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Abstract. For m > n ≥ 0 and 1 ≤ d ≤ m, it is shown that the q-Euler number E2m(q)
is congruent to qm−nE2n(q) mod (1+ qd) if and only if m ≡ n mod d. The q-Salié number

S2n(q) is shown to be divisible by (1 + q2r+1)b n
2r+1c for any r ≥ 0. Furthermore, similar

congruences for the generalized q-Euler numbers are also obtained, and some conjectures
are formulated.
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1 Introduction

The Euler numbers E2n may be defined as the coefficients in the Taylor expansion of
2/(ex + e−x):

∞∑

n=0

E2n
x2n

(2n)!
=

(
∞∑

n=0

x2n

(2n)!

)−1

.

A classical result due to Stern [13] asserts that

E2m ≡ E2n (mod 2s) if and only if 2m ≡ 2n (mod 2s).

The so-called Salié numbers S2n [7, p. 242] are defined as

∞∑

n=0

S2n
x2n

(2n)!
=

cosh x

cos x
. (1.1)

Carlitz [3] first proved that the Salié numbers S2n are divisible by 2n.
Motivated by the work of Andrews-Gessel [2], Andrews-Foata [1], Désarménien [4],

and Foata [5], we are about to study a q-analogue of Stern’s result and a q-analogue of
Carlitz’s result for Salié numbers. A natural q-analogue of the Euler numbers is given by

∞∑

n=0

E2n(q)
x2n

(q; q)2n

=

(
∞∑

n=0

x2n

(q; q)2n

)−1

, (1.2)
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where (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) for n ≥ 1 and (a; q)0 = 1.
A recent arithmetic study of Euler numbers and more general q-Euler numbers can be

found in [14] and [11]. Note that, in order to coincide with the Euler numbers in [14, 15],
our definition of E2n(q) differs by a factor (−1)n from that in [1, 2, 4, 5].

Theorem 1.1 Let m > n ≥ 0 and 1 ≤ d ≤ m. Then

E2m(q) ≡ qm−nE2n(q) (mod 1 + qd) if and only if m ≡ n (mod d).

Since the polynomials 1 + q2ad and 1 + q2bd (a 6= b) are relatively prime, we derive
immediately from the above theorem the following

Corollary 1.2 Let m > n ≥ 0 and 2m − 2n = 2sr with r odd. Then

E2m(q) ≡ qm−nE2n(q) (mod

s−1∏

k=0

(1 + q2kr)).

Define the q-Salié numbers by

∞∑

n=0

S2n(q)
x2n

(q; q)2n
=

∞∑

n=0

qnx2n

(q; q)2n

/
∞∑

n=0

(−1)n x2n

(q; q)2n
. (1.3)

For each positive integer n, write n = 2s(2r +1) with r, s ≥ 0 (so s is the 2-adic valuation
of n), and set pn(q) = 1 + q2r+1. Define

Pn(q) =

n∏

k=1

pk(q) =
∏

r≥0

(1 + q2r+1)an,r ,

where an,r is the number of positive integers of the form 2s(2r + 1) less than or equal to
n. The first values of Pn(q) are given in Table 1.

Table 1: Table of Pn(q).

n 1 3 5 7
Pn(q) (1 + q) (1 + q)2(1 + q3) (1 + q)3(1 + q3)(1 + q5) (1 + q)3(1 + q3)2(1 + q5)(1 + q7)
n 2 4 6 8
Pn(q) (1 + q)2 (1 + q)3(1 + q3) (1 + q)3(1 + q3)2(1 + q5) (1 + q)4(1 + q3)2(1 + q5)(1 + q7)

Note that Pn(1) = 2n. The following is a q-analogue of Carlitz’s result for Salié
numbers:

Theorem 1.3 For every n ≥ 1, the polynomial S2n(q) is divisible by Pn(q). In particular,

S2n(q) is divisible by (1 + q2r+1)b n
2r+1c for any r ≥ 0.

