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Summary 

Antennas for satellite communication ground stations have to meet very 

stringent requirements. Apart from the required antenna gain, which in the 

4 - 6 GHz band can only be realized with apertures of 25 meter in diameter 

or more, the need for low noise is essential as well. 

In this report the advantages and disadvantages of the front-fed paraboloid 

and the cassegrain antenna are compared. It appears that the latter has 

much better noise properties. 

In Chapter 3 the problems with regard to blockage in double reflector 

systems are studied in detail. The influence of the subreflector and its 

supports on the near-in sidelobes is calculated. Different 

results may be expected in the ¢ = 0 and ¢ = 45° plane. Various examples 

have been worked out with regard to the blockage efficiency. 

A theory is further presented indicating that the blockage efficiency may 

be increased considerably, employing shaped double reflector systems. 

Shaping both main and subreflector a low subreflector edge illumination 

may be used, decreasing losses by diffraction and spillover. It further 

appears that in mismatched shaped systems large first side lobes are to be 

expected due to over illumination of the- edge of the main reflector. 

In Chapter 4 the physical optics approximation is discussed as a method to 

calculate the entire radiation pattern of a reflector antenna. A study has 

been made of the limitations and errors that occur with this method. Using 

theoretical truncated feed patterns, the directive gain pattern of the 

composite antenna system, integrated over the entire sphere does not yield 

4TI, but more. 

In the last chapter the polarization properties of offset antennas are 

discussed. These properties are very unfavourable with 

respect to symmetrical front-fed paraboloids and cassegrain antennas. 
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SAMENVATTING 

Op 12 Augustus 1960 bracht de NASA een ballon met een diameter van 30 

meter in een baan rond de aarde om na te gaan of telecommunicatie 

door middel van een dergelijke satelliet mogelijkheden bood. Na de lancering 

van deze passieve Echo I satelliet heeft de satelliet communicatie zich 

stormachtig ontwikkeld. De experimenten zijn niet aIleen beperkt gebleven tot 

passieve satellieten,maar ook is. onderzoek verricht met aktieve satellieten 

zoals Courier, Telstar en Relay. Al deze satellieten doorliepen een relatief 

lage baan rond de aarde in enkele uren. 

Aantrekkelijker waren de satellieten die op een hoogte van 35.600 km boven 

de aarde gebracht konden worden en in precies 24 uur een baan rond de aarde 

beschreven. Zodoende newogen ze zich niet t.o.v. een observatiepunt op 

aarde. Bekend zijn de stationaire satellieten Syncom en vooral Early Bird, 

welke laatste op 5 april 1965 werd gelanceerd en de eerste commerciele ver

binding tot stand bracht tussen Europa en Amerika voor telegrafie, telefo

nie en televisie. Early Bird wordt tevens beschouwd als de eerste Intelsat 

satelliet waarvan thans vier generaties zijn gelanceerd. 

Ieder land kan deelnemen aan het verkeer· via de stationaire satellieten, 

mits aan een aantal voorwaarden is voldaan. Vooral de eisen die men stelt 

aan de antenne van het grondstation zijn zeer hoog .• Men hanteert hierbij de 

signaal-ruis verhotiding G/T
S

' die bij een frekwentie van 4 GHz groter moet 

zijn dan 40,7· dB. Hierbij stelt G de antennewinst voor en Ts de systeem tem

peratuur. De antennewinst moet bij 4 GHz tenminste 57 dB bedragen. Een een

voudige rekensom leert ons dat aIleen zeer grote antennes met een apertuur 

diameter van circa 25 meter hiervoor in aanmerking komen. 

De systeem temperatuur Ts is opgebouwd uit twee component en Tc en T
A

. Hier

bij is Tc de bijdrage van de microgolf onderdelen, deontvanger enz., ter

wijl TA de antenne temperatuur voorstelt. Omdat Tc meestal tussen 5 en 20 

graden Kelvin ligt, afhankelijk van de toegepaste lage ruis ontvanger, is 

de marge, die overblijft voor TA om te voldoen aan de eis van G/Ts > 40,7 

dB bij 4 GHz, erg klein. 

Aan de antenne temperatuur TA wordt vooral hijgedragen door de straling van 

de hemel die via de hoofdlus van het antenne stralingsdiagram binnen komt, 

maar tevens straling die via de zijlussen en achteruitstraling van de aarde 

afkomstig is. De bijdrage van de aarde is erg kritisch, aangezien de aarde 

beschouwd mag worden als een thermische bran op een temperatuur van circa 
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290 graden Kelvin, terwijl de hemel op 4 GRz een gemiddelde temperatuur 

heeft van slechts 15,7 oK. Derhalve zal de te ontwerpen antenne zeer lage 

zijlussen moeten bezitten die de straling van de "warme" aarde zou kunnen 

ontvangen. 

Een van de eerste antennes welke voor een grondstation gebouwd werd,was die 

in Goonhilly (Engeland). De antenne bestaat uit een paraboloide met een be

lichter in het brandpunt. Een nadeel van deze opstelling ligt in het feit 

dat de straling van de belichter, die niet door de parabolische reflector 

wordt opgevangen ("spillover
lf

) gericht is op de "warme" aarde en zodoende 

aanzienlijk bijdraagt tot T
A

• Een ander,meer praktisch nadeel ligt in het 

feit dat de lage ruis ontvanger direkt achter de belichter in het brand

punt moet worden opgehangen en hierdoor voor service doeleinden moeilijk 

bereikbaar is. Plaatst men de ontvanger direkt achter de reflector,dan heeft 

men van de belichter tot de ontvanger lange transmissie leidingen nodig die 

verliezen hebben en hierdoor extra tot ruis bijdragen. Mede door deze na

delen wordt dit type antenne niet meer gebouwd voor grondstations. 

Ret eerste grondstation in de Verenigde Staten bevat een zeer grote z.g. 

hoorn-parabool (Fig. 1.7), een dure constructie, die ondanks de goede anten

ne eigenschappen uit economische overwegingen niet meer wardt gebauwd. 

In Roofdstuk 2 wordt de cassegrain antenne besproken, een antenne systeem 

bestaande uit twee .reflectoren. De hoofdreflector is een parabola ide en de 

veel kleinere, subreflector een hyperboloide. Ret brandpunt van de parabo

loide en een van de brandpunten van de hyperbola ide vallen samen. Ret valt 

onmiddellijk op dat de cassegrain antenne een belangrijk voordeel heeft boven 

de parabool antenne die vanuit het brandpunt wordt gevoed. Immers alle "spill

over" in het cassegrain systeem is grotendeels gericht op de koude hemel 

(Fig. 2.4), waardoor dit type antenne belangrijk betere ruis eigenschappen 

bezit. Bovendien kan de ruisarme ontvanger onmiddellijk achter de hoofd

reflector worden gemonteerd met korte transmissieleidingen. 

Een nadeel van de cassegrain antenne is de vermindering van de antennewinst 

doordat de subreflector met de subreflector-steunen een deel van de antenne 

apertuur blokkeert; bovendien geeft de subreflector aanleiding tot diffrac

tie verliezen die niet meer mogen wurden verwaarloosd zolang de diameter van 

de subreflector niet veel grater is dan de golflengte. 

Roofdstuk 2 geeft allereerst een serie geometrische en optische betrekkingen 

noodzakelijk voor het antwerp van een cassegrain antenne. Vervolgens worden 

enige pagina's gewijd aan de scalaire apertuur methode waarmee de hoofdlus 

en enige zijlussen van een stralende apertuur c.q. parabool antenne kunnen 
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worden berekend. Deze methode leent zich ook bijzonder goed voor het bere

kenen van de antenne winst. 

Er wordt aangetoond,dat met behulp van de scalaire apertuur methode tevens 

de invloed van het stralingsdiagram van de belichter in.beschouwing kan 

worden genomen. Bewezen wordt,dat dit ook mogelijk is in cassegrain antennes. 

Met behulp hiervan wordt in eerste instantie de invloed op de antenne winst 

nagegaan van blokkering door de subreflector door middel van een correct ie

term. Op analoge wijze kan een ~orrectieterm worden afgeleid,die de invloed 

op de antennewinst bepaalt, veroorzaakt door diffractie aan de rand van de 

subreflector. Zodoende is het mogelijk een gesloten betrekking te ontwik

kelen waarin het antennerendement beschreven wordt onder invloed van de 

apertuur belichting, de "spillover", de subreflector blokkering en de sub

reflector diffractie. 

De resultaten van uitgebreide berekeningen tonen aan dat het maximaal haal

bare rendement van de cassegrain antenne ongeveer 74% bedraagt. Vergelijkt 

men dit getal met eerdere berekeningen van Silver voor een parabool antenne 

met belichter in het brandpunt,dan kan men vaststellen dat de blokkering en 

diffractie van de subreflector voor practische antenne constructies het an

tenne rendement met circa 8% verlagen. B.ovendien blijkt dat het rendement 

vrijwel onafhankelijk is van de verhouding brandpuntsafstand/diameter hoofd

reflector (F/D) zodat de mechanische constructeur zich op dit punt tamelijk 

grate vrijheden kan veroorloven. 

In hoofdstuk 3 wordt dieper en algemener ingegaan op blokkerings problemen 

met dubbel reflector antennes, waarbij bIijkt dat voor de meeste prak-

tische antenne constructies de invloed van de subreflector steunen niet mag 

worden verwaarloosd. De steunen, ook weI uithouders genaamd, veroorzaken 

twee soorten schaduwen op de apertuur,die afkomstig zijn van viakke en bol

vormige golven in het antenne systeem. De schaduwen van de bolgolven hebben 

hierbij een merkwaardige trapezium-achtige vorm en worden met geometrisch 

optische method en bepaaid. 

Men kan nu de invloed van deze steunen en de subreflector op het antenne

stralingsdiagram nagaan,door aIIereerst het stralingsdiagram van de oor

spronkelijke,niet gebiokkeerde apertuur te berekenen en vervolgens de gebIok

keerde delen in tegenfase hierbij op· te tellen (het z.g. "zero-field" 

concept). Ret is nu mogelijk met behuip van scalaire methoden na te gaan wat 

de invioed van de dikte van de uithouders is en de plaats waar deze aan de 
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hoofdreflector zijn bevestigd, zulks bij verschillende randbelichtingen. 

Ret feit doet zich nu voor, dat de eerste zijlus geen constante waarde heeft 

en in het ~ = 0° vlak een hogere waarde heeft dan in het ~ = 45° vlak. Er lS 

nog onderzoek gaande hoe het gedrag van de eerste zijlus is in andere ~ 

vlakken en tevens dat van de tweede zijlus. De resultaten zijn belangrijk 

omdat men met deze wetenschap, door de antenne am zijn as te laten draaien, 

in bepaalde richtingen een lager zijlussen patroon kan bewerkstelligen. 

In het tweede deel van hoofdstuk 3 wordt een diepgaande theoretische 

beschouwing over blokkering gegeven. Vooral wordt nagegaan wat er met het 

vermogen gebeurt,dat geblokkeerd wordt. Men kan dan inzien dat dit vermogen 

in de zendsituatie van de antenne op willekeurige wijze de apertuur verlaat 

en zal bijdragen tot verre zijlussen gepaard gaande met een vermindering 

van het antenne rendement. Vervolgens wordt het begrip relatief blokkerings

rendement gedefinieerd, waarna dan bewezen wordt dat dit voor uniforme 

apertuur belichting (1 - B/A)2 bedraagt, waarbij A de niet geblokkeerde 

apertuur voorstelt en B het oppervlak van de geblokkeerde delen. 

Een theorie wordt" nu ontwikkeld waarbij aangetoond wordt dat het geblok

keerde vermogen P
B

, dat normaal gesproken verloren gaat en het zijlusniveau 

nadelig beinvloedt, nuttig kan worden toegevoerd aan de stralende antenne 

apertuur. Bewezen wordt dat het blokkerings rendement dan stijgt tot 

(1 - B/A) als maximum voor uniforme apertuur belichting. 

Inhet laatste deel van hoofdstuk 3 wordt het blokkerings rendement van dubbel 

reflector systemen behandeld als functie van verschillende variabelen die ook 

gebruikt zijn bij de zijlus bepaling en levert zodoende voor de praktijk 

zeer bruikbare gegevens. 

Meerdere malen is het antenne stralingsdiagram ter sprake gekomen en is 

opgemerkt dat scalaire methoden alleenmaar geschikt zijn voor de berekening 

van de hoofdlus en de nabije zijlussen. Wil men echter de antenne temperatuur 

juist kunnen voorspellen dan moet men volgens formule 1.8 inzicht hebben in 

het totale stralingsdiagram G(e,~). 

In hoofdstuk 4 wordt op een van de methodes waarmede men G(e,~) kan bepalen 

uitvoerig ingegaan. De keuze is hierbij gevallen op de physisch optische 

benadering (P.O.) van de stromen Gp het oppervlak van de reflector. De 

stroomdichtheid R wordt hierbij bepaald door de uitdrukking R = 2(n X Hi) op 

het belichte deel van de reflector. Hi is hierbij het op de reflector inval

lend magnetisch veld en n de normaalvector op het oppervlak. Op de schaduw-
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zijde van de reflector worden de stromen nul verondersteld. 

Deze methode is met wisselend sukses door verschillende onderzoekers reeds 

toegepast hetgeen uitvoerig wordt toegelicht. 

Allereerst is een studie gemaakt van de polarisatie eigenschappen van de toe 

te passen antenne belichters. De keuze is gevallen op een bron van Ruygens 

omdat dit de vergelijkingen sterk vereenvoudigt (dubbele integral en kunnen 

door middel van Besselse funkties herleid worden tot integralen met een va

riabele) en ook, omdat vele praktische belichters polarisatie eigenschappen 

vertonen,die vee 1 overeenkomst vertonen met die van een bron van Huygens. 

Men kan nu betrekkingen afleiden die het veld voorstellen dat door de reflec

tor wordt gereflecteerd. Telt men bij dit laatste veld dat van de belichter 

op dan verkrijgt men het totale diagram G(e,~), later herleid tot praktische 

vormen voor computer berekeningen. De methode is geldig voor aIle cirkel

vormig symmetrische reflectoren. 

Enige speciale gevallen kunnen zonder een computer worden nagerekend. Rier

bij blijkt dat P.O. voor een uniform belichte parabool antenne niet aIleen 

in de hoofdrichting correcte resultaten oplevert doch tevens voor de achter

uitstraling e = ~. In deze richting is de straling gelijk aan die van de 

belichter, waaruit dan voIgt dat de z.g •. vlek van Poisson aIleen afhankelijk 

is van de openingshoek van de parabool ~. 

Vervolgens is een literatuur studie gemaakt van de fouten en beperkingen die 

P.O. geeft. Hier is erg veel over geschreven en de meningen lopen sterk uit

een. Erg veel-bezwaar be staat tegen de wijze waarop de stroomdichtheid aan 

de reflector rand plotseling naar nul nadert en dit aan de schaduwzijde 

blijft. Merkwaardig is echter dat ondanks de verkeerde benadering van de 

stroom aan de rand de berekende stralings diagrammen goede overeenkomst 

vertonen met gemeten diagrammen. De meesten zijn het er weI over eens dat 

P.O. betere resultaten oplevert naarmate de reflector ·diameter veel groter 

wordt dan de golflengte. 

In het navolgende wordt eerst nagegaan onder welke omstandigheden P.O. zeker 

verkeerde uitkomsten zal opleveren. Riertoe zijn een aantal mathematische 

benaderingen van belichter diagrammen toegepast. Ret resulterende antenne 

diagram G(e,~) blijkt onjuist te zijn indien belichters worden toegepast 

met afgeknotte stralingsdiagrammen. Per definitie immers, meet G(e,~) 

geintegreerd over de gehele bol 4~ opleveren. Reel duidelijk wordt de on

juistheid gedemonstreerd bij een door een afgeknotte belichter (Fig. 4.3) 

uniform belichte parabool antenne. De afwijkingen van 4~ bedragen soms meer 
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dan 10%. 

Berekent men nu G(e,~) van de reflectoren belicht met een cosinus funktie, 

die maar zeer langzaam afloopt naar nul, dan zijn de afwijkingen van 4rr 

verwaarloosbaar klein. 

De invloed van de reflector diameter wordt duidelijk indien deze kleiner 

wordt. Eerst bij D .' 25" worden de verschillen Lo.v. 4rr aanvaardbaar. De 

invloed van de reflector randbelichting op de resultaten is nauwelijks merk

baar zelfs niet bij hoge waarden, als - 5.5 dB. 

Ret integreren van het antenne stralingsdiagram over de gehele bol lijkt een 

machtig wapen te zijn om controle op de berekeningen uit te oefenen. Ret is 

zeer merkwaardig dat dit in de literatuur nergens staat vermeld en dat klaar

blijkelijk de meeste onderzoekers deze methode niet toepassen. Echter, indien 

de integraal 4rr oplevert is nog geen bewijs geleverd dat aIle verre zijlussen 

goed zijn uitgerekend, omdat vele zijlussen een dusdanige lage waarde kunnen 

hebben dat ze niet of nauwelijks tot de integraal rG(e,~)d~ bijdragen. 
4TrJ' 

Een definitieve uitspraak lijkt pas mogelijk indien de berekeningen zeer 

precies vergeleken kunnen worden met metingen. Dit is niet goed realiseerbaar 

aangezien het gemeten diagram·altijd de invloed bevat van blokkerende 

obstakels, welke invloed op het gehele antenne diagram tot nu toe niet be

rekend kon worden. 

Zoals eerder vermeld,wordt het antennerendement van een cassegrain antenne 

nadelig beinvloed door blokkering en diffraktie van subreflector en uit

houders. Verder wordt de randbelichting meestal zo gekozen,dat de antenne

winst maximaal wordt, zodat de apertuurbelichting vaststaat en geen middelen 

meer aanwezig zijn om het rendement te verhogen of de zijlussen te verlagen. 

Sedert enige jaren is een methode bekend (Galindo)waarbij men door het toe

passen van een aantal optische en geometrische betrekkingen bij dubbel 

reflector systemen een willekeurige apertuurbelichting kan voorschrijven. 

In hoofdstuk 5 wardt een voorbeeld uitgewerkt met als voorwaarde uniforme 

belichting van de apertuur van de hoofdreflector. Tevens wordt aangegeven 

op welke wijze het subreflector blokkerings rendement kan worden verhoogd 

zoals theoretisch voorspeld in hoofdstuk 3. Ret blijkt dat dit op zeer een

voudige wijze kan plaatsvinden. De hoofdreflector en de subreflector zijn 

nu geen zuivere paraboloide resp. hyperboloide meer. De subreflector blijkt 

bovendien zwak kegelvormig te zijn rondom de symmetrie-as. Indien men geen 

p,oging doet het blokkeringsrendement van de subreflector te verhogen ,dan is 
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de subreflector niet kegelvormig. 

