=z the

derivation of the equation (1.5), the crucial properties used are the

o
o
H
Ly
[u

3
0
o

of the conditional expectation of u given e, the normality of the dist:
€ and the independence of v with =. Based on these properties, Olsan

specifies the regression equation (1.4) as the basic model and suggests a

n

linear probability modification to correct for the selectivity bias in thi
class of models.

This modification is useful as it provides an alternative wav to
specify selectivity models without restricting to the assumption of —ultivariate
normal disturbances. The correction of selectivity bias in the equation (1.5)
is insensitive to the distribution of v. The correction of the selectivity
bias in the equation (1.4) is to compute the conditional mean of ¢ conditional
on £ < zy so.as to derive the correct conditional regression equaticn Ieor the
observed samples. For different probability models, there are corresponcingly

e . 2/ .
different expressions for the selectivity bias term.— For the linear

probability choice model, there is a linear probability correction of tlxe

selectivity bias. For the logistic probability model, a corresponding



modification of the selectivity bias term is presented in Hay [1980]. However,
there are some questions on the general applicability of this approach. For
the linear probability model, € is uniformly distributed on [0, 1] rather than
normally distributed together with the assumption that the conditional
expectation of u given e is linear in € may implicitly impose an outrageous
distribution upon u. In the extreme case when ]p| is closed to one, the densit:
of u is closed to be uniform which is most unlikely distribution for a regression
modelg/ The selectivity bias terms in the regression equation may be quite
sensitive to the specific probability models even though there may be only
slight differences in the probability models. As pointed out in Domencich and
McFadden ([1975],p. 58), the three popular probability models, namely, probit,
arctan and logit models, are virtually indistinguishable except at arguments
yielding probabilities extremely close to zero or one, and they concluded that,
within the range of most data, the three models provide essentially equivalent
probability functions, and except for computational reasons, there is little

to choose among them. However, the selectivity bias terms for the regression
equation will not have the similarity. As the arctan probability model is
generated based on the distribution of € being Cauchy, the conditional mean

for the dependent variable v, does not exist. The Olsen's approach is thus
restrictive because the specified probability model dictates the correction of
the selectivity bias. Another problem remained unsolved in Olsen [1980] is

to provide a rigorous statistical inference procedure to discriminate between
his linear probability correction of the selectivity bias and the correction
based on normal distribution. Under the Olsen's approach, it is not clear

how that can be done since any specific probability model will lead to a

specific selectivity bias term.



In this article, we attempt to overcome the above restrictions
in Olsen's approach and suggest a more flexible approach. Under our
generalized approach, any specific probability model need not restrict the
expression of selectivity bias term in the regression equation and hence a
much wider class of models can be derived. Rigorous statistical inference
procedure can also be derived to choose among the various corrections of
selectivity bias under a commonly specified probability model. Olsen's
approach has lately been extended to the polychotomous choice case in
Dubin and McFadden [1980] and Zay [1980]. 1In this article, we also propose
some approaches to the correction of selectivity bias in the polychotonmous
choice models. Our approach is nuch flexible and the models are much easier
to be implemented than theirs. Statistical procedure will also be provided

to choose among the models and compare their approach with ours.



2. A Class of Dependence Models

Consider the two equations model,

v, = xB8 + u 2.1

y* =2y - ¢ (2.2)
where x and z are exogenous variables, E(ulx,z) = 0, var(u.x,z) = o2,
E(Elx,z) = H and var(a!x,z) = ::2. The mean Mo and the variance ¢_ of =

4

are assumed to be known.—/ The observability of the dependent variable "1
and the dichotomous indicator I are indicated as in the previous section.
Let J be a specified strictly increasing transformation. Since