We shall collect some arithmetic properties of Gaussian polynomials or q-binomial
coefficients in the next section. The proofs of Theorems 1.1 and 1.3 are given in Sections
3 and 4, respectively. We will give some similar arithmetic properties of the generalized
q-Euler numbers in Section 5. Some combinatorial remarks and open problems are given
in Section 6.
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2 Two properties of Gaussian polynomials

The Gaussian polynomial
[
M
N

]
q

may be defined by

[
M

N

]

q

=





(q; q)M

(q; q)N(q; q)M−N
, if 0 ≤ N ≤ M,

0, otherwise.

The following result is equivalent to the so-called q-Lucas theorem (see Olive [10] and
Désarménien [4, Proposition 2.2]).

Proposition 2.1 Let m, k, d be positive integers, and write m = ad + b and k = rd + s,
where 0 ≤ b, s ≤ d − 1. Let ω be a primitive d-th root of unity. Then

[
m

k

]

ω

=

(
a

r

)[
b

s

]

ω

.

Indeed, we have

[
m

k

]

q

=

rd+s∏

j=1

1 − q(a−r)d+b−s+j

1 − qj

=

(
s∏

j=1

1 − q(a−r)d+b−s+j

1 − qj

)(
rd∏

j=1

1 − q(a−r)d+b+j

1 − qs+j

)
.

By definition, we have ωd = 1 and ωj 6= 1 for 0 < j < d. Hence,

lim
q→ω

s∏

j=1

1 − q(a−r)d+b−s+j

1 − qj
=

s∏

j=1

1 − ωb−s+j

1 − ωj
=

[
b

s

]

ω

.

Notice that, for any integer k, the set {k + j : j = 1, . . . , rd} is a complete system of

residues modulo rd. Therefore,

lim
q→ω

rd∏

j=1

1 − q(a−r)d+b+j

1 − qs+j
= lim

q→ω

(1 − q(a−r+1)d)(1 − q(a−r+2)d) · · · (1 − qad)

(1 − qd)(1 − q2d) · · · (1 − qrd)

=

(
a

r

)
.

Let Φn(x) be the n-th cyclotomic polynomial. The following easily proved result can
be found in [8, Equation (10)].

Proposition 2.2 The Gaussian polynomial
[
m
k

]
q

can be factorized into

[
m

k

]

q

=
∏

d

Φd(q),

where the product is over all positive integers d ≤ m such that bk/dc + b(m − k)/dc <
bm/dc.
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Indeed, using the factorization qn − 1 =
∏

d|n Φd(q), we have

(q; q)m = (−1)m
m∏

k=1

∏

d|k

Φd(q) = (−1)m
m∏

d=1

Φd(q)
bm/dc,

and so [
m

k

]

q

=
(q; q)m

(q; q)k(q; q)m−k

=
m∏

d=1

Φd(q)
bm/dc−bk/dc−b(m−k)/dc.

Proposition 2.2 now follows from the obvious fact that

bα + βc − bαc − bβc = 0 or 1, for α, β ∈ R.

3 Proof of Theorem 1.1

Multiplying both sides of (1.2) by
∑∞

n=0 x2n/(q; q)2n and equating coefficients of x2m, we
see that E2m(q) satisfies the following recurrence relation:

E2m(q) = −
m−1∑

k=0

[
2m

2k

]

q

E2k(q). (3.1)

This enables us to obtain the first values of the q-Euler numbers:

E0(q) = −E2(q) = 1,

E4(q) = q(1 + q)(1 + q2) + q2,

E6(q) = −q2(1 + q3)(1 + 4q + 5q2 + 7q3 + 6q4 + 5q5 + 2q6 + q7) + q3.

We first establish the following result.