Om de invloed van de uithouders op de blokkering te verminderen zijn meer in

grijpende vormveranderingen van hoofd- en subreflector noodzakelijk. Theoretisch 

is het mogelijk de blokkering door bolvormige golven geheel te doen verdwijnen. 

Dit probleem is nog in studie. 

Met behulp van P.O. worden vervolgens de stralingsdiagraromen van aangepaste 

subreflectoren berekend en vergeleken met die van een hyperboloide. Zoals uit 

de stralingsdiagrammen blijkt,t~eedt verlaging van de veldsterkte op in het 

geblokkeerde centrum van de hoofdreflector apertuur. Deze verlaging is echter 

afhankelijk van de subreflector diameter en bedraagt voor Ds = 50A bijna 20 dB. 

Het vermogen,dat door de aangepaste subreflectoren wordt geblokkeerd,blijkt 

aanzienlijk minder te bedragen dan bij een zuivere hyperboloide, terwijl de 

kegelvormige subreflector duidelijk favoriet is t.o.v. de niet kegelvormige 

aangepaste subreflector. 

Met als uitgangspunt uniforme belichting over de hoofdreflector apertuur ont

staan subreflectcren die na reflectie een te hoog deel van het vermogen aan de 

hoofdreflector voorbij stralen (hoofdreflector spillover). Het is daarom ver

standiger om aithans naar de rand van de hoofdreflector een Iagere veldsterkte 

voor te schrijven. Hoe laag deze randbelichting moet zijn en welk deel van de 

apertuur men weI uniform mag belichten hangt samen met het zoeken naar een 

maximale G/Ts verhouding. Dit onderwerp is nog in studie. 

In het algemeen kan men vaststel1en dat het principe van dub bel reflector 

systemen met aangepaste reflectoren grote voordelen biedt ten opzichte van de 

klassieke cassegrain antenne. Spillover en apertuur belichting kunnen onaf

hankelijk van elkaar gekozen worden. Uniforme of gedeeltelijk uniforme 

apertuurbelichting zal het rendement doen stijgen terwijl men aan de subreflec

tor zeer weinig spillover verliezen kan verkrijgen door een lage randbelichting 

aldaar te kiezen. De lage subreflector randbelichting,vermindert bovendien de 

subreflector diffractie verliezen. 

Het laatste deel van hoofdstuk 5 behandelt aangepaste dub bel reflector systemen 

waarin een andere belichter wordt 'geplaatst dan die waarvoor het antennesysteem 

is ontworpen. Het blijkt nU,dat het rendement een maximum vertoont voor belich

ters waarvan de hoofdlus een geringere breedte heeft dan die van de oorspronke

lijke belichter. Vermindert men de hoofdlusbreedte nog meer,dan daalt de rand

belichting van de hoofdreflector. Indien echter belichters worden toegepast die 

een bredere hoofdlus hebben dan de oorspronkelijke belichter dan ontstaat het 

gevaar voor overbelichte hoofdreflector randen met een ongewenste invloed op het 
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zijlusniveau. Deze theorie is zeer belangrijk voor aangepaste dubbel re

flector systemen die een belichter gebruiken met een frekwentie afhankelijk 

stralingsdiagram. 

AIle tot nu toe besproken antenne typen hebben in meer of mindere mate last 

van blokkering door belichter, subreflector en uithouders. In het laatste 

hoofdstuk echter,worden asymmetrische antennevormen besproken,die dit euvel 

niet hebben. De reflector wordt ~ierbij gevormd door een deel van een para

boloide dat ontstaat na doorsnijding met een kegel. Naast deze open para

boo I antenne is ook een variant bekend met een subreflector, de open casse-
• 

grain antenne. Aan de hand van Fig. 6.2 kan men vaststellen dat de stralen-

gang niet gehinderd wordt door blokkerende obstakels. 

Roofdstuk 6 memoreert allereerst de geometrie van deze antennes en toont 

tevens aan dat de maximaal bereikbare winstfaktor in dezelfde orde van 

grootte ligt als bij symmetrische parabool antennes. 

Ret belangrijkste deel van dit hoofdstuk is echter gewijd aan de kruis-pola

risatie eigenschappen van deze antennes. Sedert er plannen bestaan om fre

kwenties boven 10 GRz tweemaal te gebruiken met orthogonale polarisaties is 

het onderzoek op dit punt aanzienlijk toegenomen zoals uit de literatuur' 

moge blijken. 

In het hier beschreven onderzoek wordt aangetoond dat door het berekenen van 

elektrische velden in de apertuur van de {hoofd)reflector uitdrukkingen 

kunnen worden, afgeleid voor het polarisatie rendement van de parabool antenne, 

de klassieke cassegrain antenne, en tevens van de open parabool en open casse

grain antenne. Vooral de laatste antenne geeft aanleiding tot gekompliceerde 

betrekkingen. 

Ais belichter zijn zowel de elektrische dipool als de bron van Ruygens ge

bruikt, waarvan bekend is dat de eerste bij een parabool antenne leidt tot 

zeer slechte polarisatie eigenschappen. terwijl het polarisatie rendement 

van een parabool antenne belicht met een bron van Ruygens gelijk is aan 1. 

Na uitvoerige berekeningen blijkt 'dat het polarisatie rendement van de klas

sieke cassegrain antenne belicht door een elektrische dipool aanzienlijk 

beter is dan dat van een parabool antenne en beter wordt naarmate de vergro

tingsfaktor M (zie hoofdstuk 2) groter wordt. Belicht door een bron van 

Ruygens wordt ook hier het polarisatie rendement 1. 

De asymmetrische antennes gedragen zich totaal anders. Ret lijkt dat het 

polarisatie rendement zeer slecht is en te vergelijken is met een symmetri

sche parabool antenne belicht door een elektrische dipool. Ret is opvallend 
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dat het type belichter, elektrische dipool of bron·van Huygens vrijwel geen 

een rol speelt en dat het rendement grotendeels bepaald wordt door de z.g. 

"offset" hoek 'Yo. Voor sate:1liet connnunicatie boven 10 GHz lijken deze 

asynnnetrische antennes nauwelijks bruikbaar. 

Een praktisch voorbeeld toont ·tenslotte aan dat een open golfpijp in de TEla 

mode polarisatie eigenschappen vertoont die de ,eigenschappen van een bron 

van Huygens benaderen. Tevens doet zich :het "interessante feit voor dat de 

polarisatie eigenschappen·van een ~ynnnetr.ische.parabool antenne met dit 

type belichter aanleiding geeft tot een polarisatie rendement dat af

hankelijk is van de frekwentie. 

• 
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1. GENERAL REVIEW 

1.1. Introduction 

On August 12, 1960, a 100-foot diameter spherical balloon was placed in 

orbit around the earth by the National Aeronautics and Space Administration 

(NASA) to study the feasibility of providing long distance communication 

by means of reflection from orbiting earth satellites. Since the launch of 

this Echo I satellite [53], this type of communication has developed 

tremendously. The Echo I and later on the Echo II satellite [58], launched 

January 25, 1964, using the spherical balloon as a passive reflector, had 

as main objectives to demonstrate two-way voice communications between the 

east and west coast of the USA and to study the propagation of the medium, 

including effects of the atmosphere, ionosphere and balloon in the micro

wave band. Several experiments with active satellites had meanwhile been 

carried out. The first experimental satellite was called Score 

launched December 18, 1958, which had a lifetime of only 12 days verifying 

voice communication and teletyper transmission. The next more advanced 

satellite was the Courier [107] for voice, data and fascimile transmission 

and was launched on October 4, 1960. Better known, however, are the 

experiments carried out by the active satellites Telstar [17] and Relay 

[61] launched July·10, 1962 and December 13, 1962 respectively, both in an 

elliptic orbit round the earth. These satellites provided the first 

experience with wideband active repeaters in orbit and also data on the 

reliability in space, apart from the communication experiments, including 

TV transmission. 

A satellite in a 35,600 km altitude equatorial orbit completes one orbit 

in exactly 24 hours. If such a satellite is moving in·the direction of 

rotation of the earth it will remain stationary with respect to an 

arbitrary point of observation on the earth. The stationary 24-hour 

communication satellite appeared to be attractive, since it eliminated 

many ground station problems,such as tracking, hand-over of communication 

from one satellite to another and coverage, as met with non-stationary 

satellites. 

The first stationary satellite was Syncom [36, p.336] • It was launched 

July 26, 1963, and followed on April 5, 1965, by the first commercial 

satellite Early Bird [78], resulting in a commercial telecommunication 

link between North America and Europe. This link was used for normal 

telegraphy, telephony and TV purposes. 
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since 1969 Early Bird is no longer in use. Early Bird was the first of the 

generations of Intelsat Satellites [56], four generations of which have 

now been launched. 

The Intelsat satellites are part of a global system of telecommunication 

on a commercial basis called "International Telecommunication Satellite 

Consortium" (Intelsat). If a country wants to participate in this type 

of traffic, it has to meet the requirements of Intelsat' s governing body, 

the Interim Communications Satellite Committee (ICSC). Especially the 

antennas for the ground stations have to meet very stringent requirements 

[37]. Apart from the required antenna gain, which in.the 4-6 GHz band can 

only be realized with .apertures of 25 m in d~ameter ·or more, ·the need for 

low noise is essential. Noise is introduced by the microwave receiver it

self, .and further· contributions arise ·from losses in the waveguide 

components. Moreover, the noise is increased by external sources such as 

thermal radiation, from the sky and via sidelobes and back radiation, 

also from the ground. Especially the contribution due to ground radiation 

is critical, since the ground can usually be regarded as a thermal source 

of 290 K, while the sky radiates at much lower average temperatures. The 

sky radiation reaches a minimum at 4 GHz·, where the a ",rage temperature 

is only 15.7 K [23]. Therefore, an. antenna has to be designed with a 

gain as high as possible and a noise temperature as low as possible. 

A low antenna temperature can be obtained by very low sidelobes, thus 

receiving only little radiation from the "hot".earth, while the antenna 

main beam points to the "cold" sky. 

It has become common practice in satellite communications to introduce 

the "figure of merit", which is defined as the ratio of antenna gain and 

the system noise temperature Ts' This G/Ts ratio therefore depends not 

only on the reflector system and feed, but also on the environment in 

which the antenna operates, the elevation of the antenna, and the noise 

in the remainder of the receiver system. 

Owing to the high cost of antennas for zround stations the same antenna 

is used for reception as well as for transmitting· purposes. The remarks 

made above apply to some extent also to the use of the antenna for 

transmitting purposes. As a matter of fact, in the latter case a high 

antenna gain is wanted, while the radiation in unwanted directions must 

be low to avoid interference with stations operating on the same frequency, 

such as for radio relay systems. 
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In the case the antenna gain is too low for transmission, the transmitter 

power can be increased to some extent, so that the 'antenna gain is not so 

critical for transmission as for reception purposes. Naturally, it is 

almost impossible to increase the transmitter power on board the satellite, 

when the satellite is in orbit. 

The present frequency bands allocated to satellite communication are 3.7 -

4.2 GHz for the reception of satellite signals on earth and 5.925 - 6.425 

GHz for transmitting to the sate~lite. In the near future frequency bands 

above 10 GHz will also be used for satellite communication, viz. 10.95 -

12.5 GHz for space-to-earth communications and 12.5 - 14.5 GHz for earth

to-space communication. Higher frequency bands have meanwhile been allocated 

for the purpose of satellite communication as well. Generally, the require

ments in these frequency bands are more or less similar to those at 4 and 6 

GHz. An exception has probably to be made as to the spurious radiation from 

the ground. At 4 GHz this contributes considerably to the antenna noise 

temperature, but at frequencies over 10 GHz the average sky temperature is 

higher, v~z. 20.5 Kat 12 GHz compared with 15.7 Kat 4 GHz [III], so that 

the contribution from the ground has less influence. Between 10 GHz and 100 

GHz there are a number of frequency bands, where the sky temperature is 

290 K [50], so that sidelobes and back radiation are less important in ~his 

respect. It must be pointed out, however, that in the future the near angle 

sidelobes of an antenna ground station for satellite communications may 

become critical if they point to closely spaced geostationary communication 

s~tellites • 

1.2. The antenna gain 

Two closely related definitions for the antenna gain are known [52]. 

The directive gain in a given direction 8,~ is defined as the ratio of the 

power p(e,~) in that direction per unit solid angle to the average power 

radiated per unit solid angle or 

= P(8,~) 

J?4iT 
(1.1) 

where e and ~ are spherical coordinates [Fig. 1.1.] and P
R 

the total power 

radiated by the antenna. The directivity of an antenna is its maximum 

directive gain. The power gain of an antenna in a specified direction 
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e,~ is 4lT times the ratio between the power P(e.~) in that direction per 

unit solid angle ·to the total power P
T 

accep.ted by the antenna or 

(I .2) 

In the direction of the maximum value the power gain is termed "maximum 

power gain". The radiation efficiency of an antenna is defined by 

Gr{e,~) 

Gi e,~) = (I .3) 

For many antennas the antenna dissipation losses may be neglected, giving 

a radiation efficiency of nearly 100 %. which explains the fact that the 

term antenna gain is used quite generally. As we concentrate in this 

work on reflector antennas only, it is useful to mention that, neglecting 

losses, the maximum gain of a uniformly illuminated. paraboloid reflector 

may be written as 

( 1.4) 

which is explained in any text on antennas [117, p.233]. 0 is the reflector 

diameter, A the wavelength. Generally, the maximum gain will not be 

obtained and "an efficiency factor n will have to be introduced so that 

lTD 2 
G = n{-) 

A 
(I .5) 

This factor, which is lower than 1, depends on a great number of different 

contributions, which has been discussed elsewhere [201. For the Intelsat 

systems, ICSC [37] has quoted the antenna gain for the 4-6 GHz band 

10 log G ~ 57 + 20 log t dB (1. 6) 

where f has to be expressed in GHz. This means that at 4 GHz G ~ 57 dB. 

A simple calculation shows that this antenna gain may be obtained with an 

antenna with n = 46%, if the diameter of the antenna is 25 m or more. No 

such specifications are known at this moment for frequencies above 10 GHz. 
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1.3. The antenna temperature 

As explained before, the antenna noise temperature is a very important 

feature in satellite communications, especially if satellites operate in 

the frequency band of 4 to 6 GHz. Special radio frequency components are 

now used, such as masers and cooled parametric amplifiers, which have 

reduced the receiver noise temperature in this frequency band to about 

5, to 20 K. In designing antenna~ for satellite communications great care 

has to be taken to keep the antenna noise temperature on the same level. 

An antenna receiving a signal in a frequency band of B hertz will also 

receive noise power in that band in accordance with the relation: 

N = k . TA . B , (I. 7) 

-23 
where k = Boltzmann's constant = 1.38.10 Joule/ K, and TA = the antenna 

temperature. Therefore,the noise power delivered to the antenna terminals 

is characterized by a number TA in degrees Kelvin. Apparently, the antenna 

noise power is calculated in the same way as the noise power of a resistor 

at T degrees Kelvin [52]. 

Noise power received by an antenna may be radiated by any hot body at all 

frequencies. The distribution of this energy as a function of the 

frequency for an ideal black body is given by Planck's radiation law and 

the approximation of Rayleigh-Jeans, which holds reasonably well at 

microwave frequencies. To derive an expression for the antenna temperature, 

discrete thermal sources are replaced by equivalent black bodies everywhere 

in the field of view of the antenna [49]. A single discrete source radiates 

thermal energy according to the Rayleigh-Jeans law through a small cone' 

of solid angle to all parts of the antenna. An integration has to be 

carried out over the whole antenna to find the total power available at 

its terminals from the single discrete source. A second integration has to 

be performed over the entire antenna pattern to add the contributions from 

all the discrete sources to the power at the antenna terminals. When the 

derivation is completed the equation for the noise temperature is: 

" 2" 

TA =.J- f f G(e,<I» T(e,<I» sine d<l> de , (1.8) 

o 0 
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where T(e,~) = distribution of the sky temperature,over all angles about 

the antenna and 

dQ = sine d~de , the element of solid angle 

If P(e,~) from Eq. 1.1 is substituted in Eq. 1.8 and if both P(e,~) and 

T( e,~) are constant within a small solid angle /§!, the noise contribution 

from that solid angle can be written as 

(1. 9) 

The term P(e,~). ~ Q/P
T 

can be considered as the total relative power 

radiated within the solid angle ~ Q in the direction (e,~) and presented 

as the coefficient B . • If the total antenna volume, 4~, is divided into 
1 

a number of solid angles having an average temperature of T i ' the antenna 

temperature will be 

n 

=~ (1.10) 

i =1 

where 

n 

L: Bi = 1 
1 =1 

(1.11) 

If for example, part of the radiation pattern of the antenna, comprising 1% 

of the total power, is pointed towards the direction of a full absorbing 

medium with a physical temperature of 300 K, the contribution of this 

quantity to the total noise temperature of the antenna will be 3 K [23]. 

As mentioned before, the leSe does not specify a certain antenna tempe

rature but a "figure of merit" or .quality factor for the whole antenna 

system. This "figure of merit" which is a measure of the signal to noise 

ratio, should be greater than 40.7 dB at 4 GHz at an elevation of the 

antenna main beam of 50 and measured at the input of the low noise 

receiver during dry and clear weather. The factor Ts represents here the 

total system noise temperature, thus 
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(I • I 2) 

where, Tc is the contribution of the microwaves components, receiver, etc. 

Most of the components contributing to this noise have been explained 

before [20]. 

z 
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Fig. 1.2 shows the possible contributions to the antenna temperature TA ' 

and Fig. 1.3 the sky temperature T(e,~) as a function of the frequency 

and the elevation angle of the antenna. This sky temperature is mostly 

independent of the azimuth angle ~ , so that calculations with T(e) 

are sufficient. It appears [Fig. 1.3] that 4 GHz is a well-chosen 

frequency for the purpose of satellite communication. At lOa elevation 

and at 4 GHz, T(e) is equal to IS K. If the main beam of the antenna 

points upwards at an elevation angle of lao and if this beam comprises 
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90% of all the energy in main beam and sidelobes, the contribution of 

the main beam to the total noise temperature TA = 0.9 x 15 K = 13.5 K. 

A great number of ground stations have been investigated [25] with respect 

to their gain and antenna noise temperature. Some of the properties of 

such antenna constructions will briefly be reviewed below and discussed 

more in detail in the following chapters. 

