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SOME APPROACHES ON THE CORRECTION OF SELECTIVITY BIAS 

1. Introduction 

by 

(*) 
Lung-fei Lee 

December 1980 

The recent developments on the limited dependent variables and 

censored dependent variables in eco~o~etric models attempt to deal with the 

problems of systematic missing date 2~ the dependent variables for cross 

sectional survey data. The most co~on cases are the existence of some 

selection processes which determine the observed samples. Conditional on 

the appropriate set of exogenous variables, if the dependent variable en 

potential outcome in a regression =ode1 is correlated with the selection 

processes, conventional estimation tec~iques will not provide consistent 

estimates of the parameters. The co~on solution in the literature is to 

specify the joint probability distri~utions of the random elements in the 

selection processes and the regression equation. Under the hypothesis that :~e 

distribution is the correct one, the =axinum likelihood method is consistent 

and asymptotically efficient under very general conditions, see for example, 

Amemiya [1973] for the bivariate no~~l distribution case. Multivariate 

normal distribution is the most cocnonly specified assumption in those models. 

Under this distributional assumption, computationally simple limited information 

method which corrects directly the source of least squares bias has also been 

developed, see, for example, Amemiya [1974], Heckman [1976], Lee [1976] 

among others. 
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The limited information ~ethod cited above utilizes only the 

inforsation on the first two incomplete moments of the distribution. .~ a 

simple exa::lp1e, consider a t,vo equations model with a random sample 0:: s:'ze X, 

y-J: 
~ 

x.S + u. 
~ ~ 

z. Y + E. 
1 1 

(1.1) 

i=l, ... ,N. (1.2) 

where x. and z. are exogenous variables, E(u.) = 0, E(E.) 
~ ~ ~ ~ 

o and var(E.) 

The joint distribution of u. and E. conditional on x. and z. is bivaria~e 
1 1 ~ ~ 

normal, N(O, 0, o 2 1, p), where p is the correlation coefficient. ~ie 
u ' 

dependent variable y~ is unobservable but has a dichotomous observable 
~ 

realization I. which is related to v * as follows: 
~ J i 

I. 1 if and only if v": > 0 
~ - ~ 

I . 0 if and only if v ": < O. 
~ . ~ 

1. 

The dependent variable Yl' conditional on x. and z. has well-defined =a=~~"al 
~ ~ ~ 

distribution but Y
li 

is not observed unless Yt > O. Without lost of ge=erality, 

let us assume the non-censored observations Y
i 

of Y
li 

are the first 

observations. 

Y;, = x.S + u. if and only if Z.Y > E. 
... ~ 1 ~ ~ 

i=l, ... ,N
l 

(1. 3) 

. 
Since u. and E. are bivariate normally distributed, the conditional eX?ectation 

1 ~ 

of u. given E. is linear in and u. = 2-:1 (E. - ]J )/0 + v. where 
1 ~ -i ~ u ~ E E 1 

E(E.) and 2 1/ 
FurtherT'lore; and indepenc.e:1t. lJ

E 
= a = var( E.).- E. v. are 

1 E 1 1 ~ 

Equation (1.1) can then be written as 



-3-

x.S + :0 (S. - ~ )/0 + V
1
' 

1 Ul E E 
i=l, ... ,N (1. !..) 

where G = 1 and ~ = O. Since E(s.!z.y > E.) = -¢(z.y) and E(v.:z.-:- > :::.) 0 
E E 11 1 1 11 l 

where ¢(z.y) is the standard normal density function evaluated at z - l-,e 
1 i 

limited information method is to use the implied equation, 

= x.S - pcr ~(Z.Y)/O + po ~ /0 
1 U 1 E UE E + ~i' i=l, .•. ,Xl (1. S) 

where E;.. = v. + po (E. + ¢(z.-())/-:; and E(C!z.y > s.) = 0, after t::e .:::or=e::~ion 
11 Ul 1 S 11-1 

of selection bias term. Olsen [1980] has pointed out that under1:L~; ~::e 

derivation of the equation (1.5), the crucial properties used are t~e lL~earity 

of the conditional expectation of U given E, the normality of the dis~ur~~ce 

E and the independence of v with s. Based on these properties, 01s~ 

specifies the regression equation (1.4) as the basic model and sug6ests a 

linear probability modification to correct for the selectivity bias ~~ t::is 

class of models. 