Lemma 3.1 Let m > n ≥ 0 and 1 ≤ d ≤ m. Then

E2m(q) ≡ qm−nE2n(q) (mod Φ2d(q)) if and only if m ≡ n (mod d). (3.2)

Proof. It is easy to see that Lemma 3.1 is equivalent to

E2m(ζ) = ζm−nE2n(ζ) if and only if m ≡ n (mod d), (3.3)

where ζ ∈ C is a 2d-th primitive root of unity.
We proceed by induction on m. Statement (3.3) is trivial for m = 1. Suppose it holds

for every number less than m. Let n < m be fixed. Write m = ad + b with 0 ≤ b ≤ d− 1,
then 2m = a(2d) + 2b. By Proposition 2.1, we see that

[
2m

2k

]

ζ

=

(
a

r

)[
2b

2s

]

ζ

, where k = rd + s, 0 ≤ s ≤ d − 1. (3.4)
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Hence, by (3.1) and (3.4), we have

E2m(ζ) = −
m−1∑

k=0

[
2m

2k

]

ζ

E2k(ζ)

= −
a∑

r=0

b−δa r∑

s=0

(
a

r

)[
2b

2s

]

ζ

E2rd+2s(ζ),

= −
b∑

s=0

a−δb s∑

r=0

(
a

r

)[
2b

2s

]

ζ

E2rd+2s(ζ), (3.5)

where δi j equals 1 if i = j and 0 otherwise.
By the induction hypothesis, we have

E2rd+2s(ζ) = ζrdE2s(ζ) = (−1)rE2s(ζ). (3.6)

Thus,

a∑

r=0

(
a

r

)[
2b

2s

]

ζ

E2rd+2s(ζ) =

[
2b

2s

]

ζ

E2s(ζ)

a∑

r=0

(
a

r

)
(−1)r = 0.

Therefore, Equation (3.5) implies that

E2m(ζ) = (−1)aE2b(ζ) = ζm−bE2b(ζ). (3.7)

From (3.7) we see that

E2m(ζ) = ζm−nE2n(ζ) ⇐⇒ E2n(ζ) = ζn−bE2b(ζ).

By the induction hypothesis, the latter equality is also equivalent to

n ≡ b (mod d) ⇐⇒ m ≡ n (mod d).

This completes the proof.

Since

1 + qd =
q2d − 1

qd − 1
=

∏
k|2d Φk(q)∏
k|d Φk(q)

=
∏

k|d
2k-d

Φ2k(q),

and any two different cyclotomic polynomials are relatively prime, Theorem 1.1 follows
from Lemma 3.1.

Remark. The sufficiency part of (3.2) is equivalent to Désarménien’s result [4]:

E2km+2n(q) ≡ (−1)mE2n(q) (mod Φ2k(q)).
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4 Proof of Theorem 1.3

Recall that the q-tangent numbers T2n+1(q) are defined by

∞∑

n=0

T2n+1(q)
x2n+1

(q; q)2n+1
=

∞∑

n=0

(−1)n x2n+1

(q; q)2n+1

/
∞∑

n=0

(−1)n x2n

(q; q)2n
.

Foata [5] proved that T2n+1(q) is divisible by Dn(q), where

Dn(q) =





n∏

k=1

Evk(q), if n is odd,

(1 + q2)
n∏

k=1

Evk(q), if n is even,

and

Evn(q) =

s∏

j=0

(1 + q2jr), where n = 2sr with r odd.

Notice that this implies that T2n+1(q) is divisible by both (1 + q)n and (−q; q)n, a
result due to Andrews and Gessel [2].

To prove our theorem we need the following relation relating S2n(q) to T2n+1(q).

Lemma 4.1 For every n ≥ 1, we have

n∑

k=0

(−1)kqk

[
2n

2k

]

q

S2k(q)S2n−2k(q) = T2n−1(q)(1 − q2n). (4.1)

Proof. Replacing x by q1/2ix (i =
√
−1) in (1.3), we obtain

∞∑

n=0

S2n(q)
(−1)nqnx2n

(q; q)2n
=

∞∑

n=0

(−1)nq2nx2n

(q; q)2n

/
∞∑

n=0

qnx2n

(q; q)2n
. (4.2)

Multiplying (1.3) with (4.2), we get
(

∞∑

n=0

S2n(q)
x2n

(q; q)2n

)(
∞∑

n=0

S2n(q)
(−1)nqnx2n

(q; q)2n

)
(4.3)

=

∞∑

n=0

(−1)n q2nx2n

(q; q)2n

/
∞∑

n=0

(−1)n x2n

(q; q)2n

= 1 + x
∞∑

n=1

(−1)n−1 q2n−1x2n−1

(q; q)2n−1

/
∞∑

n=0

(−1)n x2n

(q; q)2n

= 1 + x
∞∑

n=0

T2n+1(q)
x2n+1

(q; q)2n+1

. (4.4)
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Equating the coefficients of x2n in (4.3) and (4.4), we are led to (4.1).