1.4. Some antenna constructions 

There are various approaches for satellite communication ground station 

antennas each having specific advantages and disadvantages. One of the first 

antennas which was used for a satellite communication ground station was a 

front-fed paraboloid installed at Goonhilly in 1963. This 

type of antenna has been known for many years and has been discussed 

thoroughly by Silver [108, p.415]. The antenna feed, horn of dipole, is 

located in the focus of the paraboloid. Only part of the power transmitted 

by the feed is captured by the paraboloid, concentrated and reradiated; 

that part which is not captured is lost and reduces the antenna efficiency 

[Fig. 1.4a and 1.4b]. The lost radiation, which is mostly called "spillover" 

should be minimized because it is directed to earth (T = 290 K) , and will, 

in cases where the antenna is used for reception purposes, contribute 

considerably to the antenna noise temperature. Spillover can be decreased 

if more energy radiated by the feed horn is concentrated on the paraboloid; 

.. wo~~~r-~~~:::[::==~----r---~r===:l::::=F::::~ 
~ 90 

Aperture efficiency "A _...:~::::~~~ 
for typical parabola _ 

"A x "s for typical parabola -1-__ -1 

~~--~--~--~~--7---~--~--~~--~--~ o ·2 ., ·6 ./1 ·/0 -/2 -" -/6 -//1 - edge illumination 

Fig. 1.5. Illumination and spitlover efficiency 

dB 
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however, such a solution meets .considerable objections. This can be seen 

from Fig. 1.4b, showing that the centre of the paraboloid is much better 

illuminated than the edge, decreasing the aperture efficiency. 

It has long been known [108, p.177] that a reflector antenna has maximum 

gain if the aperture of the antenna is uniformly illuminated at constant 

phase. If the illumination is different, the aperture efficiency will be 

lower than 100 %. 

The illumination efficiency could be increased if tapering towards the 

edge of the reflector is decreased; however, this would increase the 

spillover. If the aperture efficiency nA is multiplied by nS' being the 

spillover efficiency, one obtains: 

~ 2 J [Gf(ljJ)] ~ tan hdlji I 
o 

(1.13) 

where Gf(ljJ) is the gain pattern of a circularly symmetrical radiation 

pattern of a primary feed. Fig. 1.5 shows both nA and nS' as well as their 

product, as a function of the illumination taper towards the edge of the 

main reflector. It appears that this product is maximum at about -10 dB 

edge illumination. 

At Goonhilly [Fig. 1.6] difficulties as described above have indeed been 

met [16, 116]. 

Another practical disadvantage of this type of antenna is the location of 

part of the low noise receiver directly behind the feed in the focus of 

the antenna. It is possible to locate the receiver behind the reflector 

but in that case long transmission lines are required introducing in

tolerably high losses and noise contributions (0.1 dB loss is equal to 

an increase in noise of about 7 degrees K). This is the main disadvantage 

of the front-fed paraboloid; therefore, it is no longer used for satellite 

ground stations. The ground stations built in England afterwards use a 

different principle (Chapter 2 and 5). 

The first ground station in the USA was a large horn paraboloid antenna 

located in Andover, developed by the Bell Labs I48]. The first French 

station at Pleumeur Bodou has been built according to this principle, 

and is a true copy of the Andover station. The vast dimensions of this 

antenna are shown in Fig. 1.7. Although it has very good noise properties, 

it is for economical reasons that it is no longer built. 
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Fig. 1.6 The GoonhiZZy I ground station. 
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Nowadays, most ground stations are built in accordance with the modified 

cassegrain antenna [39,124]. In the future the open cassegrain antenna [67] 

may become popular. Therefore, we will study the properties of these 

antennas in detail. 

For this purpose, we introduce the classical cassegrain antenna in chapter 

2 and shall demonstrate the problems that arise with the blockage and 

diffraction of the subreflector. In chapter 3 the blockage efficiency of 

such double reflector antennas is investigated and calculations are carried 

out of the near-in sidelobes, taking into account the influence of the 

supports. Chapter 4 pays attention to the physical optics approximation 

[108, p.144], by which far angle sidelobes of reflector antennas may be 

calculated. The discussion comprises the validity of this method and the 

errors that may occur. Finally, Chapter 5 deals with modified cassegrain 

antennas and Chapter 6 with some aspects of offset paraboloid reflectors 

and open cassegrain antennas, with special regard to the cross

polarization properties. 
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2. THE CLASSICALCASSEGRAIN ANTENNA 

2.1. Introduction 

In 1672, the French optician Cassegrain invented a telescope consisting of 

two reflectors. This type has been used by astromoners for a long time, and 

even new telescopes are built according to the same principle [125]. The 

application of the cassegrain system to microwave antennas is, however, of 

only recent date [46]. 

The classical form of the system is shown in Fig.2.1. It employs a main 

dish, which is a paraboloid, and an auxiliary reflector or subdish with 

a hyperbolic contour. One of the foci PI is the real focal point of the 

system and is located near the main dish. The other focus, P2 , is a virtual 

focal point located at the focus of the paraboloid. If the primary feed is 

situated at the focus PI and the secondary reflector is illuminated, the 

waves are reflected in accordance with ray optics. On reaching the main dish, 

the waves are again reflected in accordance with ray optics, and because of 

the antenna geometry employed the rays emerge parallel, with a plane wave 

front, forming a collimated 'beam. 

Several ground stations have been constructed in accordance with this 

principle, e.g. Mill Village (Canada) and two Japanese stations [25].A 

variation of the cassegrain system is found in the first German ground 

station [Fig. 2.2.], where a horn paraboloid, also known by the name of 

Hogg horn, is used as a primary source [Fig. 2.3.]. The F/D ratio of the 

main reflector is only 0.26. The subreft'ecto~ is located near the aperture 

of the main reflector. It appears that the antenna system is very well 

protected against ground radiation resulting in a very low noise 
,0 

temperature; at an elevation angle of 7.5 , the contribution to the system 

noise temperature is only 7 Kat 4 GHz. Deep paraboloids are, however, 

more expensive than shallows ones. The subreflector is situated in the near 

field of the primary source. For this reason the shape of the subreflector 

needs to be a paraboloid. In this way it is possible to illuminate the 

subreflector over a wide frequency range and with little spillover. The 

equiphase plane of the horn paraboloid, which should be plane near the 

subreflector, shows errors near the edge of the subreflector so that 
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Fig. 2.1 Classical cQsssgrain reflector system 

0 
2 

P2 

r 

~ 

P, ~, V1 11 

F 

D=25m 

o =2.3m 

l.J-! 

I 

I 
D=1'.8m 

F/D=O.26 

6.4m 

.~.COLD" SKY 
REFLECTOR .-Ll--

SU~ 
. PILLOVER 

¥ 
FEED 

Fig. 2.4 
Noise aontributions by spillover 
trom a cassegl'ain antenna corrrpa:red 
with a front-fed paraboloid 

, 
11 

~2 p. 

Fig. 2.3 C~088-8ection of the 

first German ground station 

~ 
/f>fe~d 

a = antenna 
elevation 

spillover 



-15-

Fig. 2.2 The first German groundstation 

at Raisting. 
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corrections at the subreflector surface are required [118]. A disadvantage 

is the low illumination efficiency of the main reflector [119], which has 

been improved in the second German ground station [120]. 

If a comparison ~s made between a classical cassegrain antenna and a front

fed paraboloid, it appears that in the former the feed can be located much 

closer to the main reflector than in the latter. The feed lines can then be 

made much shorter, keeping the losses low. ~!oreover, feedhorn and low noise 

receiver can be reached much more conveniently for servicing purposes. 

The noise properties of the cassegrain antenna are also better than those 

of a front-fed paraboloid, since in the latter the greater part of the 

spillover is directed towards the 'hot' earth, while the cassegrain system 

has hardly such contribution. Thereis spillover round the edge of the sub

reflector of cassegrain antennas; however, the greater part of this spill

over is directed towards the cold sky [Fig.2.4.]. Further, the subreflector 

blockage causes sidelobe increase round the main lobe [31]. Spillover and 

blockage will therefore only contribute to the antenna noise temperature at 

very low elevation angles, while the front-fed paraboloid receives radiation 

from the ground at every elevation angle·. 

A disadvantage of the cassegrain system is the decrease in antenna efficiency 

by blockage and diffraction introduced by the subreflector. 

Diffraction occurs since the dimensions of the subreflector are not much 

larger than the wavelength. These effects cause a decrease in antenna 

efficiency. A recent investigation [21] has shown that the subreflector 

supports have also considerable contributions to the blockage. In the case 

row 

Os :=0,10 

Fig. 2.5 
Blockaae in a cassegra"~! Qrlt6'rma 1..J~·tl: 

un(-"or-:n aperture ~. Z lwrrinah' on 



-17-

of cassegrain antennas these supports have to be much thicker 'than those 

supporting a feed horn for front-fed paraboloids. Therefore, in front-fed 

paraboloids this effect may often be neglected. 

Fig. 2.5 shows in what way the aperture is blocked by a subreflector and 

its supports. The shadow of the supports has a peculiar form, which will 

be discussed in more detail in Ch,pter 3. 

Calculations [Chapter 3] will show that the losses caused by spherical 

wave shadows are larger than those of the subreflector only. In the present 

chapter we shall discuss some of the problems related to the subreflector 

blockage and diffraction, and investigate in particular in what way the 

antenna efficiency is influenced. 

2.2. Geometrical and optical relations 

For the purpose of deriving geometrical and optical relations in a casse

grain system, we have illustrated in Fig. 2.1 half a cross-section of this 

system. The other half has been omitted as the entire system is circularly 

symmetrical. 
. , 

The main dish is a paraboloid with the following equation in polar 

coordinates 

2F F (2.1) 
P2 = = • "I + COS1»2 cos 2 Hz 

where F represents the focal length of the paraboloid with the origin located 

in the focal point Pz of the paraboloid and 1»2 the polar angle.It is readily 

seen in Fig. 2.1 that 

sinljrz = r/pz , (2.2) 

r being the distance from the centre of the paraboloid's aperture to an 

arbitrary point in the aperture. Combining Eqs. 2.1 and 2.2 results in 

r = 2F tanhz , (2.3) 

If ~z represents the angular aperture of the paraboloid, Eq. 2.3 becomes 
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(Z.4) 

° being the diameter of the main reI lector-. 

The equations of .the hyperboloid in 'polar 'Conrdinate'S ma,y be 'e~ressed in 

two ways, depending on .the location of the :origin. ;1:f :ttiisis :s'i:tuated in 

Pz, which .is also one of the :foci of :the 'hypeibrilold, ewe :Iind 

PI = f(eZ - 1) (2 .. 5) 
2e(e cosljIz + 1) 

If, however, .the origin for describing .the 'hyperboloid ,is :located ,'in 'P!, 

being the second focus of the hyperboloid, 'lire .:find 

PI = 
~f(eZ- 1) 

Ze(-e COSh + 1) 

e being .the hyperboloid eccentricity. 

From Fig. 2.1 we find also 

and 

_ -f(ez - 1) 
r 2 ( 1).5 i'nljll S e -e COSljII + 

Ze(e cosljIz + 
sinljlz 

1) 

(Z.6) 

(Z.7) 

(2.8) 

Hannan 146] has indicated a relationship between ;,theangles .ljI.l ,and ·1jIz viz.: 

(2.9) 

The factor (e + 1)/ (e - I) represent,s the magnification :fac.tor·M of the 

cassegrain system. 

Another relation may be found directly from :Fig. '2.\1 

COt~1 + cot~z = 2f/O
s 

(2.10) 

where ~I is the maximum angle from 'the horizontal 'axis ·.to :the .ray'from the 

feed and Os 

Potter [87] 

the diameter of the subreflector.. 

has found ,a relation to 'transfOTlJl:the;gain ,funetion ,of the 

loss less primary feed GI (ljII) into the .stibref1ectar:ga:in 'functionGz (ljIz) on 
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a geometrical optics basis: 

(2.11) 

where both G1(Wl) and Gz(wz) are circularly symmetrical. 

If Wl and wz are near to zero. we find by means of J!:q. 2.9 that Eq. 2.11 

becomes Gdl/1d = '12 G2 (1/12) • 

It is understood that the feed system comprising the feed horn and 

subreflector may be replaced by a point source at the focus of the main 

reflector with the gain function Gz(wz) = G1(Wl) sinzWl/sinzwz . 

The Eqs. 2.8 • 2.9 • and 2.11 are represented graphically by the figures 

2.6 • 2.7 and 2.8 respectively. 

2 . .0 
5.0' 6.0' 70' BO' 90' 

e 

1.5 

1.0~----------------------------
.0 1.0 Olf 2.0 

Fig. 2.6 
The hyve~boZoid e~aentricity as a funat~on 
of Os and f ~ith the anguZa~ apePtupe ~, 
as a papametep (Eq. 2.8) 



-20-

2.3. The antenna gain 

2.3.I.Calculations by the scalar aperture method 

Considering the scalar field of the radiating aperture, Silver [108" P .170] 

has presented an'equation for calculating the diffracted field, in a 

field point starting from the amplitude and phase distribution of the field 

over the aperture. 

Generally, the scalar diffracted field is represented by 

-"kR' If e
J 

"1-- .--Up(e.~) = - F(x,y) [(Jk +-) az .• aR, + Jkaz.,asl dxdy 
411 A R' R' (2.12) 

where a .a
R

, is the cosine of the angle between the normal to the aperture . Z 

and the a
R

, direction. 

The vector as is the unit vector along a ray. If the phase error over the 

aperture is small, the iiz.a
s 

term may be replaced by unity [108, p. 172]. 

Further k = 211/A, while e and ~ are spherical coordinates of a field 

point [Fig. 2.9]. 

If the field point is situated in the Fraunhofer or far zone region, 

Eq. 2.12 may be approximated by [108, p. 173]: 

U ( .I j -jkRj F( P e,4>v R: - e x,y) 
AR A 

dB 

-10 

~--

-I 5 L-_-

-20 

-25 

ejk sine(x cos4> + y sin4»dxdY 

1.7 

1.5 

1.3 

1.1 

Fig,. 2.8 
62:/6'1 as Q' function of I!J2 

~ith e as a paramete~ 

(2.13) 
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x 

P(x,y,z) 

Fig, 2.9·0 

The radiating aperture. 

~:""-+------_z 

y 

This equation applies in a small angular region about the Z-axis. 

Moreover, the following assumptions are required [84] 

(1) The field point is in the far zone as explained before 

(2) The aperture field is uniformly polarized 

(3) The aperture phase distribution must. be unif.orm. 

If the aperture is circular and its diameter is D, it is more convenient 

to use polar coordinates r,~' which are related to X,Y by X = r cos ~' and 

Y = r si n </>' •. 

Neglecting the phase term exp(-jkR) the field distribution over the 

aperture now becomes F(r,~') and Eq. 2.13 becomes 

211 ~D 

Up(e,~) "" 21 fF(r,$') ejkr sine cos(</> - </>' )rdrdf 
AR 0 10' . 

Generally, the aperture illumination does not depend on ~'. Since 

211 

211 Jo(kr sine) = jejkr sine cos($ - $' )d$' 

o 

(2.14) 

(2.15) 

the double integral of Eq. 2.14 may be reduced to the single integral 

iD 
Up(e) = 211j. fr=(r) J (kr sine) rdr 

AR ln' 0 o 
(2.16 ) 

If the aperture is illuminated uniformly, F(r) will be a constant and the 

integration results in 
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= jllD2 J1(U) -.--
>.R 2u 

Jo(u) and J1(U) being Bessel functions of zero and first order, and 

U = 110/>.. sin 8. 

As explained by Silver' [108, p.I77], the gain calcula'tion by means of 

Eq. 2.17 leads to 

This Jl(U)/U character of the radiation pattern is very well known in 

antenna engineering; the far field power pattern or field intensity is 

proportional to the square of the magnitude of the field" 

It is found that 

Apparently the far field scalar integral for the circular' aperture 

F'(u) = 211a 2 ~~(r) J(ur) rdr 

o 
, 

where a is the radius of the aperture, is of the form 

a 

f' (a) = /" X f(x) J,)ax) dx , 

o 

(2.17) 

which is the Hankel transform of order \) of the function f(x) [7,p.46]. 

More especially the far field patternF'(U)of a circular ,aperture is the 

Hankel transform of zero order of the aperture illumination F~r-) so that 

1 

F'(u) = [F(r) Jo(ur) rdr • 

o 
The inverse relationship becomes 

00 

F(r) = jF'(U) Jo(ur) udu • 

o 
showing that aperture illumination and far field pattern are related by a 

transform relationship. However, this pattern only applies very near the 
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main lobe of the antenna pattern, which according to Silver [108, p.193] is 

about e = 3A1D ,For the determination of the main lobe and the near 

sidelobes this simplified aperture method has become very popular and is 

easy to carry out. In most cases the aperture is not illuminated uniformly, 

but tapered towards the edge. This results in a reduction in gain , an 

increase in beamwidth of the mainlobe, and a decrease in the sidelobe 

level. A great number of investigators have used this method and have 

introduced various possible aperture distributions F(r,~'). As far as 

important to cassegrain antennas, these distributions will be mentioned 

further in this chapter or elsewhere. 

2.3.2. The scalar aperture method with gain functions 

The method described in the previous section has the disadvantage that it 

does not allow for the influence of the feed pattern with regard to the 

antenna performance. It will be understood that the feed pattern originates 

a certain field distribution across the aperture, and, moreover, that 

always part of the feed pattern will be ·lost as spillover along the 

subreflector. Therefore, we shall introduce gain functions of the feed 

Gf(S'~) into Eq. 2.16. 

If the feed is located in the focus of a paraboloid [Fig. 2.10], the 

field across ·the aperture [108, p. 419] is 

Substituting Eq. 2.18 in Eq. 2.16 leads to 

iD ~ 
U (e) = 21Tj j[2()J/£)i P /411] i [Gf(E;,~)] 
P ~ T p 

Jo(kr sine) rdr 

o 

(2.18) 

(2.19) 

In these equations p is given by Eq. 2.1. From the geometry in Fig. 2.1 

we know that r " 2F tan !1jJ, D " 4F tan ~'¥' and dr " FdljJ/cOS2~1jJ " pdljJ. 

Therefore, 

~ 

[2()J/E)i PTJ41!]i~[Gf(~.~)]i 2F tanilJ!. 

o .Jo(k.2F tanilJ! sine) d~ (2.20) 
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and, if we assume that the feed pattern is no .function of .~., 

'!' 

= j~~ [2(\l/£ji Pr/41f]i cot~'!' ![Gf(tjJ)]i tani"' • 

. O. Jo (1f~ coti'!' taniq,sine) dtjJ 

(2.21 ) 
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The maximum field intensity for e = 0 is now found to be 

. 'l' 
. 1 1 D f 1 Up(O} = ~[2(~/£}2 PT/4rrJ2 'J). cot~'l' [Gf (1jJ}J2 tanH d1jJ 

. 0 
(2.22) 

The power radiated per unit solid angle in the forward direction is noW 

given by [108, p.177] 

and the antenna gain by 

G = 4rr PiO) 
PT 

(2.23j 

(2.24) 

An equation for the antenna gain is noW found to be identical to that of 

Silver [108, p.425], 

'I' 

G = (rr~}2 cot2~'I' 1 ~Gf(1jJ}l~ tan!1jJ d1jJ 12 

o 
(2.25) 

The factor (rrD/).)2 is the gain of a uniformly illuminated constant phase 

aperture, the remainder is the antenna efficiency nl 

(2.26) 

Eq. 2.22 may also be used successfully for calculations of the forward 

gain and near sidelobes of a cassegrain antenna. In that case we have to 

replace 1jJ by 1jJ2' 'I' by '¥.? and Gf by G2 • 

As demonstrated by Hannan [46], the cassegrain system consisting of main 

and subdish may be replaced by an equivalent focussing surface with a 

parabolic contour. This equivalent parabola has a focal length equal to 

the distance from its vertex to the real focal point [Fig. 2.11]. 