This modification is useful as it provides an alternative -... ay ~o 

specify selectivity models ,dthout restricting to the assumption of ::-..llth-ariate 

normal disturbances. The correction of selectivity bias in the equatio~ (l.S) 

is insensitive to the distribution of v. The correction of the selectivity 

bias in the equation (1.4) is to compute the conditional mean of s conditional 

on s 2 zy so as to derive the correct conditional regression equation for t~e 

observed samples. For different probability models, there are corres?o~ci..~gly 

d · ff t . f h 1 .. t b' 2/ F th l' 1 eren expressl0ns or t. e se ectlvl y las term.- or e L~ear 

probability choice model, there is a linear probability correction of ~::e 

selectivity bias. For the logistic probability model, a correspondL:~ 
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modification of the selectivity bias term is presented in Hay [1980]. However, 

there are some questions on the general applicability of this approach. For 

the linear probability model, E is uniformly distributed on [0, 1] rather than 

normally distributed together with the assumption that the conditional 

expectation of u given E is linear in E may implicitly impose an outrageous 

distribution upon u. In the extreme case when Ipl is closed to one, the densit·; 

of u is closed to be uniform which is most unlikely distribution for a regressio~ 

mode1~/ The selectivity bias terms in the regression equation may be quite 

sensitive to the specific probability models even though there may be only 

slight differences in the probability models. As pointed out in Domencich and 

McFadden ([1975],p. 58), the three popular probability models, namely, probit, 

arctan and logit models, are virtually indistinguishable except at arguments 

yielding probabilities extremely close to zero or one, and they concluded that, 

within the range of most data, the three models provide essentially equivalent 

probability functions, and except for computational reasons, there is little 

to choose among them. However, the selectivity bias terms for the regression 

equation will not have the similarity. As the arctan probability model is 

generated based on the distribution of E being Cauchy, the conditional mean 

for the dependent variable Y1 does not exist. The Olsen's approach is thus 

restrictive because the specified probability model dictates the correction of 

the selectivity bias. Another problem remained unsolved in Olsen [1980] is 

to' provide a rigorous statistical inference procedure to discriminate between 

his linear probability correction of the selectivity bias and the correction 

based on normal distribution. Under the Olsen's approach, it is not clear 

how that can be done since any specific probability model will lead to a 

specific selectivity bias term. 



-5-

In this article, we attempt to overcome the above restrictions 

in Olsen's approach and suggest a more flexible approach. Under our 

generalized approach, any specific probability model need not restrict the 

expression of selectivity bias term in the regression equation and hence a 

much wider class of models can be derived. Rigorous statistical inference 

procedure can also be derived to choose among the various corrections of 

selectivity bias under a comnonly specified probability model. Olsen's 

approach has lately been extended to the po1ychotomous choice case in 

Dubin and McFadden [1980] and 2ay [1980]. In this article, we also propose 

some approaches to the correction of selectivity bias in the polychotonous 

choice models. Our approach is nuch flexible and the models are much easier 

to be implemented than theirs. Statistical procedure will also be provided 

to choose among the models and compare their approach with ours. 
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2. A Class of Dependence ~'!odels 

Consider the two equations ~odel, 

xS + u (2.1) 

y* zy - E: (2.2) 

where x and z are exogenous variables, E(ulx,z) = 0, var(u:x,z) = 0
2 , 

E(E:lx,z) = ~E: and var(E:lx,z) = ~~2. The mean ~E: and the variance 0E of -

are assumed to be kno\\lIl.~/ T:1e observability of the dependent variable --1 

and the dichotomous indicator I are indicated as in the previous section. 

Let J be a specified strictly ~creasing transformation. Since 

I 1 <=> Z-( > ~ 

the model with equations (2.1) and (2.2) is equivalent to 

xS + u (2.3) 

y** (2.4) 

where y** = J(y*). 

The class of dependence TIodels that will be considered is based on the 

specification that u is a convolution of two independent random variables and 

on~ of them is proportional to J(~). Specifically, we assume 

u (2.5) 

where v and J(E) are independent and ~J E(J(E». The disturbances _ and u 



-7-

in the choice equation and the regression equation are correlated if A ~ 0 

and uncorrelated if A = O. The correlation of u and E is derived by 

transfo~ing independent random variables. This specification can be regarded as 

special cases in the construction of bivariate distributions due to Steffensen 

[1922] . This approach provides a '.vay to generalize a large class 0 f models 

with selectivity. By specifying different transformations, we can allow diff~rent 

implied ~plicit distributions on u and thus any specific probability choice 

model need not dictate the way of correcting the selectivity bias term. \wen 

the transformation J is the identity mapping, it corresponds to the Olsen's 

approach. In practice, the appropriate transformation in (2.5) is hardly known. 

If the transformation J could be estimated within the class of strictly 

increasing transformations for given samples, it would be desirable. 

Unfortunately, that does not seen to be possible. However, at least one 

can try different transformations and select the ones that provid~ the reasonable 

results. 

When there were some priori info~~tion available on u, it might also be 

useful in providing some suggestions on the specification of the transformations. 