I =1<> 2y > =

<= J(zv) > J(=),

the model with equations (2.1) and (2.2) is equivalent to

¥, = xB +u . (2.3)

g% = I(zv) - J(2) (2.4)

where y** = J(y*).
The class of dependence models that will be considered is based on the
specification that u is a convolution of two independent random variables and

one of them is proportional to J(:z). Specifically, we assume
u = A(J(2) - ;J) + v (2.3)

where v and J(e) are independent and My o= E(J(e)). The disturbances ¢ and u
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in the choice equation and the regression equation are correlated if A # 0

and uncorrelated if A = 0. The correlation of u and e is derived by

transforming independent random variables. This specification can be regarded as
special cases in the construction of bivariate distributions due to Steffensen
[1922]. This approach provides a way to generalize a large class of models

with selectivity. By specifying different transformations, we can allow different
implied implicit distributions on u and thus any specific probability choice
model need not dictate the way of correcting the selectivity bias term. When

the transformation J is the identity mapping, it corresponds to the Olsen's
approach. 1In practice, the appropriate transformation in (2.5) is hardly knowm.
If the transformation J could be estimated within the class of strictly
increasing transformations for given samples, it would be desirable.
Unfortunatelv, that does not seem to be possible. However, at least one

can try diiferent transformations and select the ones that provide the reasonable
results.

When there were some priori information available on u, it might also be
useful in providing some suggestions on the specification of the transformations.
For example, if the marginal distribution of u is normal and if v were assumed
to be normal, the selection of the transformation J such that J(g) is a normal
random variable seems appropriate. Of course, it is not necessarily true that
this can be done for any marginal distribution of u,which is known a priori, under
this approach. For models with specific marginal distributions on u and ¢, the
alternative approaches based on the translation method and the contingency
distribution method which generate bivariate distributions with specified mar-
ginal distribution in Lee [1980] are more appropriate than this approach. When
the specified marginal distribution of u is normal, this approach and the trans-
lation method in Lee [19807 are similar . However, the approach in this paper
is slightly more general in the correction of the selectivity bias as the bi-

variate normality is a sufficient condition for the results to hold, but not

necessary.



3. The Correction of Selection Bias, Estimation and Model Selection

Let OJZ and o be the variance of J(e) and the correlation cofficient of

u and J(e). The equation (2.5) is equivalent to u = pcu(J(e) - uJ)/GJ + v

where Ovz = var(v) = ouz(l—pz). The two equations model becomes
Yl = xB + pOu(J(E) - uJ)/OJ + v (3.1)
y* = zy - ¢ (3.2)

The selectivity bias term for the observed dependent variable y is
E(J(e)]zy > €), or equivalently, E(e*]J(zy) > £*) where e* = J(g). Assuze that
the distribution of e is known or completely be sgpecified. Let fJ(.) be the
implied density function of e* which is assumed to exist under the transformation

o @Y e sy qes . .
J. Let u(J(zv)) = [ €“fJ(;“)dE* dencte the incomplete first moment of

J (=)

the random variable e* evaluated at J(zy). Let F(zy) = Pr(zy > €) be the
probability that the event I = 1 occurs. Conditional on the sample v being

observed, the regression equation (3.1) after the correction of the selectivity

bias becomes
y = xB + DOU(U(J(ZT))/F(ZY) - uJ)/OJ + £ (3.3)

where £ = pcu(J(e) - u(J(zy))/F(zy))/oJ + v has zero conditional mean, i.e.,

E(£|x,z, I =1) = 0. The conditional variance of £ is
i ozouz R . -
var(i‘x,z, I=1) = =z [E(J(E)ZIZY > €) - E(J(a)[zy > )] + ou‘(l—:~)
J
2. 2 o~ 2
2T U e,
0527 F(zv) F(zYy) u B

(3.9
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where ;2(J(zy)) = IJ(ZY) =%l oz
J(==)
zero of =* evaluated at J(z+). Since the distribution of ¢ and the transformation

J(e*)d:* is the incomplete second moment around

J have been completely specified, My and o, are known parameters and th
remaining unknown parameters of the model are B8, p, ¥y and cuz.