Apparently we may replace the cassegrain antenna by a "normal" front-fed 

paraboloid having a focal length 

F* = F Lt.l -_ r·1F, 
e - 1 

(2.27) 

explaining the term magnificator ratio M. 

Substituting Eqs. 2.11 and 2.9 in Eq. 2.21, we obtain, at unit distance 
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0/1 

Up(O) = j[2(\l/e:)! PT/4n]! nDIA COtio/l ![G1(ljI{)]! Jot-D/" cotl~l tanhl' 

o 
• sine) tanih dljll (2.28) 

whose maximum intensity for e = 0 is 

Similarly to Eq. 2.26 we find [Appendix 2.1] 

~l 

111 = cot2~'l'l \ j[Gdljlr)]! tanhl dljll \2 

o 

(2.29) 

(2.30) 

Silver [108, p. 426] has published a graph of Eq. 2.26 using feed patterns 

defined by 

Gf(ljI) = 2(n + 1) cosnljl 

= 0 (2.31) 

for values of n between 2 and 8. In cassegrain antennas the angular 

aperture of the subreflector is much smaller than that of a front-fed 

paraboloid. Consequently, the subreflector has to be illuminated by a 

narrower beam, resulting in far higher values of n in Eq. 2.31. In Fig. 

2.12, Eq. 2.30 is graphically represented for two values of 11 higher 

than 20. It appears that the maximum efficiency is of the same order as 

that of Silver found for lower values of n. 

If blockage and diffraction of the subreflector have to be taken into 

account, Eqs. 2.29 and 2.30 will have to be modified, which will 

decrease antenna gain and efficiency. 

2.4. Factotsdecteasingthe'antertrta gain 

2.4.1. 'Subteflect6t blockage 

As will be explained in more detail in Chapter 3, the caasegrain antenna 

system has a serious limitation with regard to aperture blockage by 
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subreflector and subreflector supports. In this section we shall only pay 

attention to the contribution of the subreflector blockage to the decrease 

in antenna gain and we shall calculate this using gain functions discussed 

in Sec. 2.3.2. A more detailed description of aperture blockage calculated 

by means of the scalar aperture method is found in Chapter 3. 

If the aperture of a circularly symmetrical antenna is illuminated 

uniformly in phase and amplitude, the generalized secondary circularly 

symmetrical pattern near the main axis [108, p.1941 becomes 

g(u) 
rr02 

--- J1(U) 

2 U 
(2.32 ) 

where o is the diameter of the aperture, J1(u) a Bessel function of the 

first order, and 

u = rr~ sine (2.33) 

The angle e constitutes part of a spherical coordinate system [Fig. 1.1.] 

and for e = 0 the position of the antenna axis is found. The pattern is 

independent of $. Silver [108, p. 190-1921 assumed that Over the exposed 

area the presence of an obstacle would not alter the amplitude distribution 

F(r,$') [Fig. 2.91, which would exist in its absence, therefore, the 

obstacle can be regarded as producing a field equal in amplitude but 1800 

out of phase with the original field distribution over the area it covers. 

In this way zero illumination is obtained over the blocked parts of the 

aperture. This principle is often called the "zero field concept". 

Therefore, if the aperture is blocked by a subreflector with a diameter 

Os in a cassegrain system, the generat"iz"ed circularly symmetrical pattern 

of this subreflector may be represented by 

where 

g'(u') = 
rrD 2 

S Jdu' ) 

2 u' 

u' = rrD /1. sine s 

The modified pattern is then 
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gt(e) = g(e) - g'(e) (2.34) 

This principle will be used to investigate the influence of the blocking 

obstacles within a cassegrain antenna system on the side lobes of the 

secondary pattern. This means that the contribution of the subreflector 

is found by subtracting the aperture field between 0 and !Ds from the 

original field [Fig. 2.13]. 

Apparently all radiation between 0 < ljJ2 < '!' B from the feed is blocked and 

scattered. Using the same constants as in Sec. 2.3, the pattern to be 

subtracted from the main pattern is 

UB(e) = j [2(~/e)i PT/4~]i.~Ds cotio/B f[~:(ljJ2)]i Jo(~ cotio/Btani~2 
I , A A 

. constant 0 

.sine) tani~2 d~2 (2.35) 

In the main direction (e = O)we obtain 

UB(O) = constant ~Ds cotio/Bl[::(~2)]i 
. A :) 

(2.36 ) 

In accordance with the zero field concept, the total field in the main 

direction is now expressed by 

Utot = Up - UB 

or by Eq. 2.29 

Utot • """,,, .~. [ ,ot 

and the antenna gain by 

(2.37) 

(2.38) 

(2.39 ) 
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or in terms of relative blockage efficiency (40), [Ch.3], 

nB I D 1'1'B 2 
~ = 1 - D "nl coti'l'B 0[G2(~2)]i tani~2 d~21 

where G1(h) and G2(~2) are related by Eq. 2.11. 

(2.40) 

The relative blockage coefficient as a function of the edge illumination 

is shown in Fig. 2.14. 

1.00 
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0.90 

-10 -15 -20 
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Fig. 2.14. Retative };!ockage and diff'Mation e.f.;:Oi~e'/1CY 0.-:" J 

the subreflector as a function of the edge illu
mination of the subreflector; D = 33 .. ~ n = gO, 
If' - 75° S 2 -

2.4.2. Diffraction 

2.4.2.1 Diffraction'phenomena introduced by the subreflector 

The cassegrain system was originally designed for use at optical frequencies. 

At radiofrequencies however, the dimensions of the subreflector are not 

always large compared with the wavelength, resulting in diffraction which 

cannot be explained by geometrical optics. This means that. not all the power 

reflected by the aubreflector is captured by the main reflector, so that some 

power is lost. The result is that not only does the antenna efficiency de-
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crease, but also the power which is scattered contributes to higher sidelobes. 

Several handbooks are available [4, Ch. 8] which treat diffraction effects 

in detail. We would mention here the approximation which can be obtained 

by using the principle of stationary phase [108, p. 119]. By this principle 

it was found that only stationary phase areas yield contributions to the 

electric field, while contributions of other parts of the surface are 

negligible. 

The principle of stationary phase has been applied by Gillitzer [40], who 

has found that the field reflected from the sub reflector is partly 

characterized by small oscillations which can be described by Fresnel 

integrals. Near the edge of the subreflector, however, the field decreases 

monotonically and reaches a value of -6 dB at the edge of the subreflector 

in the direction of the angular aperture ¥2 (Fig. 2.15). If the angle at 

which the monotonic decrease towards the edge starts is called ¥O' (Fig. 

2.16), Gillitzer [40] found that 

(2.41) 

We shall now use these results to determine the decrease in antenna gain by 

the diffraction phenomena of the subreflector. For that purpose we 

approximate the field reflected by the subreflector as shown in Fig. 2.15. 

Therefore, we split the gain function G'(¥2l of this field into two parts: 

for 0 < ~2 < ¥O (2.42) 

and 

(2.43) 

The field expressed by Eq. 2.42 is determinated by geometrical optics and if 

Gl(~l) is known, it can easily be found by means of Eq. 2.11. 

The field expressed by Eq. 2.43 demonstrates the monotonic decrease in the 

amplitude of the reflected wave near the edge of the subreflector. As the 

fieldstrength at the edge reaches a.value of -6dB, G'(~2) becomes 

O.25xIG2(~2) for ~2 ;, ¥2 and, in consequence, 
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(2.44) 

The value of -6 dB has also. been reported by Potter [88] and by Rusch [96]. 

The field obtained by the stationary phase method as described above yields 

good results for the capturing area of the main reflector. For values 

~2 > '1'2' Eq. 2.43 becomes rapidly very inaccurate. If the radiation pattern 

has to be known in ·this area as well, other methods are in favour [96]. 

These calculations are far more accurate compared with the stationary phase 

method, although under certain circumstances errors may be made. In chapter 

4 this subject will be discussed in detail. If we now want to calculate the 

decrease in antenna gain we have to correct Eq. 2.21 in the interval 

'I'D < ~2 < '1'2· 

Thus, the correction term is 



-33-

'l'z , 

Uo(el = constant nO/A'cot2'1'z ~Gz(~zl]i [1 - e-Y(~z - 'I'D) ] • 

'I'D . 

. Jo(nO/A cot2'1'z tan2~2 sina) tanl~zd~z 
(2.45) 

In the forward. direction, where a = O. we obtain 

UO(O) = constant nOlA cot2'1'Z~[;~{~z}]2 [1 - e-Y(Wz - 'I'D}] tan2WZ do/z 

'I'D {2.46} 

2.4.2.2. The diffraction efficiency of the subreflector 

Let nl be the efficiency of a paraboloid reflector antenna (Eq. 2.26); the 

relative diffraction efficiency of a cassegrain antenna then becomes 

(2.47) 

where Uo(Ol is found from Eq. 2.46 and Up{Ol from Eq. 2.22. [40]. 

As the integration region is limited, Eq. 2.46 can be simplified by using 

{2.4S} 

which results after some calculation in 

, } Asin'l'z 2 Uo{O} = 0.1S constant. nOlA [GZ{'I'Z] 
Os 

{2.49} 

Substitution of Eq. 2.22 and Eq. 2.49 in Eq. 2.47 yields 

{2:50} 

where 
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(2.51) 

The relative diffraction efficiency as a function of the edge illumination 

is shown in Fig. 2.14. Fig. 2.17 shows 

as a function of ~2' keeping Ds = 33A, 

-10 dB. 
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Fig. 2.17. The peLative diffraction efficiency as a function 
of the anguLar aperture. 
Ds = 33 A~ edge illumination subreJlector -10 dB, n = 60. 

2.4.2.3. Diffraction and scattering ofthesubreflector supports 

Not only the subref1ector but also the subreflector supports will scatter 

power in various directions which are difficult to prodict. Presenting the 

first German ground station, Trentini et al. [119] also 

discussed the influence of subref1ector and supports ·on the antenna 

efficiency and sidelobes. 

The amplitude of the first near side lobe has been estimated for uniform 

illumination and for the aperture illumination F{r) = 1 - r2. Also some 

estimates have been carried out on farther sidelobes. However, Trentini has 

carried out his calculations for 0 <8 < 50. As he has used the scalar 

aperture method [Sec. 2.2.1], which is considered to give only reliable 

results for 0 < 8 < 3A/D [108, p. 193], his results are disputable since 

the diameter of the main reflector is 350 A. 

Wested [123) in his study on blockage also places some remarks on diffrac

tion in a cassegrain system and states that diffraction by the spars is 
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unimportant to the calculation of the blockage effect. He recommends, 

however, to use deep reflectors to protect the antenna against ground noise. 

Experimental work has been reported by Sheftman [lOS] and Hartsuijker, Baars 

et al. [47] but predicting the entire diagram caused by struts does not 

seem feasible. Apparently, here lies a problem for further study. Some 

progress has been made in the calculation of the near side lobes in a 

cassegrain system, which we will, discuss in chapter 3. 

2.4.3. The antenna gain as a function of the system parameters 

Using the equations 2.22, 2.36 and 2.46 it is possible to obtain the effects 

of blockage and diffraction of a subreflector in one equation: 

'¥l '¥B 

G
t 

= (~D/A)2Icot~'¥1 ~[Gl(~l)]~tan~~l d~l - Ds/D cot~'¥B~[G2(~2)]~ 
. 0 '¥z 0 

.tanH2d~2 - cot2'¥2 f[G2(~2)]~ [1 - e-Y(~2 - 'l'D)] tan~~2 12 

'¥D (2.52) 

In Eq. 2.52 a large number of parameters is present influencing the gain 

of a cassegrain system. Calculations have been carried out to find out the 

relationship between the antenna efficiency nand 

( I ) the ratio· F ID or angular aperture 'l'2; 

(2) the diameter of the subreflector D . 
s' 

(3) the tapering towards the edge of the subreflector; 

(4 ) the radiation pattern of the primary feed Gd~rl. 

The feed patterns considered are cosine patterns as explained by Eq. 2.31. 

These theoretical feed patterns are very similar to the main lobes of most 

available feeds. The chosen values of n are 60, 40, 24, 16, 12 and 10; the 

higher the value of n the narrower the main lobe of the feed pattern. The 

edge tapers -6 dB, -8 dB, -10 dB, -15 dB, -20 dB and the diameters of the 

subreflector 21A, 24A, 27A, 30A, 33A, and 36A. The diameter of the main 

reflector was kept constant in all calculations (D = 330A). 
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2.5. Results and conclusions 

The results of these investigations have been laid down 'in a number of 

figures (Figs. 2.18 to 2.21). Some very important conclusions can be drawn 

from them. Using the cosine shaped feed pattern, it appears that the 

maximum antenna efficiency that can be reached is about 74%. Comparing 

this value with Silver [108, p. 426] who used similar feed patterns as 

primary radiators for front-fed paraboloids and with Fig. 2.12, the 

antenna efficiency is about 8% lower. The difference is entirely 

determined by the influence of the subreflector. Figs. 2.18 and 2.19 

answer the question if the antenna efficiency is a function of the 

angular aperture ~2. It is clear from these figures that there is 

practically no relationship. Using a subre~lector diameter of 33A, it 

appears that the highest efficiencies are found at FlO = 0.25. the 

efficiency decrea,sing very slowly at increasing FlO. As the curves are 

very close to each other, only curves for FlO = 0.25 and FlO = 0.48 are 

given. The slight dependance of the final result On 'FlO may be explained 

by the behaviour of the diffraction efficiency as a function of the 

angular aperture ~2. A maximum of 74.2% was found at an FlO ratio of 0.25, 

an edge illumination of -10.5 dB, and a subreflector diameter of 24A. The 

maximum efficiency at an F/D ratio of 0.48 was 73.3% at an edge illumi-

nation of -10 dB and a subreflector diameter of 27A. Although the 

differences are very small, a'low FlO ratio seems somewhat favourable. Fig. 

2.20 shows the maximum efficiency that can be reached with different 

primary gain functions. These curves show that the primary feed pattern 

G1(¢1) is not critical, because for practically all values of n from 10 to 

60 in G1(¢1) = 2(n+1) cosn¢1' an efficiency of about 74% was reached 

although under slightly different circumstances. such as edge illumination 

and subreflector diameters. 

In Fig. 2.21, using the primary gain function mentioned above with different 

values of n as parameter, the efficiency is found as a function of the sub

reflector diameter. It appears that an optimum value of the efficiency can 

be reached. A maximum may be expected since the losses due to the blocking 

increase at increasing Os' while conversely, the losses caused by 

diffraction decrease if Os is increased. The maximum in the curves, however, 

is very flat; therefore. the choice of diameter Os of the subreflector often 

depends on other factors such as the influence of the noise temperature. 
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Appendix 2.1. Derivation of Eg. 2.30 from Eg. 2.26 
.. ":,' 

From tanh2 = M tanhl, where M = (e ,+ 

~d~2/cos2'~2 = iMd~l/COs2i~1 or 

1)/(e - 1) we tiM. ;<> ,., 

As, generally 

tan iz = (sin z)/(1 t cos z) 

it follows that 

M 1 + COS~2 = sin~, 
1 + COS~l sin~l 

Combining Egs. 1 and 3 we obtain 

d~2 = s~n~2 d~l 
slnh 

From Sec. 2.3.2. we know that 

'1', 

nl= cotZ!'I'211[Gd~z)]! tanH2 dwzl z 

. 0 

and 

. ,,"11 

If we substitute Egs. 2.9.2.11 and 4 in Eg. 2.26, we·obtain 

f
'j/! 

[G (~ )]l s~n~l M tani1/l 5~nt~ dljl I' 
1 1 51n1/l2 1 51n.1 1 

o 
which is identical with Eg. 2.30. 

(1 ) 

(2) 

(3) 

(4) 

(2.26) 

(2.11) 
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3. APERTURE BLOCKAGE IN DUAL REFLECTOR ANTENNA SYSTEMS 

3.1. Introduction 

A limitation of most double reflector antennas, such as cassegrain antennas, 

is the blockage of the aperture by the subdish and the support legs. 

Usually, the shadow of the obstacles on the aperture is determined by ray 

optics. The optical shadows must be weighted by the aperture illumination 

to calculate the influence on antenna efficiency and sidelobes. 

However, as Ruze [101] has already pointed out, the radio frequency shadows 

are wider than optical shadows; therefore, optical shadows form only an 

approximation. The problem may be solved if we know in what way the field 

from the subreflector is scattered by the support legs as regards amplitude 

and phase, as well as the results of this on the currents induced on the 

main reflector. 

Then by using the current distribution or aperture field methods [108,p.144] 

the secondary pattern of the reflector may be calculated. However, there is 

interaction between obstacle and source system, resulting in multiple 

scattering processes [I08,p.129]. This effect may not be neglected here, 

because the support legs extend from the subreflector to the surface of 

the main reflector. A calculation of the current distribution over the 

main reflector seems very difficult. An approach may be found in the 

geometrical optical . theory of' diffraction [60]. Therefore, only 

approximate methods and experiments will give an answer relating to the 

influence of the support legs on the radiation pattern. It appears that, in 

accordance with Trentini [119], Kay [59], and Mei and van Bladel [79], 

diffraction may be neglected and that geometrical optical methods can be 

used very well, providing the thickness of the support legs 2w > A. 

Recently, Cornbleet [14] has carried out calculations of the radiation 

pattern of apertures with structural shadows; however, his shadows are not 

ve.ry realistic for cassegrain antennas. 

It is common knowledge that in a cassegrain system plane and spherical 

wavefronts are found. It is also known that shadows due to obstacles depend 

on the type of wavefront. Shadows in the aperture result in the following 

effects: 

(a) Decrease in antenna gain; this effe~t can be expressed by the relative 

blockage coefficient nB/no where no is the efficiency of the unblocked 

aperture. 
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(b) Increase in the sidelobes of the directive gain pattern; different 

contributions are introduced by the obstacles. Near sidelobes that 

are to change, are investigated in this chapter. The contribution 

by the subreflector will be circularly symmetrical, while that by 

the subreflector support legs is more typically the radiation of a 

rectangular aperture distribution. There is also wide-angle scatter

ing due to the power blocked by the obstacles. No calculations on 

this phenomenon will be included. 

(c) If siJelobes are directed towards sources with high noise temperature, 

increase in the noise temperature of the antenna will be noticed 

because energy is spread from the main beam to the sidelobes. 