For example, if the marginal distribution of u is normal and if v were assumed 

to be no~l, the selection of the transformation J such that J(s) is a normal 

random variable seems appropriate. Of course, it is not necessarily true that 

this can ':Je done for any margi..'lal distribution of u, which is knor.m a priori, under 

this approach. For models with specific marginal distributions on u and E, the 

alternative approaches based on the translation method and the contingency 

distribution method which generate bivariate distributions with specified mar­

ginal distribution in Lee [1980J are more appropriate than this approach. When 

the specified marginal distribution of u is normal, this approach and the trans­

lation method in Lee [1980J are similar. However, the approach in this paper 

is slightly more general in the correction of the selectivity bias as the bi­

variate normality is a sufficient condition for the results to hold, but not 

necessary. 



-8-

3. The Correction of Selection Bias, Estimation and Model Selection 

Let OJ2 and p be the variance of J(E) and the correlation cofficient of 

u and J(E). The equation (2.5) is equivalent to u = po (J(E) - ~ )/0 + v 
u J J 

where ° 2 _ var(v) = ° 2(1_p2). The two equations model becomes 
v u 

(3.1) 

y* zy - E (3.2) 

The selectivity bias term for the observed dependent variable y is 

E(J( E) i zy ~ E), or equivalently, E( E* i J(zy) ~ E*) where E* = J( E). Ass1.:=e that 

the distribution of E is known or completely be specified. Let f
J
(.) be the 

implied density function of E* which is assumed to exist under the trans=ornation 

J. Let ~(J(zy» = fJ(zy) E*fJ(E*)dE* denote the incomplete first moment of 
J(-oo) 

the random variable E* evaluated at J(zy). Let F(zy) = Pr(zy ~ E) be t~e 

probability that the event I = 1 occurs. Conditional on the sample y being 

observed, the regression equation (3.1) after the correction of the selectivity 

bias becomes 

y (3.3) 

where s = P0
u

(J(E) - ~(J(zY)/F(Z-(»)/0J + v has zero conditional mean, i.e., 

E(six,z, I = 1) = O. The conditional variance of s is 

var(E.:ix,z, I=l) 

~') (J (zy» 
[ ~ 

F(zy) 

(3.4) 
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where ~2(J(ZY)) = jJ(zy) ~*- fJ(E*)d~* is the incomplete second moment around 
J(_ro) 

zero of s* evaluated at J(z-:). Since the distribution of E and the transformation 

J have been completely speci:ied, ~J and oJ are known parameters and the 

reIT.aL~ing unknown parameters of the ~odel are S, p, y and G 2. 
u 

The nonlinear equation (3.3) can be estimated by similar two stage ~ethod 

as discussed in the literat~~e, see for example, Amemiya [1974], Hecknan [1976] 

and Lee [1976], among others. In the first stage estimation, y can be esti~ated 

by the ~aximum likelihood ~e:~od for the implied probability choice IT.odel under 

the assumed distribution F(.) :or the disturbance E. Let y denote the ~aximum 

likelihood estimate of 0(. ':":-:e second stage estimation is to estimate the 

modi:ied equation of (3.3) ~i:h the noncensored observations, 

(3.5) 

by t~e ordinary least squares ?rocedure (OLS). Under very general conditions, 

the o~s estimate of S, 00 c~:: 1::>e ShOl-.ll to be consistent and asymptotically normal 
u 

for random samples under the s?ecification (3.1) as in Lee and Trost [1978]. 

Correct asymptotic variance :::atrix for the est imates can also be derived as 

in Lee et. al. [1980] "ith sli§;ht modifications to take into account the 

presence of the transformati2:: J. The parameter ° 2 can then be esti~ated 
u 

with the estimated residuals 0: ~ by several methods as described in Lee and 

Trost [1978]. The detail de=ivations are refered to those articles and are 

omit ted here. 

~,e above paragraphs o~:line the correction of the selectivity bias in 

the regression equation and :~e simple two stage estimation method for t~ose 

::lOdels. In practice, Hhet:~_e= ::,e method is really simple or not will deDend 
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on the specified transformation J. A general class of transfor~atio~s :~t is 

rich enough is to specify the transformation J = G-
1

F where G is an a2so:~te1y 
o 

continuous distribution function. As E is specified to have the distri~~:i~n 

function FCE), the transformed variable E* = G-
1

CF(E)) will be a rando~ 

variable with distribution function GCE*). 

The distribution of the random variable u under the convolution for:::u:2.-2 C::. 5) 

can take on various shapes as the distribution functions G(.) vary, ~~i:-2 :~e 

probability model can be chosen to be a specific model and remains u~c~~~~e~. 