The nonlinear equation {3.3) can be estimated by similar two stage method
as discusséd in the literaturs, see for example, Amemiya [1974], Heckman [1976]
and Lee [1976], among others. 1In the first stage estimation, ¥ can be estimated
by the maximum likelihood method for the implied probability choice model under
the zssumed distribution F(.) Zor the disturbance e. Let ; denote the =—aximum

likeiihood estimate of . The second stage estimation is to estimate the

modified equation of (3.3) with the noncensored observations,

g = % B+ 2 (LG FGy) = o+ B, =1, (3.5)

by the ordinary least squares procedure (OLS). Under very general conditions,

the 0LS estimate of B, oo can be shown to be consistent and asymptotically normal
for random samples under the specification (3.1) as in Lee and Trost [1978].
Correct asymptotic variance -atrix for the estimates can also be derived as

in Lee et. al. [1980] with slight modifications to take into account the

2 can then be estimated

presence of the transformation J. The parameter %
with the estimated residuals o7 I bv several methods as described in Lee and
Trost [1978]. The detail darivations are refered to those articles and are
omitted here.

The above paragraphs outline the correction of the selectivity bias in

the regression equation and t=e simple two stage estimation method for those

nmodels. In practice, whether the method is really simple or not will depend
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on the specified transformation J. A general class of transformations that is
rich enough is to specify the transformation J = G;lF where G is an absolutely
continuous distribution function. As ¢ is specified to have the distri-ution
function F(g), the transformed variable e¢* = G-l(F(E)) will be a randon
variable with distribution function G(e¥*).

The distribution of the random variable u under the convolution forzulza {2.3)
can take on various shapes as the distribution functions G(.) vary, wnhila the
probability model can be chosen to be a specific model and remains unchanzed.
Some popular random variables in the literature of probability theorw will be
rich enough to serve our purpose; consider, for example, the continuocus
univariate distributions in the two volumes of Johnson and Kotz [19701. The
correction of the selectivity bias term and the conditional variance oZ
require the derivation of the first two incomplete moments of some populzar
random variables. As a convenient reference, we provide a list of the Zor—ulae
for these two incomplete moments for many popular random variables iz z:he
appendix. Thus, for example, if the probability choice model is a linezr
probability model as considered in Olsen [1980], we can have the unifcr=
distribution correction for selectivity bias in Olsen when J(.) is an ilentitwy
mapping, as well as the normal distribution correction for selectivity 5Sizs
when J(.) is chosen to be @ﬁl(.), where ¢(.) is the standard normal
distribution function.

- Since different transformations J lead to different regression eguations

3

after correcting the selectivity bias term, we have a model selection pro-len.

!

rt

-
eLV

i8]

Since, in our approach, the probability choice model can be fitted saepar

with the samples of dichotomous indicators and presumably can be chosen according

QT A
iR

—

to some goodness of fit criteria as derived in Domencich and McFaddern 1

*
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it will remain unchanged in the estimation of the remaining outcome regression
equation. Suppose there was a finite number of transformations J. The problenm
of selecting the regression equations in (3.3) or (3.5) can be regarded as a
special case in the problem of selection of regressors considered in Theil {1961,
Mallows [1973] and, most recently, Amemiya [1980], among others. Amemiya's
Prediction.Criteria (PC) which is applicable to linear or nonlinear regression
models with general variance-covariance matrix without a specified distribution
seems to be an interesting criteria for our problem since the disturbances in

the regression equation (3.3) are heteroscedastic. Since, in our models, all

the regression equations have the same number of regressors, the PC will select

the equation with the smallest average variances of the disturbances £, i.e.,

N
the equation with the smallest estimated value of N_1 Z,l var(E,]x,,z,, I.=1)
1 i=1 SIS R | i
where N, is the number of observations on Y,. The PC is convenient to be used

1 1

since it provides a single index. The PC is derived based on the principle of
minimizing an estimate of the mean square prediction error but as explicitly
pointed out in Amemiya, all this kind of criteria considered in the literature
are based on a somewhat arbitrary assumption which cannot be fully justified.
It can best be used with other knowledge of the underlying economic problem.
In the selectivity models, priori theoretical consideration such as the
possibility of positive self-selection, i.e., conditional on the exogenous
variables, the observed outcome should be greater than population mean, will
indicate that the selectivity bias term multiplied by the coefficient, i.e.,
QOU(U(J(ZY))/F(ZY) - UJ)/OJ, should be non-negative. Knowledge of this sort

will allow us to reject some of the estimated equations.
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Another entirely different approach that can be useful for our problem
is to nest the competitive models in a generalized equation. This latter
approach provides a probabilistic statement regarding the choice between any
wo competing models and is in the spirit of procedures due to Cox [1961, 1962].
Consider two regression equations with different transformations Jl and J2;

the first nmodel is

vy = xiB + :zu[:(Jl(ziV))/F(ziy) - qu]/GJl + ii (3.6)

and the second model is

VAR B4

v, = %487 ccu[u(JZ(zi"r))/F(ziY) - qu]/oJz i (3.7

where 1 = 1,..., N,. These two equations can be nested into a general equation z=