It is easily seen that Pn(q) is the least common multiple of the polynomials (1 +

q2r+1)b n
2r+1c (r ≥ 0). For any r ≥ 0, there holds

1 + q2r+1 =
q4r+2 − 1

q2r+1 − 1
=

∏
d|(4r+2) Φd(q)∏
d|(2r+1) Φd(q)

=
∏

d|(2r+1)

Φ2d(q).

It follows that
Pn(q) =

∏

r≥0

Φ4r+2(q)
b n

2r+1
c.

Theorem 1.3 is trivial for n = 1. Suppose it holds for all integers less than n. In the
summation of the left-hand side of (4.1), combining the first and last terms, we can rewrite
Equation (4.1) as follows:

(1 + (−1)nqn)S2n(q) +

n−1∑

k=1

(−1)kqk

[
2n

2k

]

q

S2k(q)S2n−2k(q) = T2n−1(q)(1 − q2n). (4.5)

For every k (1 ≤ k ≤ n−1), by the induction hypothesis, the polynomial S2k(q)S2n−2k(q)
is divisible by

Pk(q)Pn−k(q) =
∏

r≥0

Φ4r+2(q)
b k
2r+1

c+b n−k
2r+1

c.

And by Proposition 2.2, we have

[
2n

2k

]

q

=
2n∏

d=1

Φd(q)
b2n/dc−b2k/dc−b(2n−2k)/dc,

which is clearly divisible by
∏

r≥0

Φ4r+2(q)
b n
2r+1

c−b k
2r+1

c−b n−k
2r+1

c.

Hence, the product
[
2n
2k

]
q
S2k(q)S2n−2k(q) is divisible by

∏

r≥0

Φ4r+2(q)
b n
2r+1

c = Pn(q).

Note that Pn−1(q) | Dn−1(q) and pn(q) | (1 − q2n). Therefore, by (4.5) and the aforemen-
tioned result of Foata, we immediately have

Pn(q) | (1 + (−1)nqn)S2n(q).

Since Pn(q) is relatively prime to (1 + (−1)nqn), we obtain Pn(q) | S2n(q).

Remark. Since S0(q) = 1 and S2(q) = 1 + q, using (4.5) and the divisibility of T2n+1(q),
we can prove by induction that S2n(q) is divisible by (1+q)n without using the divisibility
property of Gaussian polynomials.
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5 The generalized q-Euler numbers

The generalized Euler numbers may be defined by

∞∑

n=0

E
(k)
kn

xkn

(kn)!
=

(
∞∑

n=0

xkn

(kn)!

)−1

.

Some congruences for these numbers are given in [6, 9]. A q-analogue of generalized Euler
numbers is given by

∞∑

n=0

E
(k)
kn (q)

xkn

(q; q)kn
=

(
∞∑

n=0

xkn

(q; q)kn

)−1

,

or, recurrently,

E
(k)
0 (q) = 1, E

(k)
kn (q) = −

n−1∑

j=0

[
kn

kj

]

q

E
(k)
kj (q), n ≥ 1. (5.1)

Note that E
(k)
kn (q) is equal to (−1)nfnk,k(q) studied by Stanley [12, p. 148, Equation (57)].

Theorem 5.1 Let m > n ≥ 0 and 1 ≤ d ≤ m. Let k ≥ 1, and let ζ ∈ C be a 2kd-th
primitive root of unity. Then

E
(k)
km(ζ2) = ζk(m−n)E

(k)
kn (ζ2) (5.2)

if and only if

m ≡ n (mod d).

The proof is by induction on m and using the recurrence definition (5.1). Since it is
analogous to the proof of (3.3), we omit it here. Note that ζ2 in Theorem 5.1 is a kd-th
primitive root of unity. Therefore, when k is even or m ≡ n mod 2, Equation (5.2) is
equivalent to

E
(k)
km(q) ≡ q

k(m−n)
2 E

(k)
kn (q) (mod Φkd(q)).