Some popular random variables in the literature of probability theory .~:: ~e 

rich enough to serve our purpose; consider, for example, the continuous 

univariate distributions in the t,,-o volumes of Johnson and Kotz [1970J. -=-.-.e 

correction of the selectivity bias term and the conditional variance ~= 

require the derivation of the first t,.ro incomplete moments of sone po:Ju:"2.r 

random variables. As a convenient reference, we provide a list of t~e for=ulae 

for these two incomplete moments for many popular random variables ~~ =~e 

appendix. Thus, for example, if the probability choice model is a li::e2-::" 

probability model as considered in Olsen [1980], we can have the unifo== 

distribution correction for selectivity bias in Olsen when J(.) is an :':'e::: :':y 

mapping, as well as the normal distribution correction for selectivit'.- :J::...as 

-1 
when J(.) is chosen to be ~ C.), where Q(.) is the standard no~~l 

distribution function. 

Since different transformations J lead to different regression e~u2.tio~s 

after correcting the selectivity bias term, we have a model selection ?ro21e~. 

Since, in our approach, the probability choice model can be fitted s2?ara:ely 

with the samples of dichotomous indicators and presumably can be choseQ according 

to some goodness of fit criteria as derived in Domencich and ~!c?adden :::"976J, 
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it will remain unchanged in the estimation of the remaining outcome regression 

equation. Suppose there was a finite number of transformations J. The prob1e~ 

of selecting the regression equations in (3.3) or (3.5) can be regarded as a 

special case in the problem of selection of regressors considered in Theil [1961~, 

Mallows [1973] and, most recently, Amemiya [1980], among others. Amemiya's 

Prediction Criteria (PC) which is applicable to linear or nonlinear regression 

models with general variance-covariance matrix without a specified distribution 

seems to be an interesting criteria for our problem since the disturbances in 

the regression equation (3.3) are heteroscedastic. Since, in our models, all 

the regression equations have the same number of regressors, the PC will select 

the equation with the smallest average variances of the disturbances ~, i.e., 

-1 N1 
the equation with the smallest estimated value of N1 L. 1 var(~. Ix.,z., 1.=1) 

l= l l l l 

where N1 is the number of observations on Y1. The PC is convenient to be used 

since it provides a single index. The PC is derived based on the principle of 

minimizing an estimate of the mean square prediction error but as explicitly 

pointed out in Amemiya, all this kind of criteria considered in the literature 

are based on a somewhat arbitrary assumption which cannot be fully justified. 

It can best be used with other kno"ledge of the underlying economic problem. 

In the selectivity models, priori theoretical consideration such as the 

possibility of positive self-selection, i.e., conditional on the exogenous 

variables, the observed outcome should be greater than population mean, will 

iqdicate that the selectivity bias term multiplied by the coefficient, i.e., 

pau(~(J(ZY))/F(ZY) - ~J)laJ' should be non-negative. Knowledge of this sort 

will allo" us to reject some of the estimated equations. 
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Another entirely different approach that can be useful for our problem 

is to nest the competitive node1s in a generalized equation. This latter 

ap?roach provides a probabilistic statement regarding the choice between any 

t~o competing models and is in the spirit of procedures due to Cox [1961, 1962]. 

Co::sider tT,.o,TO regression equations with different transformations J
1 

and J
2

; 

t~e first ~ode1 is 

Yi 
= x. S + ::: r"..:(Jl(z."i»!F(Z.Y) - ].lJ ]/0J 

+ :-

l U l l -i 
1 1 

0.6) 

a:;.:j, the second model is 

Yi = x. S + 2:: [~(J2(z.Y»/F(z.y) - ].lJ ]/0
J 

+ ;i l U l l 
2 2 

0.7) 

1, ... , N
1

. These t,.;o equations can be nested into a general equation c;o 

i = 1, ... , N1 (3.8) 

T::.e latter equation contains the two node1s in 0.6) and 0.7). Hhen A2 = 0, 

it reduces to the first model and it reduces to the second model when A1 = O. 

T~e discrimination of the two ~odels is related to the test of the significance 

0: the coefficients Al and \2' The hypothesis that the first model is the 

correct one is equivalent to the hypothesis that A2 O. The equation (3.8) 

ca~ be estimated by the OLS procedure. Under general conditions, an asymptotic 

nor~al statistic can be derived as follows. Let X be the N
1

x(k+2) data matrix 

0: the regressors in (3.8) where k is the dimension of the parameter S, i.e., 
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- '...:J 
2 