1

v,m w8+ A 0 D) /Ez ) - 4y 1+ hy 123, (2 )Y [F(z ¥) = 4,0

i=1,..., N (3.8)
1

The latter equation contains the two models in (3.6) and (3.7). When AZ = 0,
it reduces to the first model and it reduces to the second model when Xl = 0.
Tre discrimination of the two models is related to the test of the significance
oI the coefficients Xl and *»,. The hypothesis that the first model is the
correct one is equivalent to the hypothesis that lz = 0. The equation (3.8)
czn be estimated by the OLS procedure. Under general conditions, an asymptotic

normal statistic can be derived as follows. Let X be the le(k+2) data matrix

o7 the rezressors in (3.8) where k is the dimension of the parameter g, i.e.,
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— ' ¥

e . : -
1 X:»l
i u(Jl(ZlY))/F(ZlY) SR EEREEE (3 (2 DY/F(zy 1) - My
, 1 1 1 1
X' =
WU(JZ(ZlY))/F(ZlY) - Np e h(J_(z ))/F(zN ) My
2 1 1 2 .
3
e . o r.. - = ~ v ' .. '
Let dji be - the gradient vector of 3y (_(Jj(zi,)),_(zi,)) and Dj [dJl dJNl],
j =1, 2. Furthermore, let Vj be the leXl dizzozal matrix defined as
, ) u, (3. (2,7)) = (3, (z,1)) 2
v = i : - ¢ ] = .
; D:Lag[oV + Aj ( (2, s ?(zi‘) ) )1, 3 1, 2

!

It follows that under the null hypothesis 30 %, 0, the OLS estimates

A~ A ~

8, A, and X, are asymptotically normal and their zswvmptotic variance-covariance

1 2

matrix is
Ta)
B |
3 l ~|~ "l~v l—n—- vy L

var [ A;l = (X'X) "X'"(V, + D,2- YE(X k) (3.9)

Al} 1 1 N
L h2)

where Q; denotes the asymptotic variance-covariznmce matrix of the estimate vy

for the choice equation. Similarly, if we like zo test whether the second model

is the correct one, we can test the hypothesis zh=zt Zl = 0. Under this hypothesis,

P

the asymptotic variance-covariance matrix in (Z.32) should be changed with D2

and V2 replacing Dl

suggestions in Cox [1961, 1962], each model should be tested once as the null

and Vl’ respectivelv, in the =zxpression. Similar to the

hypothesis. It is possible to reject both the =cdels as both of them are
not necessarilyv the correct ones. In the event :that both the models will be

accepted, it would be likely that both models prowvide similar results.
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4, Polychotomous Choice Models and Selectivity Bias

The approach discussed in the previous paragraphs can be generalized
to the case with polychotomous choices. There are at least two possible ways
for the generalization. The first approach generalizes slightly the approach
in Hay [1980] and Dubin and McFadden [1980]. This approach is based on the
point of view that polychotomous choice model can be formulated as models with
multiple binary choice rules with partial observations. The second approach
is motivated by the formulation of order statistics in the polychotomous choice
models.

Consider the following polychotomous choice model with M categories

and one potential outcome regression equation in each category.