It is the purpose of this chapter to introduce a method of calculating the 

influence of blockage on the near sidelobes, as illustrated by several 

examples, and to discuss several methods of blockage calculation. 

The influence of the implantation and thickness of the supports with various 

edge illuminations will be discussed. Blockage will be investigated theo

retically and possibilities of obtaining.maximum blockage efficiency will 

be described. 

3.2 Influence of obstructions.on the directive gain pattern 

Generally, [108, p.173] the relative far field directive gain pattern of a 

rectangular aperture near the main axis [Fig. 3.IJ may be represented by 

the scalar equation: 

g(6.~) = Af(x.y) ejk sin6(XCOS~ + ysin~) dxdy 

and that of a circular aperture [108, p.192] by 

g(6.~) = ~F(r.~,) ejkr sins cos(~ - ~') rdr d~' 
A 

If we want to know the true field pattern g(8,<I». we first 

(3.1) 

(3.2) 

calculate go(6.~}. being the pattern of the unblocked aperture and subtract 

from it the contribution gl(e.~) of the subreflector and the contribution; 

92(6.~) and g,(S,~). being shadows of the supports caused by plane and 
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spherical waves, respectively. In this way the zero-field concept as 

discussed in Chapter 2 is met. We shall use the aperture illumination 

function 

F(r) = 1 - ar2 , 0 ~ r ~ ~D, 0 ~ a ~ (2/D)2 (3.3a) 

which is circularly symmetrical and shown in Fig. 3.2. 

The directive gain pattern of the unblocked circular aperture now becomes 

~Df 2rr 
go(e,~) = ~rdr ejkrsinecos(¢ - ¢1)d¢1 -

o 0 

~D 2rr -

a f3d{ejkrSineCOS(¢ - ¢' )d¢1 

o 0 

or 

Jo(u), J1 (u) and J2 (u), being Bessel functions of zero; first and second 

order, and U = ~kDsin e. 

As, in accordance with Abramowitch [I, p.390] 

and 

1im~=0.5 
u 

u->O 

lim ~ = 0.125 , 
u 

u...o 
in the main direction, where e = 0, Eq. 3.5 becomes 

(3.4) 

(3.5) 

(3.6 ) 

(3.7) 

This value for go(O} will be employed in the following as reference value 

for the relative pattern of the blocked parts of the aperture. 

3.2.1. Contribution by the subreflector 

The calculation of the contribution of the subreflector to the radiation 

pattern is carried out in a similar way as that of go(e,~). This contribution 

is circularly symmetrical, therefore, 
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(3.8) 

where u' = ~kOs sin e. 

On the main axis e = 0 we find 

(3.9) 

Similarly to Eq. 3.5, Eq. 3.S is independent of ¢. 

The results of this section are similar to those obtained in Sec. 2.4.1, 

because the aperture-field distribution F(r,¢') is related to the primary 

pattern of an antenna feed by means of Eq. 2.1S. A rapid check may be carried 

out by introducing uniform illumination [IDS, p.433] over the aperture by 

taking a = 0 in Eq. 3.9 and 

in Eq. 2.36. 

3.2.2. Contribution by the supports due to plane waves 

The shadows in the aperture of the supports, resulting from the inter

ception of plane waves, have a rectangular shape [Fig. 3.3]. 

(3.10) 

To calculate the contribution of these shadows to the total directive gain 

pattern, we shall use Eq. 3.1, while it is convenient to express Eq. 3.3a 

in rectangular coordinates: 

F(x,y) = 1 - ax2 - ay2, 0 <X< ~O, 0 < y < ~O, 0" a ~ (2/0)2 (3.3b) 

The contribution is then 

92(e,4) = ~~(l - ax2 - ay2) ejksine(xcos¢ + ysin¢) dxdy (3.11) 

It is convenient to introduce the new variables u = ks;n9sin~ and 

v = ks;n9cos~ . 
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Eq. 3.11 then becomes 

92(U,V) = 92'(U,V) - 9z"(U,V) - 9z"'(U,V). (3.12) 

After introducing the integration limits we obtain 

9z'(U,V) 

9z"(U,V) 

+w +ro 

+fe jUY d{/aXZejVXdX 

-w -ro 

(3.13b) 

9z"'(U,V) 

+iOs +w +ro 

-~y2ejUYd~+fay2ejUYdy[~jVXdX -

-~OS -w -ro 

+;05 

-fejVXdX] (3.13c) 

-lOs 

Carrying out the integration leads to long expressions which have been 

discussed elsewhere [28]. 

If uniform aperture distribution is used (a = 0), only Eq. 3.13a is left. In 

the direction of the main lobe, where e = 0, we find if a ; 0 

(3.14) 
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3.2.3. Contribution by the supports due to spherical waves 

As observed before [22, 123], the shadows from the supports due to spherical 

waves are very similar to trapezoids. We shall introduce this, approximation 

because it reduces calculation work and makes possible a convenient solution 

of the integrals. From Fig. 3.3 it is found that for the trapezoid lying in 

the area indicated by ro < X < ~D, Y as a function of X is given by 

y(x> 0) = SX + w - ero = eX + Y' with S = w(D/Ds - l)/(~D - ro) and Y = w - Sre 

For -~D < X < -ro we find Y(X<O) = -SX + y. 

For the trapezoid parts along the y axis, X is written as a function of y: 

x(y>O) = By + Y, x(y<O) = -SY + y. If u = ksin8sin¢ and 

v = ksin8cos¢ , the complete expression for the contribution of spherical 

waves is then () 

f
+y X>O ~D 

9g (U,V) = 1(1 
-y(x>O) 0 

- aX2 - ayz) ejvx e
juy dxdy + 

+y(x<O) -ro 

1 J (1 
-y(x<O) -~D 

_ axz _ ayz) e
jvx 

e
juy dxdy + 

1 
+X(Y>O)f~D 

+ (1 

-x(y>O) ro 

_ ax2 _ ay2) e
jvx 

e
juy dxdy + 

1
+X(y<0) -ro 

+ f (1 - ax
2 

- ay2) e
jvx 

e
juy dxdy 

-x(y<O) -~D 

(3.15) 

This integration may be carried out although it is very time consuming [28]. 

For 8 = 0 we find in the main direction 

93(0,0) = 8y(1 -1ay2)(~D - ro) + 4S(1 - ayZ)(iD2 - ro2) -taY(S2 + 1) 

(3.16) 

3.2.4. Total directive gain pattern 9t(e,4» 

The expressions found above enable us to find the total pattern 9
t

(e,4» in 

the Fraunhofer zone in accordance with the "zero field concept". As has 
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been explained before [2], the results only apply f.or the main lobe and the 

near sidelobes. We shall find that 

(3.17) 

where go(6) represents the pattern of an unblocked aperture given by 

Eq. 3.4; gd6) the contribution 'to the pattern by the subreflector [Eq.3.8]; 

g2(U,V) the contribution to the pattern due to plane wave shadows [Eq.3.13]; 

and 9s(U,V) the contribution to the pattern due to spherical wave shadows 

[Eq.3.15]. 

In this way the radiation pattern of a cassegrain antenna near the main lobe 

may be found as a function of several variables, such as the edge 

illumination of the main reflector. the thickness of the subreflector 

supports, the rat10 Ds/D, the Flu rat1o, and the strut implantation. 

Some examples, particularly for satellite communication ground station 

antennas are shown in Figs. 3.4 and 3.5 with uniform illumination (a = 0), 

2w = 2A, and ~ = 0 or $ = 45°. The position of the first, second, and 

third sidelobes and their intensity with respect to that of the main lobe 

are shown. Figs. 3.4a and 3.5a show main and sidelobes' of the blocked and 

unblocked aperture in dB, and Figs. 3.4b and 3.Sb the relative pattern of 

the contributors to the blockage. 

The main part of the results for other edge illuminations or different 

widths of the supports is shown in two tables, one for ~ = 0° and one for 

$ = 45° [Tables 3.1 and 3.2]. 

Table 3.1 D = 330>-; D/Ds = 10; r o = 1/3 D; ~ = 0°; 

a1 = 0 (uniform illumination) 

main lobe 1st si de lobe 2
nd 

si de 

2w e in 0 dB e in 0 dB e in 0 

Go 0 0.00 0.00 0.2B3 -17.6 0.465 

G
t 1>- 0.00 -0.26 0.2B6 -16.5 0.469 

G
t 

2>- 0.00 -0.41 0.2BB -16.1 0.473 

G
t 

3>- 0.00 -0.59 0.290 -15.7 0.477 

G
t 

4>- 0.00 -0.76 0.293 -15.3 0.4B2 

G
t 

5>-
, 

0.00 -0.94 0.296 -14.9 0.4B7 

lobe 3
rd 

side lobe 

dB e in 0 dB 

-23.B 0.642 -2B.0 

-27.0 0.647 -25.2 

-29.2 0.652 -24.2 

-31.9 0.657 -23.4 

-35.3 0.662 -22.8 

-39.B 0.667 -22.3 
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al = 0.7 (edge illumination -10dB) 

main lobe 1
st 

si delobe 2nd sidelobe 3
rd 

sidelobe 

2w e in 0 dB e in 0 dB e in 0 dB e in 0 dB 

Go 0.00 0.00 0.314 -22.4 0.489 -29.6 0.662 -34.1 

G
t 

II. 0.00 -0.28 0.316 -20.2 0.494 -38.6 0.666 -28.3 

G
t 

SA 0.00 -0.86 0.324 ' -17.8 0.690 -24.4 

al = 0.9 (edge illumination -20dB) 

Go - 0.00 0.00 0.336 -24.3 0.515 -32.8 0.688 -38.3 

Gt 1>. 0.00 -0.29 . 0.338 -21.3 0.521 -64.8 0.693 -29.7 

Gt SA 0.00 -0.82 0.345 -18.8 0.720 -25.3 

Table 3.2 0= 3331.' % = 10' 
, 5 ' 

r = 1/30' 
o ' ~ = 45 0 

al = 0 (uniform illumination) 

main lobe 1 st sidelobe 2
nd 

sidelobe 3rd si de lobe 

e in 0 dB e in 0 dB e in 0 dB in 0 dB 

Go - 0.00 0.00 0.283 -17.6 0.465 -23.8 0.642 -28.0 

Gt II. 0.00 -0.25 0.283 -17.8 0.460 -25.8 0.635 -25.4 

Gt 21. 0.00 -0.42 0.283 -18.7 0.456 -26.5 0.629 -24.5 

Gt 31. 0.00 -0.59 0.283 -19.7 0.449 -27.0 0.624 -23.7 

Gt 41. 0.00 -0.76 0.283 -20.8 0.443 -27.3 0.620 -23.0 

G
t 

SA 0.00 -0.94 0.283 -22.0 0.438 -27.4 0.616 -22.3 

a1 = 0.7 (edge illumination -10dB) 

Go 0.00 0.00 0.314 -22.4 0.489 -29.6 0.662 -34.1 

Gt II. 0.00 -0.28 0.314 -21.7 0.484 -35.7 0.651 -29.1 

Gt SA 0.00 -0.86 0.317 -26.0 0.460 -39.7 0.631 -26.5 

al = 0.9 (edge illumination -20dB) 

Go 0.00 0.00 0.336 -24.3 0.515 -32.8 0.688 -38.3 
Gt 1>. 0.00 -0.29 0.337 -22.8 0.511 -46.9 0.676 -31.1 
G
t SA 0.00 -0.82 0.340 -26.3 0.651 -29.3 
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3.2.5. Results and conclusions 

Studying Fig. 3.4 in the ~ = 0 plane, it appears that 91(~) varies only 

little within the region under discussion. Comparison of 91(e) with 90(e) 

shows that 91(e) relative to 91(0) has a similar pattern as 90(e) relative 

to 90(0); however, the e scale of 91(8) has been extended by a factor 

nearly 10. This is due to the fact that the relation D/Ds = 10 has been 

used and that sin e ~ 8. 

The contributions of 92(U,V) and 93(U,V) in the ~ = 0 plane [Fig. 3.4] 

are positive within the entire region under discussion. This fact is 

explained by considering that the contributions of an array of two supports 

located in the ~ = 900 plane to the final pattern are almost constant, and 

that those in the ~ = 00 plane are alternating but not in such a way that 

the amplitude of 92 plus 93 becomes negative. 

The situation in the ~ = 450 plane [Fig. 3.5] differs entirely from that in 

the ~ = 00 plane because now the amplitudes of the patterns 92 and 93 are 

alternatively positive and negative. This is due to the fact that the 

supports are located symmetrically round· the ~ = 450 plane. 

This phenomenon is noticed in all investigations independent of the edge 

illumination and of the width of the struts. 

If we study the results from tables 3.1 and 3.2, it appears that the peak 

intensity of the main lobe of a blocked aperture is somewhat less than 

that of an unblocked aperture. In the case of ~ = 0, the intensity of 

the first sidelobe! increases with increasing width of the supports. 

This is noticed for all edge illuminations. However, if ~ = 450, the 

opposite occurs andl the peak intensity of the first sidelobes decreases 

with increasing edge illumination; only for small values of W, e.g. 

2w = A, little or no increase or.decrease is noticed. The differences 

are largest when thick supports are employed. 

Similar phenomena have been observed earlier in experiments [47, 105], 

while recent measurements carried out with the 10-metre dish of the 

Dutch PTT antenna at Nederhorst den Berg confirm the differences in the 

~ = 0 and ~ = 45° planes with regard to the first sidelobe [90] [Fig. 3.6] 

This effect may be used with advantag~ for the location of the supports 

of reflector antennas to obtain lower sidelobes in particular directions. 
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If the width of the supports 2w < A, the above method is no longer 

applicable, as described before [79]. 

3.3. Power balance of the blocked aperture 

If there is no spillover round the edge of the subreflector and the total 

power PT radiated by the feed is intercepted by the subreflector, the 

effective power reradiated by the aperture is found by subtracting the power 

PB blocked by the obstacles from the total power PT' 

Let the coordinates of a point in the aperture be X,y and the electric field 

over the aperture F(x,y). The total power radiated by the non-blocked 

aperture is, according to Silver [108, p. 177]. 

PT = H£/)l):! iF(x,y)i 2 (az.as ) dxdy (3.18) 

In this equation as is the unit vector along a ray [108, p. 170] and a the " z 
unit vector perpendicular to the a~erture along the z-axis. For e = O,"in 

the case that the phase of F(X,y) is constant over "the aperture, the rays 

are parallel to the z-axis so that az.a
s

" = 1. 

If the aperture is blocked by a number of obstacles [Fig. 3.7] totalized by 

n=m 

B = L: Bn 

n=1 

the blocked power becomes 

(3.19 ) 

This part of the total power P
T 

is radiated by the primary feed but it 

cannot be reradiated by the blocked aperture in the normal way, because it 

will be scattered arbitrarely by the feed support, feed cone, subdish and 

main dish. 

The directive gain function of the lossless antenna is expressed by G(8,~), 

where 8 and ~ are spherical coordinates illustrated in Fig. 1.1. This 

function must algo satisfy the relation 
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Fig. 3.6 Radiation pattern of the 10 metre antenna at Nederhorst den Berg 
f • 12 GHz 
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Fig. 3.7a Apel"ture A Fig. :3. 7b Aperture A blooked 
without bZocking by obstacles B 
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(3.20) 

~ being the element of solid angle. 

If P(e,~) is the power radiated by the antenna per unit solid angle in the 

direction e,$, and P
T 

the total power radiated, the gain is defined as 

6(e;$} = (1.1) 

The power reradiated by the aperture less the blocked areas will now be 

equal to 

P
T 

- P
B 

= H£/I1)~ f \F(X,y)\2 dxdy 

A-B 

(3.21) 

This equation shows that the surface integral extends over the aperture 

surface A less the blocked surfaces B. A new gain function 

GO (e,~) = 

will now be formed dependl.ng on the power P' (e ,$) radiated per unit solid 

angle, whereas 

This new gain function, in which the blocked power is not transported 

correctly to the aperture, is now determined by 

or 

or 

(3.22) 
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jG'(e,4» drl = 411 - 211 (£/)l)~ ~F(x'Y)12 dxdy 
4'lT PT B } I 

(3.23) 

The power P
B 

is scattered by the subreflector, main reflector support legs, 

feed and feed cone, and adds new contributions to the antenna pattern 

G'(e,4», so that the power balance is restored. This scattered power radiates 

in various directions, which are· difficult to predict. The antenna pattern 

G'(e,4» with supplementary contributions from the scattered power P
B 

may 

increase the noise temperature of the antenna if these contributions are 

directed towards noise sources at high temperatures [23]. Apparently, the 

blocked power increases the side lobe level and the antenna noise temperature 

as well. Therefore, the total influence of blocking parts on the aperture 

results in a double effect, viz., 

(I) a decrease in the relative blockage efficiency nB/nO and an increase in 

the sidelobe level, with the possibility of a higher antenna temperature; 

in this chapter this effect is studied in detail for the region near the 

main axis of the antenna. 

(2) an increase in the sidelobe level, ow~ng to the blocked power P
B 

being 

scattered, and hence higher noise temperatures. This effect is difficult 

to calculate and will not be discussed in this report. 

3.4. Blockage efficiency in general 

3.4.1. Basic expressions 

Let A be a non-blocked aperture and the coordinates of an aperture field be 

x,y. Let the aperture field be F(x,y). If the phase is constant over the 

aperture, the gain obtained for e = 0 is, according to Silver [108, p. 177], 

IA [F (x ,y) dxdyl2 

lIF(X,Y)12 dxdy 
A 

where dxdy represents an elementary area of the aperture. 

From Eq. 3.1 it follows that for e = 0 

(3.24) 



~F(X'Y) dxdy = gA(O,O) 
A 
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(3.25) 

If the aperture illumination is uniform in amplitude and phase, F(x,y) will 

be a constant. In that case, we find from Eqs. 3.24 and 3.Z~ that 

and gA(O,O):: A, being the geometrical surface of the 

We also may introduce the effective aperture Aeff by 

where 

I ~F(X'Y) dxdyl2 

Aeff = ......:.;A'""=--'-. ----

A~IF(X'YW dxdy 

aperture. 

( 3.26) 

(3.27) 

(3.28) 

The illumination efficiency no of this non-blocked aperture will now be 

defined by the relation 

1 
no = -

A 

IA.f (x ,y) dxdyl2 

~F{x,Y)12 dxdy 
A, 

The integral 

fiF(X,Y)12 dxdy 
A 

= (3.29) 

is a measure of the power radiated by the primary feed and intercepted by 

the main reflector if no spillover is present. The integral Eq. 3.25 is 

proportional to the field intensity on the main axis. 

For circularly symmetrical aperture field distributions, dxdy of Eq. 3.29 

may be replaced by 2TIrdr, where r is the radial distance of the elementary 
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area from the centre of the aperture. Eq. 3.24 then becomes 

and Eq. 3.29 

~D 

271" 1 oj(r) 
1'l0 =-

A 

rdrl 2 

if D is the diameter ot th1S circular aperture. 