, 
~1 

~(J1(zv ~»/F(zN y) - ~ 
·'1 11 J 1 

Let d .. be t~e gradient vector of ~v (--(J. (z . '(» /:-(z . y» and D I = [d ~ . , 
Jl 0, J l l j Jl 

j = 1, 2. Furthermore, let Vj be the ~lx~:l dia 5 :J::a1 matr:'x defined as 

'_,(J.(z.','» 2 W
2 

(J . (z . '() ) 

v. = Diag[a 2 + ~2 ( J l 
J v j Fez.':) 

..l.. ~ l 

(:(z-.") »), j = 1,2. 
l l 

It fo110\,s t::at under the null hypothesis H
o
:'" = 0, the OLS esti.'llates 

13, ~1 and :\2 are asymptotically normal a."ld thei= asy:::tptotic variance-covariance 

matrix is 

var (3.9) 

where J~ denotes the asymptotic variance-covar:'~ce =atrL~ of the estimate y 
y 

for the choice equation. Similarly, if ~,;e like :::) ::est ~,-hether the second model 

is the correct one, we can test the hypothesis :::-2t "'I = O. Lnder this hypothesis, 

the asymptotic variance-covariance matrix in (:3.?) shoulc. be changed with D2 

and V
2 

rep1acLTlg D1 and V
1

, respectively, in t:-:e 2x?ression. Similar to the 

suggestions LTl Cox [1961, 1962], each model sho',,:::, '::le tested once as the null 

h~pothesis. It is possible to reject both the ::cdels as both of them are 

not necessarily the correct ones. In the event ::::.at both the r::ode1s ~,i11 be 

accepted, it ~,-ou1d be likely that both :::odels ~r.:".·ic.e si::i1ar results. 
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4. Polychotomous Choice Models and Selectivity Bias 

The approach discussed in the previous paragraphs can be generalized 

to the case with polychotomous choices. There are at least two possible ways 

for the generalization. The first approach generalizes slightly the approach 

in Hay [1980] and Dubin and McFadden [1980]. This approach is based on the 

point of view that polychotomous choice model can be formulated as models with 

multiple binary choice rules with partial observations. The second approach 

is motivated by the formulation of order statistics in the polychotomous choice 

models. 

Consider the following polychotomous choice model with ~1 categories 

and one potential outcome regression equation in each category. 

Ysi x . S + u s = 1, ... , M 
Sl s si 

(4.1) 

y~i z 
siY + nsi 

i 1, ... , N 

where i refers to the ith observation, all the variables x
s

' Zs are exogeneous, 

E(u
s 
I xl'" . ,x

M
' zl"" ,zM) = 0 and the joint distribution of (n

l
,···, n

N
) has 

been completely specified. The dependent variable or potential outcome y in 
s 

the sth category is observed if and only if the sth category is chosen. Let I 

be a polychotomous variable with values 1 to M and I = s if the sth category 

is chosen. 

I s if and only if zsY - ZjY > nj - ns for all js{l, ... ,M}-{s} 

This formulation is to relate the polychotomous choice model as model with N-l 

b · d" 1 . h . 1 b . 5/ lnary eC1S10n ru es W1t part1a 0 servat10ns.- An alternative formulation 

is that 
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S 
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if and only if 

max y"!< 
'-1 M J J- •...• 
jls 

Tl 
s 

y* > max y"!< 
s J 

j=l •...• M 
jls 

(4.2) 

It follows that I=s if and only if z y > E. This formulation is to relate the 
s s 

choice of the sth alternative as a binary decision. i.e., the sth alternative 

will either be chosen or not, mutually exclusively. 

Based on the first formulation. one approach to specify the regression 

equations y with u correlated with the choice equations is to assume that 
s s 

s~l, ... ,}f (4.3) 

where all the J . are some strictly increasing transformations, ~ =E(J .(n.-n )and 
SJ J. SJ J s 

SJ 
for each s, v is assumed to be independent with J . (n .-n ) for all j :::~l, ... ,i-f}-{s} 

s SJ J s 

Equivalently. the formulation in (4.3) can be rewritten as 

u 
s 

(4.4) 

where J (n) =(J l(n
l
-n ) •... ,J len l-n), J +l(n +l-n ), ... ,J '.1('l'f-n » and 

s s s ss- s- s ss s s s..· s 

~J , •.•• ~J) 
ss+l sM 

are t\oJO column vectors. =u J is the 
s s 

covariance vector of Us and J
s 

en)' and = J is the variance-covariC;l.nce matrix of 
s 

the vector J (n). Hhen all the transformation J . are chosen to be the 
s sJ 

identity mapping, this specification is the approach in Dubin and ~1cFadden [1980] 

and Hay [1980]. Under the specification in (4.3). it implies that the observed 

dependent variable of the outcome equation, conditional on the sth category 

being chosen, will satisfy the following equation after the correction of 

selectivity bias term, 
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v 
- s 

x S 
s s 

M 
+ L. 1 A .(T

J 
(zly ,···,zM'() - \1 ) + E;,s 

]= S]. • J . 
(4.5) 

jls S] S] 

where T
J 

(zlY""'Zl-.jy)=E(J .(n.-n )Iz y-z.y > 1" .. -1l , jE:{l, ... ,M}-{s}) is the 
sj L S]] S S] J s 