S1 S1 s S1 (4.1)

zsiY + nsi i=1,..., N

%

ysi

where i refers to the ith observation, all the variables X, z_ are exogeneous,
E(uslxl,...,xM, Zl""’zM) = 0 and the joint distribution of (nl,...,nM) has

been completely specified. The dependent variable or potential outcome Vg in

the sth category is observed if and only if the sth category is chosen. Let I

be a polychotomous variable with values 1 to M and I = s if the sth category

is chosen.
I =s if and only if z_y - z5Y > T g for all j=1,...,M}-{s}

This formulation is to relate the polychotomous choice model as model with M-1
; s . . . 5/ . .
binary decision rules with partial observatlons.—/ An alternative formulation

is that
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I =s if and only if y* > max y*
s .
i=1,...,M
i#s
Let
£ = max y* - n
S 3=1,...,m 4 s (4.2)
its

It follows that I=s if and only if z Y > e This formulation is to relate the
choice of the sth alternative as a binary decision, i.e., the sth alternative
will either be chosen or not, mutually exclusively.

Based on the first formulation, one approach to specify the regression

equations Vs with.us correlated with the choice equations is to assume that

M
= - - 1 = N
U Zj=1 ij(Jsj(nj ns) My ') tv, s 1,...,M (4.3)

j#s s

] S

where all the Jsj are some strictly increasing transformations, g =E(Jsj(n.-n )) and
sj
for each s, v, is assumed to be independent with Jsj(nj—ns) for all j={1,...,M}-{s}

Equivalently, the formulation in (4.3) can be rewritten as

-1 :
= - /,
u, =I5 I; (Js(n) Hy ) + Vg (4.4)
s’s s s
¥
where Js(n):(Jsl(nl—ns)"'"Jss-—l(ns~-1_ns)’ Jss+l(ns+l—ns)""’JSM(WH_HS)) and
1
. = (u T , M ,e..,U. ) are two column vectors, I is the
Js Jsl Jss-—l Jss+l sM ust

covariance vector of ug and Js(n)' and ZJ is the variance-covariance matrix of
the vector Js(n). When all the transformztion Jsj are chosen to be the

identity mapping, this specification is the approach in Dubin and McFadden [1980]
and Hay [1980]. Under the specification in (4.3), it implies that the observed
dependent variable of the outcome equation, conditional on the sth category

being chosen, will satisfy the following equation after the correction of

selectivity bias term,
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Vg = sts + I )\Sj(TJ ,(zlY""’ZMY) - My .) + gs (4.5)

i#s > -
where TJsj(zly,,,,,zMy):E(JSj(nj-ns)|zsy—zjy > hj-ns, je{l,...,M}{s}) is the
selectivity bias term and £S=vs + Z?;l (Jsj(ﬁj—?s) - TJ ‘(ZlY,---,ZMY))- It
. s]
its
follews that, conditional on I=s, the disturbances ES have zero mean but are

heteroscedastic errors. The variances of £ involve expressions of the
s

incomplete second moments around zero of the transformed random variables

Jsj(nj—ns) and their incomplete cross second moments. The equation (4.5) can

be estimated by some two stage method. With the parameter vector y estimated

~

from the polychotomous choice model as y, the modified equation

" 5
j=1 Asj(TJSj(Zly""’zM”) B uJsj) tE
j#s

Ys T XsBs t I
can then be estimated by the OLS procedure.

Whether the above approach is reallv computationally simple or not
depends on the evaluations of the first two incomplete moments of the random
variables JS,(nj—ns) and the specification of the polychotomous choice model.

One of the widely used polychotomous choice model is the conditional logit

model in McFadden [1973]. The conditional logit moedel is derived under the
utility maximization hypothesis; the assumption that the nj, j=1,...,M, are
independently identically distributed (i.i.d.) with Gumbel distribution

(with parameter 0), i.e., Prob[njfp] = exp(-exp(-n)), and other minor conditicns.
This distributional assumption implies that the M-l random variables

W =N, =Ny j:(l,...,M}—{s} will have a multivariate logistic distribution of

8] ] S

Gumbel [1961], i.e., the joint distribution is

L
Ca W ,-

ss=17"ss+17 """ sy “3=1
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Let 2'=(1,...,1) be a M-1 dimensional vector with all ones. The variance-
covariance matrix of the M-1 vector O is

l
T o= —(I+2").
w 6

More detail description of this distribution and its properties can
be found in Chapter 42; Johnson and Kotz [1972]. Let us now consider in more

detail the implementation of the selectivity model with the conditional logit

model. Since n., j=1,...,M are i.i.d., we assume that E@w J (n))=o 2.

j s s SJS
As the joint distribution of Js(n) has been completely specified, ZJ is a

s
known matrix and uJ is a known vector. It follows that
s
u =g . 2T NI (M) —ul) v 4.7
s sJS JS ] JS s

and the number of parameters in (4.4) has been reduced to two. When the
transformations Jsj are identities, this model is exactly the model considered
in Dubin and McFadden [1980] and Hay [1980].