As mentioned before,

1 + q2kd =
∏

i|2kd

2i -2kd

Φ2i(q),

and we obtain the following theorem and its corollaries.

Theorem 5.2 Let k ≥ 1. Let m > n ≥ 0 and 1 ≤ d ≤ m. Then

E
(2k)

2km
(q) ≡ q2k−1(m−n)E

(2k)

2kn
(q) (mod 1 + q2k−1d) if and only if m ≡ n (mod d).
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Corollary 5.3 Let k ≥ 1. Let m > n ≥ 0 and m − n = 2s−1r with r odd. Then

E
(2k)

2km
(q) ≡ q2k−1(m−n)E

(2k)

2kn
(q) (mod

s−1∏

i=0

(1 + q2k+i−1r)).

Corollary 5.4 Let k, m, n, s be as above. Then

E
(2k)

2km
≡ E

(2k)

2kn
(mod 2s).

Furthermore, numerical evidence seems to suggest the following congruence conjecture
for generalized Euler numbers.

Conjecture 5.5 Let k ≥ 1. Let m > n ≥ 0 and m − n = 2s−1r with r odd. Then

E
(2k)

2km
≡ E

(2k)

2kn
+ 2s (mod 2s+1).

This conjecture is clearly a generalization of Stern’s result, which corresponds to the k = 1
case.

6 Concluding remarks

We can also consider the following variants of the q-Salié numbers:

∞∑

n=0

S2n(q)
x2n

(q; q)2n
=

∞∑

n=0

x2n

(q; q)2n

/
∞∑

n=0

(−1)n x2n

(q; q)2n
, (6.1)

∞∑

n=0

Ŝ2n(q)
x2n

(q; q)2n
=

∞∑

n=0

q2nx2n

(q; q)2n

/
∞∑

n=0

(−1)n x2n

(q; q)2n
, (6.2)

∞∑

n=0

S̃2n(q)
x2n

(q; q)2n

=
∞∑

n=0

qn2
x2n

(q; q)2n

/
∞∑

n=0

(−1)n x2n

(q; q)2n

. (6.3)

Multiplying both sides of (6.1)–(6.3) by
∑∞

n=0(−1)nx2n/(q; q)2n and equating coefficients
of x2n, we obtain

S2n(q) = 1 −
n−1∑

k=0

(−1)n−k

[
2n

2k

]

q

S2k(q), (6.4)

Ŝ2n(q) = q2n −
n−1∑

k=0

(−1)n−k

[
2n

2k

]

q

Ŝ2k(q), (6.5)

S̃2n(q) = qn2 −
n−1∑

k=0

(−1)n−k

[
2n

2k

]

q

S̃2k(q). (6.6)

9



This gives

S0(q) = 1, S2(q) = 2, S4(q) = 2(1 + q2)(1 + q + q2),

Ŝ0(q) = 1, Ŝ2(q) = 1 + q2, Ŝ4(q) = q(1 + q2)(1 + 3q + q2 + q3),

S̃0(q) = 1, S̃2(q) = 1 + q, S̃4(q) = q(1 + q)(1 + q2)(2 + q),

and

S6(q) = 2(1 + q2)(1 + q + 2q2 + 4q3 + 6q4 + 6q5 + 6q6 + 5q7 + 4q8 + 2q9 + q10),

Ŝ6(q) = q2(1 + q2)2(1 + 4q + 7q2 + 6q3 + 6q4 + 6q5 + 5q6 + 2q7 + q8),

S̃6(q) = q2(1 + q)(1 + q2)(1 + q3)(2 + 4q + 5q2 + 4q3 + 3q4 + q5).

For n ≥ 1 define three sequences of polynomials:

Qn(q) :=
∏

r≥1

Φ4r(q)
b n
2r

c,

Q̂n(q) :=

{
Qn(q), if n is even,

(1 + q2)Qn(q), if n is odd,

Q̃n(q) := (1 + q)(1 + q2) · · · (1 + qn).

Note that Qn(q) is the least common multiple of the polynomials (1 + q2r)b
n
2r

c, r ≥ 1 (see
Table 2).