M 
selectivity bias term and E;, =v + L. 1 (J .(~.-~ ) - T

J 
.(Zly , ... ,zMY»' It 

s s ]= S]] 5 

jls S] 

fo1lc;;s that, conditional on l=s, the disturbances ~ have zero mean but are 
~s 

heteroscedastic errors. The variances of ~s involve expressions of the 

incomplete second moments around zero of the transformed random variables 

J .(n.-n ) and their incomplete cross second ~oments. The equation (4.5) can 
S] J s 

be estimated by some two stage method. With the parameter vector Y estimated 

from the po1ychotomous choice model as Y, the modified equation 

x S 
s s 

M 
+ L. 1 A .(TJ (zlY""'z~!y) - \1J ) + E;,s 

] = S]. L • 

jls S] S] 

can then be estimated by the OLS procedure. 

lfuether the above approach is rea1lv computationally simple or not 

depends on the evaluations of the first two incomplete moments of the random 

variables J .(n.-n ) and the specification of the po1ychotomous choice model. 
S] ] s 

One of the widely used po1ychotomous choice model is the conditional logit 

model in HcFadden [1973]. The conditional logit model is derived under the 

utility maximization hypothesis; the assumption that the n., j=l, ... ,H, are 
] 

independently identically distributed (i.i.d.) with Gumbel distribution 

(with parameter 0), i. e. , Prob[n.<n] = exp(-exp(-n», and other minor conditio~s. 
]-

This distributional assumption implies that the :!-1 random variables 

W .=n.-n , jd1, ... ,:!}-{s} will have a multivariate logistic distribution of 
SJ J s 

Gumbel [1961], i.~., the joint distribution is 

(1 + )'i-l 
~j =1 e 

j1S 

-"~I -1 
sj , 

) (4.6) 
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Let ~'=(l, ... ,l) be a M-l dimensional vector with all ones. The variance-

covariance matrix of the M-l vector (j) is 
s 

More detail description of this distribution and its properties can 

be found in Chapter 42; Johnson and Kotz [1972]. Let us now consider in more 

detail the implementation of the selectivity model with the conditional logit 

model. Since n., j=l, ... ,Mare LLd., we assume that E(u J (n»=:) J;:. 
J s s s s 

As the joint distribution of Js(n) has been completely specified, ~'J is a 

s 

knocm matrix and )..! J is a known vector. It follows that 

u 
S 

s 

(4.7) 

and the number of parameters in (4.4) has been reduced to two. Hhen the 

transformations J . are identities, this model is exactly the model considered 
SJ 

in Jubin and McFadden [1980] and Hay [1980]. 

However, even for the conditional logit model, this approach does not 

provide analytical closed form expressions for the selectivity bias ter~s for 

the general class of transformations considered in the previous section. 

Consider for example, the selectivity bias term for j=l, 

E(J lew l)!t . > W ., jE{l, ... ,~1}-{s}) 
s S SJ SJ 

z y-zlY dF 

f S Jsl(w)dJ)L(Lu, ts2, ... ,tss_l' t
ss

+l , ... ,t
S

}1)d..-'/ 
-co 

FL(t l,···,t 1 t +1'· .. ,t ) 
S ss- ss sX 
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\>1here t . =z y-z. y and C
sl SJ s J 

M 
1 + L. 1 e 

J= 
jls 

-t 
sj 

The integral in (4.8) does not 

seem to have closed form expressions except for some simple transformations 

such as the identity transformation. The evaluation of the variances of s 
s 

in (4.5) are even more complicated and involve double integrals. When the 

(4.8) 

transformations are identities, closed form expression for the selectivity bias 

term can be derived and as sho\>1ll in the appendix. see also Dubin and McFadden 

[1980] and Hay [1980], we have 

E(w .It . > w ., jdl, ... ,M}-{s}) 
Sl sJ sJ 

-t . -1 -t 

(1 - e sJFL(t
s
» [1nF

L
(t

s
)-t

si
e SiFL(t

s
)], idl ..... N}-{s} (4.9) 

for this case, the evaluation of the second moments of w does not seem to 
s 

have closed form expressions, see the appendix. For more general polychotoI:loUS 

choice model such as the generalized extreme value distribution in McFadden [1977], 

this approach will not be simpler. Thus this approach does not seem to be 

able to generate large class of computational simple selectivity models. 