(3.30) 

(3.31) 

Let the aperture be blocked by a number of obstacles 81 , 82 , 83 , -------8
n 

[Fig. 3.7] with 

98(0,0) = ~(X,y) dxdy , 

Bn 

where Bn is the effective aperture surface of the blocked parts, and 

let GT be the gain of the aperture A containing the blocking obstacles B. 

The efficiency nB of the blocked aperture is now defined by 1'18 = GT/Gmax 
or 

1 
118 - -

A 

I
A

_
8

!F(X,y) dxdyl2 

A /rF(X,Y) 12 dxdy 

Comparing the efficiency of the blocked and non-blocked apertures, we 

obtain the relative blockage, efficiency 

1 fi(X,y) dxdy 12 A ~ jF(x ,y) 12 dxdy 
1'18 = A-B • _J_ 1 ____ _ 

no 

Or 

(3.32 ) 



-56-

jF(X,Y) dxdy 
2 2 

nB A-B 
9A_B(O,O) 

-= = 
no 

AjF(X,Y) dxdy 
9A(O,O} 

so that 

B jF(X,y} dxdy 
2' 2 

nB 9B(O,O} 
= 1 - = 1 -

no 9A{O,O} 
jF{X,y) dxdy 

A . 

In the same way the blockage efficiency for a circularly symmetrical 

aperture with circularly symmetrical illumination may be expressed by 

1 -
no 

B jF{r) rdr 

(F(r) rdr 
A· 

2 

In the case of uniform illumination, F(x,y} is a constant. Therefore, 

1 
no 

B 

A 

2 

{3.33} 

(3.34) 

(3.35) 

{3.36} 

A and B being geometrical surfaces. Calculations with tapered illumination 

are presented in Sec. 3.5.3. 

3.4.2. Optimizing the blockage efficiency 

In Sec. 3.3 it was already found that part of the total power P
T 

radiated 

by the feed will not be reradiated by the blocked aperture in the proper 

way. as it does not reach the aperture in the correct direction and phase. 

The result is that this power is scattered randomly, decreasing antenna gain 

and blockage efficiency. 

If the antenna is used for receiving purposes it is easily shown that power 

of the incoming waVes is intercepted by the obstacles. This intercepted 

power is always wasted and can never be supplied to the feed of the antenna 

system properly, as it has not the correct phase. In the remaining part of 
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this section it will be proved that the blockage efficiency may be increased 

considerably. 

On the ground of considerations which are not of interest here, let F(x,y) 

be a preferred function for the distribution of the field over an aperture, 

part of which is inoperative owing to blockage. If it is possible to 

distribute the total power available for transmission over the unblocked 

portion of the aperture, such that a new function c.F(x,y) is obtained, 

the loss of power due to blocking will be partly eliminated. Factor C is 

here a constant. 

The power P
T 

radiated by the non-blocked aperture is given by Eq. 3.18. 

Applying the field distribution F'(x,y) = c.F(x,y) over the unblocked 

portion of the aperture A-B, which should radiate P
T 

as well, leads to 

P
T 

= H£I\l)~ c2 jrF(X,Y)12 dxdy 

A-B 

so that by means of Eq. 3.18 and 3.21 

A fi F(x,y) 12 dxdy 

ji F (x ,y) 12 dxdy 
A-B 

= 

(3.37) 

(3.38) 

Since the illumination has nOW been multiplied by a factor c, Eq. 3.33 for 

the new blockage coefficient can now be written 

A_B.JGF(X,y) dxdy 

A !F(X,y)dXdY 

2 

Substituting Eq. 3.38 in Eq. 3.39 we obtain 

(

nB) A_Bf(X,y) dxdy 2 A fiF(X,YJ12 dxdy 

-;- max= A fi(X,y) dxdy ~_BfiF(X'Y)12 dxdy 

(3.39) . 

(3.40) 

Comparison of,Eq. 3.40 with Eq. 3.33 shows only a little difference in the 

denominator. in Eq. 3.40 we find the expression 



fi F(x,y) \2 dxdy 

A-B 

as compared with 

~F(X,y)\2 dxdy 
A 

in Eq. 3.33. 
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(3.41) 

(3.42) 

Eq. 3.41 can be explained as being the power radiated by the blocked 

aperture with the original aperture field Fix.v). This power is less than 

that radiated according to Eq. 3.42. This also means that the blocking 

efficiency nB/no will increase as compared with the blocking efficiency 

presented by Eq. 3.33. In the case of uniform illumination, F(x,y} is a 

constant. 

Hence Eq. 3.40 is written as 

(3.43) 

The improvement compared with Eq. 3.36 shows that the gain and surface 

are directly proportional to each other, which is normal for antenna systems. 

Apparently no power transmitted by the feed is lost by scattering through the 

obstacles blo.cking the aperture. 

In chapter 5 it will be shown Vhat the relative blockage efficiency nB/nO 

can be increased to a maximum of 

1 - (3.44) 
no 

If the aperture is illuminated uniformly, and EBplane represents the parts 

blocked by plane waves, then Eq. 3.38 becomes 

A 
c2 : -----

(3.45) 

A - Bplane 
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3.5 Typical examples of calculations of aperture blockage efficiency 

3.5.1. Introduction 

The shadows of obstacles within a cassegrain antenna such as subreflector 

and struts may be treated by geometrical optics, if they are of the same 

order of magnitude as or larger ~han the wavelength [59,119]. Although 

struts of different constructions are known and applied, this paper will 

only deal with struts of cylindrical cross-section, as frequently used in 

practice. Moreover, not much difference is noticed if rectangular struts 

are used [79,101]. 

It has been indicated before [21] that three major areas of shadowing are 

known [Figs. 3.3], assuming no feed blockage. 

(1) The centre obstacle or the subreflector shows a shadow on the aperture 

obtained by projecting the subreflector by a plane wave (B
1
). 

(2) The portion of the plane wave obstructed by the struts is found by 

projecting the struts on the main reflector aperture (8
2

) by a plane 

wave. 

(3) The third shadow (B
3

) is formed by projecting the support legs on the 

aperture by a spherical wave with its phase centre in the focus [Fig. 

3.3c]. In the case of shaped systems this wave is nearly spherical. 

The last shadow starts from the point where the supports have been fixed to 

the main reflector, indicated in Fig. 3.3b by the distance roo Owing to the 

mechanical difficulties the supports are very seldom fixed at the rim of a 

large reflector. Several investigators [21, 101, 119, 123] have made calcu

lations with respect to these shadows more or less approximatedly. The best 

possible approximation up till now was presented by Ruze [101] and his 

method will now partly be followed. From the geometry shown in Fig. 3.3, 

it will be seen that the geometrical surface of the central part B1 is 

!nD~ and that the geometrical surface of the shadow of the supports is 

B2 = 8w(ro-!D~ where it is assumed that the supports are attached to the 

subreflector, and that four supports will be used. The calculation of the 

shadow surface from the support legs caused by spherical waves is somewhat 

more complicated. The projections of the support legs by spherical waves are 

very similar to trapezoids. Wested [123], however, indicated that the sides 

of this "trapezoid" are not straight lines, but arcs. 

In spite of the small amount of inaccuracy, Wested used the trapezoid 
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approximation. It does, indeed, simplify the calculations and it is to some 

extent used in this report to discuss the sidelobes caused by blockage. A 

calculation without approximation is carried out in Appendix 3.1. It is 

found there that for four supports the geometrical surface equals to 

8w 
mr 

3.5.2 Uniform 

(3.46) 

illumination 

If the field over the aperture has uniform amplitude and phase distribution, 

the blockage efficiency nB/nO is readily calculated from 

nB [ B1 + B2 + B312 [ 91(0,0)+·92(0,0) + 93{0,0)"]2 
= 1- = 1- (3.47) 

no . A go(O,O) . 

A being the unblocked geometrical aperture and no= 1. A numerical example has 

already been discussed in a previous paper [20]. 

The blockage efficiency has been calculated for uniform field distribution 

in the aperture as a function of the width of the support legs with the 

distance ro as a parameter. Fig. 3.8a shows the result, being a rapid decrease i: 

efficiency wi·th a growing width of the supports. Moreover, the decrease is 

less, if the distance ro is increased, which means that the supports are fixed 

nearer to the rim of the main reflector. In this case the "trapezoid" shadow 

decreases and therefore nB/nO improves. 

If the width of the supports is neglected in respect of wavelength, which is 

possible in some applications, viz. in satellite antennas, the blockage co

efficient is entirely depending on the ratio OslO. This ratio is mostly 0.1, 

therefore nB/nO is 0.98 as a maximum. Improvement to 0.99 is possible by 

using special shaping techniques in double reflector systems [22]. Trentini 

[119] has used a different method of calculating the blockage coefficient by 

introducing an average width of the support. The disadvantage of this method 

lies in the fact that no clear insight is available as to which part of the 

shadow is formed by spherical waves and which by plane waves. However, his 

calculations for uniform illumination are as good as correct. For D = 350A, 
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Ds = 35A, 2w = 2A and ro = 90A his predicted blockage efficiency appears to 

be 92%. while the exact calculations shown above indicate a result of 89% 

[Fig. 3.8a]. 

3.5.3. Tapered illumination 

If the illumination of the aperture is tapered toward the edges. the shadows 

discussed in the previous section will have to be weighted by the aperture 

illumination function for the purpose of calculating the blockage efficiency. 

Dealing with such problems. polar coordinates r',$' are mostly used. r' being 

normalized to unity. Sometimes r is not normalized. The aperture distribution 

is then F(r',$') or F(r,$'). Sciambi [103. 104] assumes the aperture illu

mination function to be circularly symmetrical and tapered on a uniform 

pedestal [Fig. 3.9]. The function may be expressed by 

10 

Fig. 3.9 

r' + r' 

o 

Aperture illumination function 
F(r') = Q+(1-0)(I-r'2)0 

ID 

1. 000 r--.---r---.--.-----, 

0.900 

o 0.2 0.4 0.6 0.8 1.0 

edge illumination q~ 

Fig. 3.10 

The bZo~kage efficiency as a function of the 
edge i,llumination and p as a parameter u81"nfI 

Eq. 3.48 and 3.49 
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F(r') = q + (1 - q)(1 - r'2)P, 0 < q < 1 o < r' < 1 (3.48) 

With this illumination function a great variety of aperture distributions 

may be realized by varying the parameters q and p. The illumination function 

is also very similar to illuminations obtained by primary feed patterns of 

scalar feeds and theoretical 2(n+1)cosnw patterns. Uniform illumination is 

obtained for q = 1, the aperture being fully tapered for q = O. Doidge [19] 

has used this illumination function to calculate the blockage efficiency for 

the case of a circularly symmetrical obstacle in the centre of the aperture. 

His final expression contains some inaccuracies and should be 

= 
q62 (p + 1) - (1 - q)(1 - t. 2 )P+1 + 1 _ q]2 

1 + qp 

(3.49) 

Fig. 3.10 shows this revised blockage efficiency as a function of the edge 

illumination, where ~, being the ratio Ds/D, equals 0.1. 

Several authors, such as Wested [123], use the aperture illumination function 

as indicated by Eq. 3.3 

Wested has introduced very useful information by calcula-

ting the blockage effects caused by plane and spherical waves, although the 

projection of the supports by spherical waves was approximated by a 

trapezoid. It appears, however, that the variation in the calculated 

efficiency is less than 1% when either cylindrical or conical spars with 

opposite orientations are used [123]. Therefore, the shape of the spars 

seems unimportant with regard to the gain performance, as presumed before. 

Gray [43], too, has carried out calculations on the blockage coefficient 

using an aperture distribution of 1 - r'2 , 0 < r' <1. 

This distribution, however, is not very realistic because no variation in 

the edge illumination is possible. In addition, Gray located the struts at 

the rim of the main reflector, which is seldom done in practice. Moreover, 

the work contains some inaccuracies as already observed by Wested [123]. 

Gillitzer [40] should also be mentioned here, although his approach is 

somewhat different from the others. Following his method, calculations have 

been carried out of the blockage effect on antenna gain and sidelobes 

[Chapter 2]. 

In the following we calculate as accurately as possible the blockage 

effects when the illumination is tapered and make use of the results found 

in the previous sections. 



-64-

To calculate the tapering effect, in this paper the aperture distribution of 

Eq. 3.3a has been used as· it results in simple mathematics and gives a good 

insight into the tapering problems [Fig. 3.2]. 

The contributions to the blockage efficiency, mentioned in Eq. 3.50, are now 

readily found from the theory in Sec. 3.2. This results in the contribution 

due to the subreflector, viz.: 

(3.9) 

The contributions to plane-wave blockage by ·the struts will be 

(3.14) 

The contribution to spherical wave blockage by the struts may be found from 

E~. 3.16. However, as it is only an approximation, the contribution by 

spherical waves discussed in App'endix 3.1 has been used for the 0,0 direction 

resulting in 

8w tana 
93(0,0) = - [H(lD)2 - ro2} - FtanaHD - ro) + -- {(~D)3 .. ro3)] 

AB 12F 
8wa 

AB 

tana 
- {UD)S - roS}] 
20F 

Compared with Eq. 3.16 the difference is only a few per cent. 
(3.50) 

The final blockage efficiency may now be found from Eq. 3.47; 

91(0,0), 92(0,0) and 93(0,0) of this equation have been discussed in the 

previous sections and 90(0,0) is given by Eq. 3.7, as discussed in Sec. 3.2. 

The results of a computer program are shown in Fig. 3.8b, c and d, where 

the blockage efficiency has been calculated as a function of the width 2w, 

ro and a, while D/Ds = 0.1. 

3.5 •. 4. Results and conclusions 

It appears that the blockage efficiency.decreases with increasing taper, 

although for values of ro (1IO-130l) and for large values of the width of 

the struts (4-SA) not much difference is noticed. For a specific value of 

ro = 110A (ro = 1/3D) and 2w = 2l it hardly matters whether the aperture 

illumination has been tapered towards the edges or not. This phenomenon is 
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due to the fact that the blockage by spherical waves, which is the largest, 

decreases if ro becomes large. For one particular case, viz. 

r 0 = 110>., Ds = 33>., and 'iJo = 75 degrees, calculations with a 

D = 330 A 

uniformly 

illuminated aperture have been carried out in such a way that the contri

butions of each obstacle are clearly presented [Fig. 3.11]. We see that the 

blockage by spherical waves is the most important of all and that for 

2w > 2.25>. the plane wave blockage by the struts becomes more significant 

than that by the subreflector. Although Eq. 3.50 contains the parameter F/D 

ratio of the main reflector and AB and a in that equation depend on the F/D 

ratio [see Appendix 3.1], calculation shows that the influence of the F/D 

ratio may be neglected. Figs. 3.12a, b, c show this blockage efficiency as 

a function of F/D and with edge illuminations of 0 dB, -10 dB and -20 dB. 

As a typical example, D = 330>., Ds = 33>. and 2w = 2>. have been taken with 

ro as parameter. 

As will be noticed, the graphs are nearly independent of ~2' This result is 

not identical with that published by Ruze [101] where the blockage 

efficiency increases with increasing F/D ratio. No conclusions may be drawn 

from Figs. 3.11 and 3.12 with regard to the blockage efficiency for 2w < A, 

as in that case diffraction effects may not be neglected. 

As a practical example we examined the new 28.5-metre antenna of the Dutch 

ground station at Burum, which was opened officially in September, 1973. 

This antenna has a prescribed aperture illumination in accordance with 

techniques di"scussed in chapter 5. The greater part of the aperture is 

illuminated uniformly, but at a distance of 1.20 metres from the edge the 

illumination is tapered linearly until at the edge it is -10 dB. The supports 

are implanted at r = 0.2D and have an elliptical cross-section of 
o 

313 x 121 mm. The predicted blockage efficiency is rather unsatisfactory 

and not more than 92% at 4 GHz [13]. 

As a further result of this work it is worth mentioning that the blockage 

efficiency as indicated by Doidge [19] has been recalculated and improved. 

A comparison between approximate formulae of blockage by spherical waves 

with exact formulae shows only little difference. All in all the work 

presents closed expressions for calculating the blockage efficiency for 

nearly all practical applications based on geometrical optics. , 
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Fig. J.11 

Contribution of the blo~king obstacles 

to t·le total blookage efficiency 
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Appendix 3.1. Blockage by spherical waves 

The geometry required to calculate the "weighted" blockage of the struts 

caused by spherical waves is found in Fig. 3.13. Using the law of sines in 

A ASC of this figure we find 

AC AS =----
sin(a + ~n) sin(~ - a) 

Further, x' = AC sin~ = (AS cosa sin~)/[sin(~ - a)]. Using, in addition, 

Fig. 3.13, the geometry also shows that x'/r = AC/AC' = w/y; therefore, 

y = wr/x' = [wr sin(~ - a)]/(AB cosasin~). 

As in a cassegrain system (Fig. 2.1) r = 2F tan~~2' we find that 

y = ~ tana r2 + wr _ wF tana 
AS 4F AS AS 

~D 

Therefore, 93(0,0) = 4 ~ (1 - ar2
) 2ydr , which results in 

ro 

For uniform illumination (a = 0) Eq. 3 reduces to 

The system constants a and AS may be found from Fig. 3.13 resulting in 

(1) 

(2) 

tan a = ro - ~Ds (5) 
2F cos~o/(1 + cos~o) - ~Ds/tan~2 

and as tana = (rQ- AB) /-AR' = to . ~ AS tan~ Q • AS = rQ (1 - tana/tan~ Q ) 
rQ 

with ro = 2F tan~~o 
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4. Radiation patterns of reflector antennas 

4.1. Introduction 

Many investigators have in the past studied problems and published 

solutions with respect to radiation patterns of reflector antennas. We will 

concentrate here only on those methods known as asymptotic solutions of 

Maxwell's equations, such as expiained by Kouyoumjian [70]. These solutions 

may be divided into three classes. 

(1) Geometrical optics (G.O.); this theory supposes that propagation of 

electromagnetic energy takes place along rays. Ordinary laws of optics such 

as energy conservation, Fermat's principle, Fresnel laws etc. are used to 

solve a particular scattering problem [4]. 

(2) Physical optics (P.O.); this theory covers the main part of this chapter. 

(3) Geometrical optical theory of diffraction (G.T.D.); this is an extension 

of the geometrical optics by the introduction of diffracted rays, as G.O. is 

not valid at the edges or in the shadow of a reflector. 

Keller [60] was the first who introduced this theory, later improved by 

Kouyoumjian [71]. Here, we will not go into details; some comparison with 

P.O. results will be given later in this chapter. 