Table 2: Table of Qn(q).

n 1 3 5 7

Q
n
(q) 1 1 + q2 (1 + q2)2(1 + q4) (1 + q2)2(1 + q4)(1 + q6)

n 2 4 6 8

Q
n
(q) 1 + q2 (1 + q2)2(1 + q4) (1 + q2)2(1 + q4)2(1 + q6) (1 + q2)3(1 + q4)2(1 + q6)(1 + q8)

From (6.4)–(6.6), it is easy to derive by induction that for n ≥ 1,

2 | S2n(q), (1 + q2) | Ŝ2n(q), (1 + q) | S̃2n(q).

Moreover, the computation of the first values of these polynomials seems to suggest the
following stronger result.

Conjecture 6.1 For n ≥ 1, we have the following divisibility properties:

Qn(q) | S2n(q), Q̂n(q) | Ŝ2n(q), Q̃n(q) | S̃2n(q).
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Similarly to the proof of Lemma 4.1, we can obtain
(

∞∑

n=0

Ŝ2n(q)
x2n

(q; q)2n

)(
∞∑

n=0

Ŝ2n(q)
(−1)nq2nx2n

(q; q)2n

)
= 1−qx2+(1+q)x

∞∑

n=0

T2n+1(q)
x2n+1

(q; q)2n+1
,

which yields

n∑

k=0

(−1)kq2k

[
2n

2k

]

q

Ŝ2k(q)Ŝ2n−2k(q) = T2n−1(q)(1 + q)(1 − q2n), n ≥ 2. (6.7)

However, it seems difficult to use (6.7) to prove directly the divisibility of Ŝ2n(q) by Q̂n(q),

because when n is even 1 + (−1)nq2n is in general not relatively prime to Q̂n(q).
Finally it is well-known that E2n(q) has a nice combinatorial interpretation in terms of

generating functions of alternating permutations. Recall that a permutation x1x2 · · ·x2n

of [2n] := {1, 2, . . . , 2n} is called alternating, if x1 < x2 > x3 < · · · > x2n−1 < x2n.
As usual, the number of inversions of a permutation x = x1x2 · · ·xn, denoted inv(x), is
defined to the number of pairs (i, j) such that i < j and xi > xj . It is known (see [12,
p. 148, Proposition 3.16.4]) that

(−1)nE2n(q) =
∑

π

qinv(π),

where π ranges over all the alternating permutations of [2n]. It would be interesting to
find a combinatorial proof of Theorem 1 within the alternating permutations model.

A permutation x = x1x2 · · ·x2n of [2n] is said to be a Salié permutation, if there exists
an even index 2k such that x1x2 · · ·x2k is alternating and x2k < x2k+1 < · · · < x2n, and
x2k−1 is called the last valley of x. It is known (see [7, p. 242, Exercise 4.2.13]) that 1

2
S2n

is the number of Salié permutations of [2n].

Proposition 6.2 For every n ≥ 1 the polynomial 1
2
S2n(q) is the generating function for

Salié permutations of [2n] by number of inversions.

Proof. Substituting (1.2) into (6.1) and comparing coefficients of x2n on both sides, we
obtain

S2n(q) =

n∑

k=0

[
2n

2k

]

q

(−1)kE2k(q). (6.8)

As
[
2n
2k

]
q

is the generating function for the permutations of 12k22n−2k by number of inver-

sions (see e.g. [12, p. 26, Proposition 1.3.17]), it is easily seen that
[
2n
2k

]
q
(−1)kE2k(q) is

the generating function for permutations x = x1x2 · · ·x2n of [2n] such that x1x2 · · ·x2k is
alternating and x2k+1 · · ·x2n is increasing with respect to number of inversions. Notice
that such a permutation x is a Salié permutation with the last valley x2k−1 if x2k < x2k+1

or x2k+1 if x2k > x2k+1. Therefore, the right-hand side of (6.8) is twice the generating
function for Salié permutations of [2n] by number of inversions. This completes the proof.
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It is also possible to find similar combinatorial interpretations for the other q-Salié
numbers, which are left to the interested readers.
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