Let us now consider an alternative approach based on the second 

formulation. Under the second formation, I=s if and only if z y > E , where 
s s 

E .is defined in (4.2). Let F (.) denote the implied distribution function of 
s s 

E. For example, if n., j=l, ... ,~, are i.i.d. Gumbel distributed, F (E) 
s J s 

will be a logistic distribution with F (E) = exp(E)/[exp(E) + ::;:1
1 

exp(Z.':')]. 
s J= J 

jls 
Let J be a strictly increasing transformation of E \-lhich transforms E 

s s S 

to a random variable J (E ) \-lith constant mean and variance. The alternative 
s s 

approach is to assume that 



u 
s 
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A (J (E ) - ~J ) + v 
s s s s 

s 

s=l, ... ,M (4.10) 

where v and J (E ) are independent and ~J denotes the mean of J (E). This 
s s s s s 

s 

approach is almost exactly the approach for the binary choice case. The class o~ 

-1 
transformation J =G F where G is any popular distribution function will 

s 0 s 

generate a large class of interesting and computational simple selectivity 

model by the same arguments for the binary choice model. This approach 

seems to be more flexible than the first one and also generalizes the approach 

in Lee [1980] without imposing marginal no~~l distributional assumption on u . 
s 

For the case that u and n for all s=l, ... , ~'1 are mult ivariate normal, it 
s s 

implies the relation (4.3) with all the transformation J . being identities 
SJ 

and the first approach will be the proper one. Except for those cases, there 

does not seem to have theoretical reasons to prefer one approach over the other. 

From the computational point of view, the second approach will be simpler. 

Finally, Ive note that the model selection procedures discussed in 

the previous sections are also applicable to the polychotomous choice models. 

Thus we can compare the selectivity models generated from the same approach 

or =odels generated from the two different approaches. 
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5. Conclusions 

This article has considered the specification of some econometric 

models with selectivity. Our approaches generalize the approach in Olsen 

[1980], and allow us to relax Duch of the restrictions imposed on the potential 

outcome resression equation by the distributional assumption imposed on the 

probability discrete choice equation. Our approaches provide various ways 

to specify and correct the selectivity bias in the observed outcomes in the 

regression models. Statistical procedures are suggested so that one c~n select 

the best fitted model among many competitive models that one may like to 

consider. The models can all be est~ted by simple consistent two stage 

methods s~ilar to those suggested in the limited and censored dependent 

variables literature. Simpli:ied Cox type model discrimination procedure is 

also suggested so that one can test the competitive model hypothesis. This 

provides a rigorous procedure to discriminate the corrections of selectivity 

bias based on the normal distriJution and some non-normal distributions. 

We have also generalized our approaches to models with polychotomous discrete 

choices. :he corrections of the selectivity bias in our approaches are also 

very simple and the problem of estL~ation is much simpler in our models than 

the model specified in Dubin and ~1cFadden [1980] and Hay [1980]. Simple two 

stage methods for the estimation and the model selection procedures are also 

available. The model selection procedures provide ways to discriminate 

our models with theirs. 
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Appendix: List of Truncated First and Second Moments for Some Distr:':lUtions 

Let us define some common notations to simplify the expressic~s. Let 

feE) denote the density function, F(E) be the distribution functi~n, 

second moment around zero. The following list of distribut ions co',-er ::lost the 

continuous univariate distributions listed in Johnson and Kotz [197Ca, 197Jb]. 

The detail derivations of the expressions are straightfonvard a~c ~~l be 

omitted. 

Normal Distribution: 
-~ 1 2 

f(E)=(b) exp(ZE); _00 < E < 00 

~1 (x) 1 - xf(x) /F(x) 

The first expression can be found in Raiffa and Sch1aifer [1961], ? 231 and 

both expressions can be found in Johnson and Kotz [1970a] pp. 81-·33. 

Student Distribution: 

where B(a,b) is the Beta function "ith parameters a and b. 

~1 (x) f(x) !F(x) , 

~2 (x) 

2 
vB (~~ ~v-1) [ « X 11 1 D]·! ( ) 

1 1 1 + sgn x)F", v+x2 '2~2V- F x 
2B("2~"2v) >-' 

wh~re FS(ula,b) is the Beta distribution function with parameters a ane ~ 

evaluated at u, and sgn(x) is a sign function defined as 

1ifx>O 
sgn(x) 

-1 if x < 0 

The first expression can be found in !\aiffa and Sch1aifer [1961;, ? 233. 
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Logistic Distribution: fCc) 

)Jl(x) x + in(l - F(x»)/F(x), 

,., 

(_1)j-lj-2 r . j I (3)]/F(x) 
TI"-

sgn(x) 
co 

)J2(x) = [- + z. 1 3 J= J IX 

where :j Ixl (a) 
Jj Ix I a-l -E 

the incomplete funct ion with = E e dE is Gamma 

° 
parameter a. The first expression has been derived in Goldberger [1980] 

Hay [1980]. The second expression can also be found in Hay [1980]. 