However, even for the conditional logit model, this approach does not
provide analytical closed form expressions for the selectivity bias terms for
the general class of transformations considered in the previous section.

Consider for example, the selectivity bias term for j=1,

T (zlYQ""ZMY)

Jsl
= A i \ -
i E(Jsl(msl)ltsj > usj’ je{1,...,M}-{s])
Z Y-Z.Y oF
_ s 1 L ‘
= {00 Jsl(‘”)au» (w, tsz,...,tss_l, tss+l’°“’ts}1)d*/
F, (t t t , B )

L 81’ """ ? ss=1 “ss+l1’° "’ sM



z_Y=2,Y o
= [ Jg1 (@) . dw/Fétsl,...,tss_l,tss+l,...,tsM) (4.8)
~o0 (C ,+e )
sl
Mo Tt
where t .5z y-z.,y and C_ . =1+ I, e 53, The integral in (4.8) does not
si s 73 sl 3=1
i#s

seem to have closed form expressions except for some simple transformations
such as the identity transformation. The evaluation of the variances of is

in (4.5) are even more complicated and involve double integrals. When the
transformations are identities, closed form expression for the selectivity bias
term can be derived and as shown in the appendix, see also Dubin and McFadden

[1980] and Hay [1980], we have

E(wsiltsj > wsj’ jef{l,...,M}-{shH

-t -1 -t .
_ S] n _ S1 s 1. B
(1 - e FL(tS)) [LnFL(tS) t.i® FL(tS)], i={l,...,M~{s} (4.9

where FL(tS):FL(tsl,...,t ’tsM) in (4.6). Unfortunately, even

ss—l’tss+l""
for this case, the evaluation of the second moments of Wy does not seem to
have closed form expressions, see the appendix. For more general polychotomous
choice model such as the generalized extreme value distribution in McFadden [1977],
this approach will not be simpler. Thus this approach does not seem to be
able to generate large class of computational simple selectivity models.

Let us now consider an alternative approach based on the second
formulation. ' Under the second formation, I=s if and only:if zY > e, where
€q is defined in (4.2). Let FS(.) denote the implied distribution function of
£o For example, if n,, j=1,...,M, are i.1i.d. Gumbel distributed, Fs(a)

Y

will be a logistic distribution with FS(S) = exp(e)/[exp(=) + S}Ll exp(Ziy)].
i#s
Let JS be a strictly increasing transformation of €q which transforms g

to a random variable J (es) with constant mean and variance. The alternative
s

approach is to assume that
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u, = XS(JS(ES) - uJS) + vy s=1,...,M (4.10)

where vy and JS(ES) are independent and u denotes the mean of JS(ES). This

J
S

approach is almost exactly the approach for the binary choice case. The class oz

transformation JS=G;1FS where G is any popular distribution function will

generate a large class of interesting and computational simple selectivity

model by the same arguments for the binary choice model. This approach

seens to be more flexible than the first one and also generalizes the approach

in Lee [1980] without imposing marginal normal distributional assumption on ug

For the case that u and g for all s=1,...,M are multivariate normal, it

implies the relation (4.3) with all the transformation Jsj being identities

and the first approach will be the proper one. Except for those cases, there

does not seem to have theoretical reasons to prefer one approach over the other.

From the computational point of view, the second approach will be simpler.
Finally, we note that the mcdel selection procedures discussed in

the previous sections are also applicable to the polychotomous choice models.