The physical optics approximation has been used by a great number of 

scientists such as Afifi [2], Baars [3], Tartakovski [114] and Kinber [62], 

all calculating the radiation pattern of an illuminated paraboloid. How

ever, not only scattering from paraboloids is important in antenna systems 

nowadays, since very often also double reflector systems are employed in 

ground stations for satellite communication. Therefore, the scattered field 

from main and subreflector should be known. Mostly, the main reflector is a 

paraboloid, but in gregorian and cassegrainian systems ellipsoids and 

hyperboloids are used as subreflectors. It is even recommended to calculate 

the field scattered from a shaped subdish, discussed elsewhere [22]. The 

work presented here has already partly been performed by Rusch [95] and 

Ludwig [75], but some disadvantages and errors have been found in their 

methods as will be discussed below. 

It is the purpose of this chapter to obtain a more detailed insight into 

the radiation properties of reflector antennas such as the paraboloid of 

revolution. We shall start this chapter by summing up the polarization 

properties of some feeds such as the electric dipole and the rectangular 
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open-ended waveguide. These properties will be compared with those of a 

Huygens source. 

In the third section, equations are derived to calculate the radiation 

pattern of circularly symmetrical reflectors using the physical-optics 

approximation with feeds of which the polarization vectors are equal to 

those of a Huygens source. Further, a discussion is devoted to the limitations 

of physical optics. 

Knowing the radiation pattern, gain functions may be calculated and also the 

relative power that will be radiated in any solid angle. In this wayan in

sight may be obtained into the distribution of power scattered by a reflector 

antenna under different circumstances. 

4.2. Radiation patterns calculated by physical optics 

4.2.1. Geometry of the system 

We assume that the antenna system is composed of an arbitrary reflector S 

and a primary source located at the origin of the coordinate system •. We 

further assume that the primary source is equal to a point, in which case 

the dimmensions of the primary source may be neglected. In Fig. 2.10. a re

flector is shown together with three different coordinate systems which we 

shall use throughout this work. It is a paraboloid reflector, but any other 

arbitrary circularly symmetrical reflector may replace the paraboloid. 

The p,~,s system is a spherical coordinate system describing the reflector 

and the radiation from the primary source. The R,e,~ system is also a 

spherical coordinate system used to describe the field in a fieldpoint 

P(R,e,~) . The X,y,Z system is a cartesian coordinate one required to 

describe the relations between the two other systems and also to define the 

position of the antenna with respect to the X,Y,Z system. 

In each system we shall define three unit vectors. Each vector indicates 

the direction in which the particular coordinate increases. We shall indi

cate these vectors by a with an index of the. coordinate system to which it 

belongs, e.g. aR, ae' etc. If any vector belons. to. the ayste= (R,e,~), 

(p,~,s) or (x,y,z), this will be indicated by an index R, p or x, e.g. 

(a,b,c) . A detailed description of coordinate transformations from one 
. X . 
system into the other is found in Appendix 4.1. 
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4.2.2. The primary source 

As already explained by Silver [108, p.150] the field radiated by a primary 

source is represented by 

(4.1) 
p 

where Gf(~'~) is the directive gain function of a lossless feed and Pr the 

total power radiated. 

The angles ~ and ~ and the distance p are found in Fig. 2.10. The fiel~point 

(P.~.~) situated at the reflector surface is assumed to be located in the 
p 

far zone of the field radiated by the source. This assumption is correct 

because generally for the large antennas under discussion the requirement 

p> 2d 2 /A is met .[108, p.196-199], d being the largest dimension of the 

feed's aperture. Therefore, the feed may be regarded as a point source. The 

vector a.(w.~) is a unit vector defining the polari~ation of the electric , 
field intensity. The longitudinal component of the unit vector is zero [108, 

p.150], hence we may write 

(4.2) 

Very often the feed pattern shows circularly symmetrical properties, there

fore we write G(~) in stead of G(~,~). 

4.2.2.1. The polarization of the primary source 

The polarization vectors used by several authors differ considerably. 

Pinney [83] describes various arrangements of electric dipole feeds with 

polarization parallel and perpendicular to the antenna axis. This kind of 

polarization is also proposed by Korbansky [69]. Others like Yen [126] let 

the polarization depend on a.superposition of a·vector in the ~ and one in 

the ~ plane. The relationship between the amplitudes of the vectors is 

calculated for horizontal polarization, vertical polarization, linear 

polarization tilted at a 45
0 

angle and also for circular polarization. 

Carberry [5J also uses a combination of two orthogonal polarized vectors. 
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We shall discuss here the polarization of simple sources, such as the 

rectangular waveguide and the electric dipole. Other, more advanced feed 

systems have been treated in detail elsewhere [26,55]. 

4.2.2.2. The rectangular waveguide 

A very popular model used to illuminate a reflector surface is the open 

waveguide excited by the TE lo mode described by Silver [108, p.343], Jones 

[57], Plonsey [84] and Smith [lID]. According to Silver, field components 

of a rectangular waveguide excited in the TE IO mode and the electric field 

vector oriented along the x-axis are represented by 

where 

cost;; 
= c -. - 0 + Slo/k cos1jJ] F(1jJ,t;;) 

p 

-jkp -
e a1jJ 

sint;; . 
= -C -p- [SlO/k + cos1jJ] F(1jJ ,t;;) e -J kp at;; 

cos[(~a/A)sin1jJcost;;] 

F(1jJ,t;;) = -------
[(~a/A) sin1jJcost;;]2 - i~2 

sin[(~b/A) sin1jJsint;;] 

(~b/A) sin1jJsint;; 
(4.3) 

In Eqs. 4.3 it is assumed that the reflection coefficient at the opening of 

the waveguide is zero. The symbols a and b are waveguide dimensions and C is 

a coefficient· depending on the total amount of power supplied and on the 

dimensions a and b [108, p.343]. Further, SIO stands for the phase constant 

for the TE lo mode, and k the propagation constant, equal to 2~/A. If we 

compare Eqs. 4.3 with Eqs. 4.1 we may write for the directive gain function: 

:: [cos2t;;(1 + Sio/k COS1jJ)2+ sin2t;;(cos1jJ + Slo/k)2]~ F(1jJ,t;;) 

(4.4) 

and for the polarization vector 

_ [O,cost;;(1 + i3lo/k COs1jJ),-sint;;(cos1jJ + i3lo/k)] 

[cos2t;;(1 + i3lo/k COS1jJ)2 + sin2t;;(cos1jJ + i310/ k)2 i~ 
(4.5) 

If the dimensions of the waveguide are such that i31o/k = I, the polarisation 

vector becomes simply: 

(4.6) 
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which is the polarization of a Huygens source [57]. However, in most 

practical cases it will be difficult to obtain SIO = k. as normally 

Sio/k 

where Ag 
10 

= AlA 
glo 

is the wavelength in the guide. For the TEIO . mode 

Therefore, SIO = k only for A «. a. 

Nevertheless, this polarization vector is very popular and used by several 

authors such as Afifi [2]. Baars [3], Carter [6] and Tartakovski [114]. as 

it simplifies the complicated mathematical work considerably. This will be 

shown in the following sections. 

Another important advantage of using the polarization vector of Eq. 4.6 lies 

in the fact that if the reflecting surface is a paraboloid, the current 

induced at the reflector will show no cross-polarized components. This is 

proved in Appendix 4.2. 

4.2.2.3. The elementary dipole 

Using the elementary dipole [108, p.92] located in the focus of a parabolic 

reflector is still an important way to illuminate reflectors. If such a 

dipole with length·' is directed along the positive x-axis with a current I 

flowing in that direction, the far zone components of the electric field 

expressed in p.~,~ coordinates are [57] 

jZ Ile-jkp 

E 
o , 

= [-a~ cos~COS~ + a~ 5; n~] , 
2Ap 

(4.7) 

where Zo = 120rr ohms. 

It is readily found that 

The polarizatiou follows from 

(4.8 ) 

Sletten and Blacksmith [109] have calculated the surface current K of a 
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paraboloid reflector when fed by a linear electrical dipole along the X-axis. 

It appears that for directions of ~ f 0° and ~ f 90° large components 

polarized in the y-direction are present. The radiation characteristics of a 

feed, however, should be such that all the waves are polarized in the same 

direction after being reflected by the paraboloid surface. Therefore, if the 

feed is polarized in the x-direction, all field components with polarization 

perpendicular to the X-direction, also called cross-polarization, are wasted 

and contribute to minor-lobe rad~ation. If, however, a short electric dipole 

and a magnetic dipole of equal intensity are crossly oriented and excited at 

the reflector focus, the cross component of polarization on the reflector 

aperture is eliminated [57]. The same combination has been proposed by 

Tartakovski [114] and also by Kofman [68]. Using a certain combination of E 

and H fields of the dipoles [68] it appears also possible to obtain current 

distributions only in one direction on other reflectors such as ellipsoids 

or hyperbo10ids. 

Reflector antennas illuminated by practical feeds will always show some cross

polarization, decreasing the antenna efficiency. If this effect is neglected, 

the gain calculated will be too high and the theoretical values of the 

sidelobes will differ considerably from observed values. The cross-polariza

tion losses are discussed in more detail in Chapter 6. 

4.2.3. The reflector 

4.2.3.1. General considerations 

As Silver [108, p.132] has already explained, the field scat'tered from a 

reflector surface is equal to 

-j 

s/[(R.V)V 

-jkr 
e 

Es{P) ; + k2 R] dS (4.9) 
41TWt r 
1 

siR 

e-jkr 
Hs{P) ; -- X 11) dS (4.10) 

411 r 

where r ,is ,the distance ,from ,the field point P ,to the element of surface 

dS. If R is known in the Eqs. 4.9 and 4.10, the scattered field may be 

calculated exactly. 

The current density Rmay be found in two ways. First, if we use at the 

reflector the boundary condition n X E; ; -n X Es where E; is the initial 
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field, we find R by 

(4.11) 

-n being the unit vector normal to S at the point of observation and directed 

outward into the surrounding space. 

This integral equation may be solved using numerical techniques [113], but 

this method is difficult and time consuming and usually not used for 

reflectors larger than 20 A [75]. 

The second method of finding R is an approximation. This assumes that on 

areas illuminated by the source the currents are the same as they would be 

if the incident field were reflected optically, in other words 

R = 2 (ii X H.) 
1 

(4.12) 

On shadowed regions the currents are assumed to be zero. This method is known 

as the physical optics approximation, also known under the name of Vector 

Kirchhoff Theory or Current Distribution Method. 

If this approximation is applied to Eq. 4.9, it becomes: 

Ep = ---,1'-.-
2rrjw£ 

(4.13) 

If P is a vector from a given origin (Fig. 4.1) and 3
R 

a unit vector from 

this origin to the field point P at a distance R, it is readily seen that 

r = R - (ap.aR) p 

e-jkr 
The factor ~ = may then be approximated by 

r 

if R » p. 

s 

(4.14) 

(4.15 ) 

Fig. f.l 

Geometry for Eq. f.1J 
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Substituting Eq.4.15 in Eq. 4.13 leads to 

Ep 
~WJl -jkR 

sf" 
- - R - - j kp apaR dS = e X Hi - {(n x i).aR}aR]e 

2rrR 

Hp = (E/Jl)! aR X Ep 

4.2.3.2. Scattered radiation from the reflector 

As explained in the previous section, the current distribution on the 

surface of the reflector will be expressed by K = 2(n X Hi)' Further 

and 

(4.16) 

(4.17) 

(U8) 

(4.1 ) 

If we substitute Eqs. 4.1, 4.12 and 4.18 in Eq. 4.16, we obtain for the 

scattered field in a field point P 

= _ jWJl e -jkR 

2rrR J
[G (1jJ,s)]~ 

[(E/Jl)~ PT/2rr]! -'f'---__ 

S p 

.{n X (a
p 

X ail} dS (4.19) 

Eq. 4.19 may be used to calculate the scattered radiation from any arbitrary 

reflector S ; however, in our case we are mainly interested in the investi

gation of circularly symmetrical truncated surfaces of revolution, which 

means that S should be independent of the angle s. These surfaces may be 

defined by polar coordinates such as 

p = 2F/(1 + cos1jJ) ( 4.20) 

for a paraboloid of revolution with the origin in the focus (Fig. 2.10). 

The vector n normal to this surface may be expressed in p and its deriva

tives, as well as the surface element dS. Useful relationships from 

differential geometry may be used [73]. 
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The evaluation o~ the vector product of Eq. 4.19 is carried out in 

Appendix 4.3. As the scalar product of 

(ap.aR) = (~\ (~) = (::~~:~~~). (::~::~~:) 
o~ a R -cos1J! x cose x 

= sin~cos~sinecos~ + sin1J!sin~sinesin~ - cos1J!cose 

= sin1J!sinecos(~ - ~) - cos1J!cose 

the exponent -jkp(1-ap.a
R

) yields 

-jkp{l - sin1J!sinecos(~ - ~) + cos1J!cose} 

(4.21) 

(4.22) 

If we write the results for Ep CEq. 4.19) in its e and ~ directions, the 

following equations are found 

J_ jwj.l e -jkR 

[ 2rrR 

[p'{cosecos~sin1J!cos(~ - ~) + sinecos1J!cos~}+ p{cosecos1J!cos~cos(~ - ~) 

(4.23) 

f 
211 

- 0 psin~. 

(4.24) 

where a = kp(1 + COS8cos1J!) , S = kpsin8sin1J! and ~ the subtending angle of 

the reflector. 

4.2.3.3. Evaluation'o!the'integral equations 

Generally [1], 
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= -- f ejzcosu cosmu du 
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If m = 0, z = ~, u = ~-~ and du = d~ then 

Jo(S) = - eJSCos(~ - ~) d~ 
1 f21T. 

21T 0 . 

since [95] 

- 1Tsin~[Jo(S) + Jds)] = of ~:S~Sin(~ - cp) ej~cos(t; - ~) d~ 

the double integral in Eq. 4.24 for Es~ may be written as 

'¥ .! 

(4.25) 

(4.26) 

(4.27) 

- [jW\l - . kR ! ! f [G f (~ ) ] - . 
Es~ = - - e J [(EIll) PT/21T] e Ja sin~simjJ 

2R 0 p ] 
.[{p'sinW + pCOSW}{- Jo(~) - J2(~)} - p{Jo(~) - J 2(S)}] pdW a~ 

It appears also [95] that 
(4.28) 

21TjCOS~ Jl(~) = f2:os~ e-jScos(t; - ~) d~ • 

o 21T 

1TCOS~IJo(S) + J 2(S)] = f s;n~s;n(!; - $) ejscos(t; - ~) d~ 
o 21T 

1TCOS~[Jo(S) - J 2(S)] = of COS!;C06(!; - ~) ejScos(~ - ~) d~ 

(4.29) 

( 4.30) 

(4.31) 

Similarly as for Eq. 4.24, Eq. 4.23 is now written as 

- [jW\l_. . f'¥G(l/J)!_. 
Ese = - - e JkR (E/\l)! PT/ 21f ! f e Ja sinwcoscp 

2R 0 p 

• [{Jo(S) - J 2(S)}{p'sinw - pel - cosw)}cose + 2pcose Jo(~) 

+ 2jsine J1(S){p'cosw - psinw}]sinw dWJ a
e 

(4.32) 
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4.2.3.4. Calculation of the total electric field 

As explained by Silver [108, p.ISOj, the total electric field is made up of 

a superposition of the direct incident field and the scattered field of the 

reflector. 

The incident field is generally represented by 

1 
[G

f
( e ;~)J2 

R 

(4.1) 

and the scattered field by Eqs. 4.28 and 4.32. The total field at the field

point p(R,e.~) is then 

(4.33) 

where the polarization vector of Eq. 4.1 should be expressed in (R.e.~) 

coordinates, viz. 

(4.34) 

The components of the scattered field are now split into a real and an 

imaginary part in order to solve Eqs. 4.33. Therefore, we first write 

j e-
jkR 

,[ J'¥ [G (1jJ)j~ 
= - - [()l/E:)~ PT/21TF k f cosasin<jJsin1jJ.z;.pd1jJ 

2 R 0 P 

J
'¥ [G (1jJ)1~ ~ 

- j ( k f s i nas i n<jJs i n1jJ z; pdlj! + 2 (G;;el s i n<jJ) ii <jJ • 

o p 
(4.35) 

where 

(4.36) 

j~~jkR 

(y + jo )pd1jJ 
2 R 
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where 

(y + j6)pd1/> + 2 ~ cos¢J as 

(4.37) 

y = {Jo(S) - J 2 (S)}{p'sin1/> - p(l - COs1/»}COSS + 2pcosS Jo(S) 

a = 2sinS(p'cos1/> - psin1/» Ji(S) 

(4.38) 

(4.39) 

By choosing the polarization of the incident field in accordance with 

Eq. 4.34, the electric field in the plane ¢ = 0, (E-plane) depends only on 

Ee, while in the H-plane, where ¢ = 90°, only an electric field E¢ has to 

be taken into consideration. 

4.2.3.5. The gain function of the composite system 

As explained by Silver [108, p.ISI). the gain function of an antenna system 

may generally be represented by 

(4.40) 

For the purpose of .easier handling in a computer program we shall write the 

real and imaginary parts of E¢ and Ee as follows: 

e-
jkR f~ [G (1/»)~ 

(Re E¢) = - ~ R [(ll/£)~ PT/21T)~ sin¢[ k f p sinasin1/> ~ pd1/> + 

o + 2[Gf(S)]~1. . 
= constant.sin¢ T¢ 

e -jkR 

- ~ -- [(ll/£)~ 
R 

(4 .41a) 

1 0 r~k [Gf (1/»] ~ 
PT/21T)2 sin¢ cosaSin1/> ~ pd1/> 

p 

= constant.sin¢ R¢ (4.41b) 

e-
jkR f~ [G (1/»]~ 

(Re Ee) = + l R [(ll/E} PT/21T]~ cos¢ [0 k f p sin1/>(ocosa-

- ysina)pd1/> - 2[G (e)J ~ ] 
= constant.cos¢ Te f (4.42a) 

-jkR 

(1m Ee) = - ~ e [(~/E)~ PT/21T]~ 
R 

= constant cos¢ Rs 

f
~ [G

f
(1/»] ~ 

cos¢ 0 k -'--p-- sinw(ycosa + 

+ os i net) pdlj! 
(4 .42b) 
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Substituting Eqs. 4.41 and 4.42 in Eq. 4.40 leads to 

(4.43) 

thus for the E-plane (<j>=OU) G(e,<j» = HRe2 + Te 2) and for the H-plane 

(<j> = 90 0
) G(e,<j» = HR<j>2 + T/) 

4.2.4. Discussion of some special cases 

Eqs. 4.41 and 4.42 found in the previous section can easily be checked if 

the reflector is a paraboloid 

case the directive gain found 

with a uniformly illuminated aperture. In this 

in the main direction (e = 0, <j> = 0) will be 

G = (rrO/A)2 max (4.44) 

where 0 is the diameter of the paraboloid. The relationship between dia

meter, focal length, and angular aperture ~ is found from (see also Fig. 2.10) 

o = 4F tan~~ (2.4) 

The gain function of a feed which produces uniform illumination in the 

aperture of a paraboloid is [108, p.433] 

If e = D, then ~ = 4rrF/A, S = D, y = 2p and 0 = O. 