Laplace Distribution: feE) = ~e-Icl, 

x - 1 forx.::.O, 

= -(x+1) f(x)/F(x) for x > ° 

2 
x -2x+2 for x .::. 0, 

2 
[3/2-(x +x+l)f(x)]/F(x) for x > 0. 

The expression )Jl(x) has been derived in Goldberger [1980]. 

Uniform Distribution: feE) 1, O<E<l 

where O<x<l. 

Beta Distribution: 

'I, / 
x 3 

1 
f(Elp,q) = B(p,q) 

p-1 q-1 
E (l-E) ; p,q>O, 

)J1 (x) = p!q F
S

(xl p+1,q)/F
S
(xlp,q), 

_ p(p+l) I I 
)J2(x) - (p+q)(p+q+1) FS(X p+2,q)/FS(X i P ,q) 

O<E<l 

The expression )J1 (x) can be found in Raiffa and Sch1aifer [1961], p. 216. 

---
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Lognormal Distribution: I:: =: e u ,,,here u is a standard normal random variable. 

]Jl (x) 

2 
]J2(x) = e ~(2n x-2)/F(x) 

,,,here ~(z) is the standard normal distribution function evaluated at z. 

Exponential Distribution: f(s) 
1 -I::/cr 
- e , cr > 0, 
cr 

I:: > 0 

/ 
a-I -s 

Gamma Distribution: f(s a) = I:: e /r(a), a>O,I::>O. 

]Jl(x) = aF (x/a+l)/F (x/a), ]J2(x) = a(a+l)F (x/a+2)/F (x/a) 
y y y y 

where F (z/a) is the standard Gamma distribution function with parameter a. 
y 

The first expression can be found in Raiffa and Schlaifer [1961], p. 222. 

Chi-square Distribut ion: f( s / v) 

W-l -s/2 
I:: e 

v > 0, I:: > 0 

The first expression can be found in Raiffa and Schlaifer [1961], p. 227. 

- 2)/F(x), 

v 2 
2) ( x I 1/ 

(-;;- F S x+v / I /2 \! 1 
1 2 \! 

1 

+ 2, ~v2 - 2)/F(x). 



Weibull Distribution: feE) 
c-l 

= c E 

fll (x) r (l + l)/F(x), 
c c 

x 

Multivariate Logistic Distribution: 

= 
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C 
-E 

e 

w 
e 

c > 0, E > 0 

r (l + 1) /F(x) 
c c 

x 

dw, c (x) 

-2 Q,nc(x) [(xl + Q,nc(x» G(x
l 

+ Q,nc(x» + Q,n (1 - G(x
l 

+ Q,nc(x»)] 

+ (Q,nc(x»2 G(x
l 

+ Q,nc(x»} 

where c(x) = 1 
-xl 

e F(xl, ... ,x
J

) and G(z) 

d istribut ion. 

x? -v
2 

-v2 J 

2 f ~ v
2

e (l+e +~j=3e 
_00 

z 
e 

is the standard logistic 

l+e
z 



(*) 

(1) 

( 2) 

(3) 
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Footnotes 

This author is an Associate Professor, Department of Economics, 

University of Minnesota, ~·~neapo1is, and Visiting Associate 
Professor of the Center for Econometrics and Decision Scier.ces, 
University of Florida, Gainesville, Florida. I appreciate having 

financial support from the ~~ationa1 Science Foundat ion under 

Grant SES-8006481 to the ~~iversity of Minnesota. 

We have formally adopted t~ese notations so as to allow other 
distributional assumptions on s which need not necessarily imply 

zero mean and variance one. 

Specifically, the 'selectivity bias term' or 'selectivity bias' 
terminologies in this article are referred to the conditional 

:xpectation E(ul€~zy) fo~ the binary.choice case and E~Us!sth category 
1S chosen) for the po1yc~otomous cho1ce case where u 1S the disturbance 
in the outcome equation L~ the sth category. s 

This problem has been po~_ted out in Olsen [1980]. 

(4) In general, for the identification of the choice equation, either 
~€ and a 2 are known const~~ts or will be appropriately normalized 
to some §pecific values. 

(5) For 

D . 
SJ 

for 

each s, there are H-l :nnary decision rules which can be defined as 
= z y-z.y + n -n., js~l, ... ,M}-{s}, I=s if and only if D . > 0 

s J s J sJ 
all jdl, ... ,H}-{s}. 
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