Thus we can compare the selectivity models generated from the same approach

or models generated from the two different approaches.
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5. Conclusions
This article has considered the specification of some econometric

models with selectivity. Our approaches generalize the approach in Olsen
[1980], and allow us to relax much of the restrictions imposed on the potential
outcome regression equation by the distributional assumption imposed on the
probability discrete choice equation. OQur approaches provide various ways
to specify and correct the selectivity bias in the observed outcomes in the
regression models. Statistical procedures are suggested so that one can select
the best fitted model among manyv competitive models that one may like to
consider. The models can all be estimated by simple consistent two stage
methods sinilar to those suggested in the limited and censored dependent
variables literature. Simplified Cox type model discrimination procedure is
also suggested so that one can test the competitive model hypothesis. This
provides a rigorous procedure to discriminate the corrections of selectivity
bias based on the normal distribution and some non-normal distributions.
We have alsc generalized our approaches to models with polychotomous discrete
choices. The corrections of the selectivity bias in our approaches are also
very simple and the problem of estimation is much simpler in our models than
the model specified in Dubin and McFadden [1980] and Hay [1980]. Simple two
stage methods for the estimation and the model selection procedures are also
available. The model selecticn procedures provide ways to discriminate

our models with theirs.
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Appendix: List of Truncated First and Second Moments for Some Distr:ibutions

Let us define some common notations to simplify the expressicans. Let
f(e) denote the density function, F(c) be the distribution function,
ul(x)=E(€|a§x) be the truncated mean and uz(x)=E(€2|e§g) be the truncated

the

rt

second moment around zero. The following list of distributions cowver nos

~1

Q

o
—

continuous univariate distributions listed in Johnson and Kotz [197Ca, 18
The detail derivations of the expressions are straightforward and will be

omitted.

-

Normal Distribution: f(e)=(27)

exp(-%ez); —o < g <,
ul(X) = -f(x)/F(x), uz(x) =1 - xf(x)/F(x)

The first expression can be found in Raiffa and Schlaifer [1961}, o. 231 and

)

X

3.

(«

both expressions can be found in Johnson and Kotz [1970a] pp. 81-

Zos
Y 1
) iy ) v -z (v+l
Student Distribution: f(g) = gz;—zjj (V+€2) 2 ); V>2, -wm<g<=,
2872 -

where B(a,b) is the Beta function with parameters a and b.

v+x2

v () = - o £ /F(x),

FA 2B (%,%v) sen () F (Gr |5 ) -

where FB(u]a,b) is the Beta distribution function with parameters a and ©
evaluated at u, and sgn(x) is a sign function defined as

1 if x > 0
sgn(x) =

A

-1 if x 0

The first expression can be found in Raiffa and Schlaifer [1961!, p». 233,
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Logistic Distribution: f(g) = e f/(1 + e—g)2 —wL gL

ul(x) x + n(l - F(x))/F(x),

-

- 1 o j-1,-2
Hy(x) = [3— + sgn(x) ey (- 73 ijxl(3)]/F(x)

jlx] a-1
0

where T, (a) = [ e “de is the incomplete Gamma function with
ilx] P

parameter a. The first expression has been derived in Goldberger [1980] ==:Z

Hay [1980]. The second expression can also be found in Hay [1980].

Laplace Distribution: f(eg) = %e—lel, —w<g <
ul(x) =x -1 for x < 0,
= —(HD) £ /F(x)  for x > 0
2
UZ(X) = X =2x+2 for x < 0,

[3/2-(x>+x+1) £(x) 1/F(x) for x > O.
The expression ul(x) has been derived in Goldberger [1980].

Uniform Distribution: f(¢) =1, 0<e<l

ul(X) = %x, uz(x) =x" /3

where 0<x<1,

Beta Distribution: f(e|p,q) = iT%THT Ep—l(l—s)q—l; p,q>0, O<e<l
| = B
Ll(x) ota FB(X[p+l,q)/F8(X|P,Q),
- (p+l) |

The expression ul(x) can be found in Raiffa and Schlaifer [1961], p. 216.
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. . . u . .
Lognormal Distribution: € = e where u is a standard normal random variable.

b () = €%t x-1)/F(),

by () e25(on x-2) /F(x)

where ¢(z) is the standard normal distribution function evaluated at z.

1 -
Exponential Distribution: f(¢) =5e 6/0, o> 0, e >0

w (x) = oFx/O(Z)/F(X), u, (x) = ZOZFX/0(3)/F(X)

Gamma Distribution: f(e[a) = Ea-le_E/T(u), a >0, e>0.

ul(x) = aFY(x’a+l)/FY(xla), uz(x) = a(a+l)FY(xla+2)/Fy(x|u)

where FY(z]a) is the standard Gamma distribution function with parameter a.

The first expression can be found in Raiffa and Schlaifer [1961], p. 222.

v-1 -¢/2
Chi-square Distribution: f(e|v) = = g ; v>0, >0
220 (30)
u (x) = VF <—¢ AL [F(x),  uy(x) = v(v+2)F c—l Lv42) /F(x) .

The first expression can be found in Raiffa and Schlaifer [1961], p. 227.

. _ 1
el 1(‘)2/\) )2V,

1 £
v,) = - s v, >0, v >4, =>0.
s Vo B ” ’ ] ’
1’72 B( vl’“vZ (€+v2/ )7 (» +v ) 1 2

F Distribution: f(e|v

b () = 2 F

=, /v P v, + 1, mVZ - 2)/F(x),

Iy (Lv1+l) v, 2 < ‘
b, (%) = T - (—) F C——j~——*5%v + 2, kv, - 2)/F(%).
2 (902_1)(fV2—4) vy R X+)2/v 1 2
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Weibull Distribution: £f(e) = ¢ ac—l e.-E , ¢ >0, e >0

b GO =T G+ D/FGY, () =T (G + D/FG)
' X X

-v, -1

Multivariate Logistic Distribution: F(vl,...,vJ) = [1 + Ej=l e 91,

E(vllvl < KpseeesVyg < XJ)

= L {¢nF(x,,¢..,x.) - X e_xlF(x e X )}
Lo lp(x S SRS RRRRRES
100 ¥g
E(v zlv < Xy peeeya Vv, < X))
1 1 1° N J
x,+nc(x) - 2 w -X
- st (W“Q?°§X)) = —— dw, c(x) =1-e lF(xl,...,xJ)
- eix (1+e")
1 2 o j-1,-2 (3)
= I 5 -1 ,
c(x)F(xl,...,xJ) {3 * sgn(xl + tne(x)) Zj=1 (=173 Fj]xl+2nc(§:)‘
-2 fnc(x) [(xl + 2nc(x)) G(xl + fne(x)) + an (1 - G(xl + fnc(x)))]
2 ,
+ (Inc(x)) G(xl + fnc{x))}
-x) z
where ¢c(x) =1 - e F(Xl""’XJ) and G(z) = < . is the standard logistic
1+e

distribution.

E(vlvzlvl < KyseeesVy < XJ)

X v, vy g —xj -1 e_xl
=2 f v,e (1+e +5,_.e ) [anF(x RS JX ) =X - -
. 2 j=3 1 3 J 71 lae X1,7V2,-
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Footnotes

(%) This author is an Associate Professor, Department of Economics,
University of Minnesota, inneapolis, and Visiting Associate
Professor of the Center for Econometrics and Decision Sciences,
University of Florida, Gainesville, Florida. I appreciate having
financial support from the National Science Foundation under
Grant SES-8006481 to the Tniversity of Minnesota.

¢B) We have formally adopted these notations so as to allow other
distributional assumptions on = which need not necessarily imply
zero mean and variance cne.

(2) Specifically, the 'selectivity bias term' or 'selectivitv bias'
terminologies in this article are referred to the conditional
expectation E(u[ef;y) for the binary choice case and E(u_|sth category
is chosen) for the polychotomous choice case where u is°the disturbance
in the outcome equation iz the sth category. S

(3)  This problem has been poirted out in Olsen [1980].

) In general, for the identification of the choice equation, either
u_ and 082 are known constants or will be appropriately normalized
to some specific values.

(5) For each s, there are M-1 binary decision rules which can be defined as
D = - - L h T = H i
6 z Y zjy + ng nj, jeil,...,M}-{s}, I=s if and only if DSj > 0
for all jef{1,...,M}-{s}.
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