Using these results and Eq. 3.10, we find for Eq. 4.42a 

f
~ si n1jJ . 

4Fcos~ -------
o COS2~1Ji{l + coslJi) 

dlJi , or 

In a similar way we find that 

(3.11)) 

(4.45) 

(4.46) 
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Substituting thes.e results in Eq. 4.43 We ·obtain 

G(O,O) : ~k2(4Ftan~~)2 (4.47) 

which is equal to Eq. 4.44 if Eq. 2.4 is used .• Equal cresuHsare obtained 

if the H-plane is considered. Of much interest is the back radiation of 

the antenna for e : TI. In that case we find 

4TIF 1 - cos1/! 
C! : , s • 0 , y : ~2p and 5 = 0 

A 1 + COS1/! 

After some calculating [App. 4.4] and assuming uniform illumination over 

the aperture, we find 

s; n (4TIF • 1 - cos~) 
A 1 + cos'l' 

and 

Te = 2cot~~ 
(

4TIF 1 
cos --. 

A 1 

If we substitute the values 

(Eq. 4.43) we find 

G(TI) = cot2~~ 

- cos~) 
+ COS~ 

of Re and Te in the equation for the gain 

Comparing this value with G(Ol we find a relationship .for unifonn 

illumination 

G(O)/G(TI) = (TID/A tan!~)2 

(4.48) 

(4.49) 

(4.50) 

which relation is equal to that found by Kritikos [72] along totally 

different ways. Apparently the back-radiation found for e = TI is equal to 

the radiation of the feed for that same direction without any scattered 

contribution of the reflector. This effect hasbeennot'iced ·before and is 

known as the Poisson spot[127]. 
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4.3. Some limitations of physical optics 

4.3.1. Introduction 

The physical optics approximation has been investigated and employed by a 

great number of scientists. Their comments differ considerably. Some of them 

are not in favour of the method at all, but others recommend it. 

It is agreed that the results obtained with the physical optics approxima

tion become better if the dimensions of the system with respect to the 

wavelength become larger [38, 106]. 

This may be explained by the fact that the current distribution on the 

surface of the reflector is calculated by geometrical optical methods. As is 

well known, the results of geometrical optics are only reliable if the 

dimensions of the scatterer are much larger than the wavelength. Sometimes 

the remark is made that physical optics gives incorrect results, but these 

conclusions are in several cases drawn from reflectors with small dimensions 

of the order of 10 A or less [54, 93]. 

Siegel [106] explains further that not only should the reflector be large 

with respect to the wavelength, but incorrect answers can also be expected 

if the body has a radius of curvature which is small with respect to the 

wavelength [3]. 

Several authors [74, 102] notice that satisfactory results are only 

obtained in the region about the specular direction and that the physical 

optics approximation is unreliable in the shadow region because the currents 

on the back of the reflector are neglected. 

This current distribution shows discontinuity at the edge of the reflector. 

It is assumed that in the shadow region the current is zero, independent of 

the edge illumination. In reality, such truncated current distribution is 

not to be expected, so that the physical optics current distribution at the 

edge is wrong. 

Kinber, Tandit and Tartakovski [62,63, 112, 115] have proposed corrections 

in the P.O. current distribution as explained by Afifi and Van Hoof [2,51]. 

Afifi has found that these correction currents are of minor importance. 

Later, Kinber and Tseytlin [65] introduced other corrections of the P.O. 

current distribution for the calculation of phase centres of parabolic 

reflectors. The new correction is the difference between the P.O. current 

distribution and the current distribution of Sommerfeld at the edge 
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of a half plane. Calculated radiation patterns are not reported. 

Oshiro and Mitzner [81] proposed to use the P.O. current distribution at 

the specular region and the current distribution which is obtained by 

solving the integral equation (Eq. 4.11) at the shadow region. However, P.O. 

should not be judged by whether it yields the correct currents but by 

whether the final computed scattered fields are correct. Examples are known 

of badly approximated currents,} but the radiation patterns coincide very well 

with practice. Well known is the, fact that the field scattered from a half 

infinite cone is very reliable if calculated by means of P.O., but the G.O. 

current distribution is not correct at all at the cone's vertex [94, p.48]. 

This phenomenon may be explained by the fact that the error in the current 

distribution has oscillatory behaviour over the surface and its integrated 

contribution to the scattered field is small [75]. 

Probably the difference between the P.O. current distribution and the true 

currents serves to built up the near field. In this near field there is a 

phase difference between the electric and magnetic field. The wave impe-

dance has a capacitive or inductive character and in the near field the 

energy is stored. In the far field E and H are in phase and the wave 

impedance is real. As the radiation patterns are calculated for the far 

field, we do not notice anything of the energy stored in the near field. 

Therefore, we neither notice anything of the error in the G.O. current 

distributiona 

In general, the P.O. approximation does not meet the reciprocity theorem 

[70]; this means that for a given angle of incidence and the corresponding 

scattering angle two separate expressions are obtained for the far zone 

amplitude, whereas there should be only a single expression. In the direc

tion of specular reflections, however, physical optics does satisfy 

reciprocity and it is assumed that in the neighbourhood of this direction 

it provides satisfactory approximation. This seems reasonable from the 

physical vie~oint; in the specular direction the more accurate currents 

from the central region of the reflector are in phase, making a large 

contribution to the far zone, which suppresses the failure to approximate 

the edge currents [70]. 

As Kouyoumjian PO] 'explains further, P.O. does give reasonable approxima

tion of the specular backscatter if ka ("k = 2rr/A) is larger than 8, where 

2a is the diameter of a circular plate or the side of a square plate. The 

main beam and sidelobe maxima are predicted satisfactorily within 20 

degrees of normal incidence for ka > 8.5. Outside this angular range the 
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agreement seems poor. However, no explanation is given to what extent. It 

may be explained that if the sidelobe level is very low, e.g. -60 dB and 

P.O. indicates -70 dB, the error has very little influence on the calcula

tion of the noise temperature, so that P.O. may be applied with success. 

Carter [6] is one of the few authors who also considered the edge illumina

tion. He comments that the field on the shadow side of the reflector is 

assumed to vanish, which is a consequence of using the approximations of the 

geometrical optics method of calculating the field over the reflector. 

Normally, there will be small currents at the edge and on the shadow side of 

the reflector which will contribute to the diffraction field, especially in 

the shadow region. However, if the edge of the reflector is very near a deep 

null of the primary feed pattern, these currents will be negligibly small. 

Rusch [98] has programmed the Kouyoumjian version of the G.T.D. scattered 

field for a hyperboloid (D = 25A) illuminated by a spherical wave, and has 

compared this with results of the Keller version of G.T.D. with G.O. and 

with P.O. In general, the P.O. and Kouyoumjian G.T.D. curves agree closely 

in magnitude both in the illuminated and shadowed regions. In particular the 

agreement between the P.O. and Kouyoumjian G.T.D. results in the vicinity of 

the reflection boundary are emphasized. {Fig. 4.2) 
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In the following we shall investigate the various comments. We shall 

especially study the influence of the feed pattern on the total field of 

reflector and feed. We shall also investigate the influence of the diameter 

and the edge illumination. We shall use the definition of the gain pattern 

G{e,~), which should yield 4rr, integrating this pattern over the entire 

sphere. 

4.3.2. Some errors in calculating radiation patterns of reflector antennas 

using physicaloptits'apptoximation 

4.3.2.1. Mathematical models of antenna feeds 

It is useful in computer programs to approximate the patterns of antenna 

feeds by mathematical expressions simplifying the computing work. For this 

purpose we shall discuss the three different mathematical feeds as used by 

several authors [22,30,82,96, 108]: 

(a) the feed pattern giving constant fieldstrength within a solid angle at 

equal distances from the origin as suggested by Rusch [96]. Outside 

this region the pattern is zero (Fig. 4.3·a). The illumination is discon

tinuous; it does not give uniform illumination over the aperture of a 

paraboloid; 

(b) the feed pattern that produces uniform illumination over the aperture of 

a paraboloid antenna as explained before [108, p.433]. This pattern is 

also truncated at W = ~ (Fig. 4.3b) and is circularly symmetrical as 

well; 

(c) 

t 

o 

the tapered cosine pattern that belongs to 

defined by Gf{ljI} = 2{n+l)cosnljl (Eq. 2.31). 

o 

the cla'ss of feed patterns 

Fig. 4.3 a) Constant f'eed 
pattern 

bJ lJni.-rorm .t'eed 
oattern 
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This last pattern, which was already mentioned by Silver [108, p.425], is 

circularly symmetrical and is now very popular. It has been used by several 

investigators for analysis of reflector antennas [22,30,82]. For ~~90o 

the gain function approaches gradually to zero and there is no back 

tadiation. A further advantage of this feed pattern lies in the fact that 

by a combination of different values for ~ and n all possible tapers at the 

edges of reflectors may be realized. 

All antenna patterns have to meet the equation 

(4.51) 

where G(~,~) represents the antenna pattern and dn the element of solid 

angle. 

4.3.2.2. Errors due to truncated feed patterns 

The discontinuity of an electromagnetic ,field can only be supported by 

surface currents and charges. If there are no currents along the interface 

'between 2 media the tangential fieldstrength has to be continuous; conse

quently, the truncated fields at the discontinuity do not satisfy Maxwell's 

equations and should not be used as a primary source to calculate scattered 

radiation from a reflector system. 

If they are used 196], errors in the results are to be expected. The errors 

may be evaluated using the Kirchhoff integration [108, p.149] by calculating 

first the field scattered by the reflector and adding'the feed pattern to it 

to obtain the total field at a distance R. If the electric field has compo

nents in the e and ~ directions, the gain factor of the composite system may 

be represented by 

(4.40) 
PT 

P
T 

being the total power radiated by the feed. This composite gain factor 

has also to meet Eq. 4.51. 
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When the feed pattern has, a polarization vector of'(O, COS~, -sin~) in 

p,~,~ coordinates, it can be proved that in the $ = 0 plane the electric 

field only depends on Ee while in the $ = 90° plane only an electric field 

E$ has to be considered [95]. 

It now appears that if a truncated theoretical feed pattern is used, Eq.4.51 

does not yield 4rr but more. 

These phenomena may be illustrated by some examples as shown below in 

table 4.1. Here, a paraboloid reflector has been illuminated by a truncated 

feed pattern giving uniform illumination over the aperture with the diameter 

and angular apertures as parameters. 

After G(6,$) of Eq. 4.40 was known, we calculated Eq. 4.51 by using Eq. 4.43. 

Table 4.1 

'I' Df').., aperture 
,jG(6,$) dn 

illumination n 

60 15 uniform 4.62rr 

90 15 " 4.57rr 

60 30 " 4.46rr 

90 30 " 4.42rr 

60 50 " 4.37rr 

90 50 " 4.34rr 

60 75 " 4.33rr 

90 75 " 4.3lrr 

60 100 " 4.29rr 

90 100 " 4.27rr 

As is shown, some of the results contain errors of more than 10% in this 

power distribution, which are far too large to make accurate calculations. 

The errors become smaller as the diameter of the reflector becomes larger. 

If, on the other hand, we illuminate paraboloid reflectors with "smooth" 

gain functions, such as the tapered cosine pattern, it appears that the 

results are more reliable (Table 4.2) 
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Table 4.2 

D/A n relative edge 
f(8,'f»d0. 

illumination dB 

50° 50 2 - 5.6 3 ,99 7T 

4 - 9.4 4.00 7T 

6 -13.2 4.00 7T 

60° 50 2 - 8.5 4.00 7T 

4 -14.5 4.00 7T 

6 -20.5 4.00 7T 

Fig. 4.4. shows a typical example of a calculated radiation pattern of a 

parabolic reflector with a diameter of 15 A and an angular aperture of 

~ = 60°. The reflector is illuminated by a truncated feed pattern, giving 

uniform illumination over the aperture. The first sidelobes are identical 

with those obtained by the scalar aperture method [108, p.192]. 

Far sidelobes cannot be cheeked in this way since the scalar aperture 

method gives only reliable results for the first two or three sidelobes. 

Back radiation is also correct; this may be shown by using a relationship 

found by Kritikos [72] between the gain in forward and backward direction, 

viz. 

G(O) 2 

-- = (1TD/A tan~~) 

G{7T) 

From the above the conclusion may be drawn that the radiation pattern 

contains too much power in the far sidelobes and that. therefore, the level 

of the far sidelobes is too high. A theoretical truncated feed pattern, 

should therefore not be used as a primary source to calculate radiation 

patterns of reflector antennas. When the antenna noise temperature is cal

culated, the results are wrong, indicating too high a temperature. 
" 

No difficulties in the power conservation are to be expected, if the 

tapered cosine or other patterns are used which do not show a sudden 

truncation of the fieldstrength at the edge of the reflector. 
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It will be clear that the use of Eq.4.sl is a very powerful tool to judge 

whether a calculated antenna pattern is correct or 'not and that this 

additional verification deserves more attention in the literature. 

Commenting on a letter which was recently published, Van Hoof [33,51] dis

agrees with the conclusion that truncation is the main reason of poor power 

conservation of the total radiation pattern, if a truncated feed is used. 

He states that the currents on the surface of the reflector are not derived 

from rigorous solutions and that this limits the accuracy of the calculation, 

especially in the shadow region. He refers to the corrections of the current 

distribution as investigated by, Russian authors mentioned before [62, 63, 

112, 115], and recommends to check the power conservation after the correc

tions have been introduced. 

Summarizing, Van Hoof states that the main reason for poor power conservation 

using uniform illumination should be looked for in the fact that in this 

case the edge of the reflector ,is illuminated high, and that the error will 

decrease if the·illumination towards the edge is tapered. 

The remarks made by Van Hoof have led to some calculations of radiation 

patterns of paraboloids excited by a number of mathematical models of 

antenna feeds. 

The results with a feed pattern producing uniform illumination pver the 

aperture of the paraboloid have been discussed before [33]. We extended 

the calculations with a feed producing constant fieldstrength within the 

solid angle subtended by the main reflector [Fig.4.3a] and with tapered 

30 

20 

Fig. 4.4. E plane radiation pattern from 
paraboloidal reflector under 
uniform illumination 
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cosine patterns. However, the tapered cosine patterns have been truncated 

at the angular aperture 0/ of the main reflector. The cosine patterns are 

then defined by 

As 

f G{w,~) dn = 4~ 
4'IT • 

it is readily found that 

Constant" 
2(n+ 1) 

1 - cosn+!o/ 

By taking different values for n, the edge illumination of the main reflec

tor may be modified. The results are shown in table 4.3. 

Table 4.3 

diameter main reflector 50 A 0/ 
edge 

fdn 
illumination 

1. uniform illumination over aperture 60 0 o dB 4.30 ~ 

2. constant fieldstrength pattern 60 0 -2.5 dB 4.26 'IT 

3. cosine pattern n=2 60 0 -8.5 dB 4.16 'IT 

4. cosine pattern n=4 60 0 -14.5 dB 4.06 'IT 

The results with non-truncated primary cosine patterns have been mentioned 

before [33]. 

A second experiment has been carried out with truncated patterns producing 

uniform illumination over the aperture, not truncated at W = 0/, however, 

but at larger angles [Table 4.4]. 

The results from these experiments enable us te draw some conclusions. It 

appears that the edge illumination plays a role in. the correctness of the 

power distribution if the truncation angle of the feed pattern coincides 

with the sub tending angle of the paraboloid. The lower the edge illumination 
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the better the results. However, differences still ,exist between truncated 

cosine patterns and non-truncated cosine patterns. The latter has a correct 

power distribution for n = 2 and n = 4, while the truncated pattern shows 

errors. Therefore, it appears that not only the edge illumination and thus 

the current distribution near the edge plays a role in the final results 

but also the location of the feed pattern truncation. 

Table 4.4 

D/>- 'I' refl ector 'I' feed fi{e,~)dQ 
Q 

50 60° 60° 4.30 'IT 

50 60° 70° 4.00 'IT 

50 60° 80° 4.00 'IT 

4.3.3. The influence of the reflector diameter 

It is often said that the results obtained with the physical optics approxi

mation become better if the dimensions of the reflector with respect to the 

wavelength become larger [38, 106]. To investigate this problem we have used 

Eq. 4.51. again after, calculating the pattern of a paraboloid illuminated by 

a cosine feed' defined by 

G
f

{1jJ) = 6 cos 2 1jJ 

G
f

{1jJ) = 0 

, o < 1jJ < ~'IT 

1jJ > ~'IT 

The paraboloid has a subtending angle of '1'.= 60° and the results are found 

in table 4.5 below. By using this primary feed pattern the edge illumination 

remains constant at -8.5 dB. 

A similar experiment has been carried out with a hyperboloid; the subten

ding angle was 20° and '1'2 = 80°, the eccentricity 1.53 and G
f

{1jJ) = 90. 

COS 44 1jJ • The results are found in table 4.6. The edge illumination of the 

subreflector in this experiment was about -12 dB. 
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Table 4.5 Paraboloid illuminated by cosine feed (n=2) 

Df"- fi(8,q,)dD. 
D. 

5 3.961 1T 

10 3.979 1T 

15 3.983 1T 

25 3.986 1T 

50 3.996 1T 

100 4.000 1T 

Table 4.6 Hyperboloid illuminated by cosine feed (n=44) 

Df). fi(6,q,)dD. 
D. 

15 4.074 1T 

25 4.023 1T 

50 4.005 1T 

75 4.001 1T 

100 4.000 1T 

As will be noticed, the results become indeed better if the diameter in

creases. At a diameter of 50 "-, the deviations from the theoretical value of 

41T are of the order of 0.1%, which is in accordance with Kouyoumjian's 

statement [70] that for Df"- > 25 "- the results with the physical optics 

approximation are reliable. 

4.3.4. The influence of the edge illumination 

As Carter [6] has mentioned before, the errors caused by the currents near 

the edge of the reflector may be negligibly small if the illumination to

wards the edge is tapered. For this reason we investigated Eq. 4.51. for a 

number of Daraboloids with a variable edge illumination. This variation 

may be obtained by varying the exponent n in Eq. 2.31. The results are 

found in table 4.7. 
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Table 4.7 

DIA n edge illumination (dB) fi(e.</J )dn 
n 

50 60° 1 -5.5 3.994 1f 

50 60° 2 -8.5 3.996 1f 

SO 60° 3 -11.S 3.999 1f 

50 60° 4 -14.S 4.000 1f 

SO 60° S -17.5 4.004 1f 

SO 60° 6 -20.5 4.002 1f 

50 SOo 1 -3.6 3.993 1f 

SO 50° 2 -S.6 3.994 1f 

SO SOo 3 -7.5 3.996 1f 

SO SOo 4 -9.4 3.997 1f 

SO SOo S -11.3 3.999 1f 

50 SOo 6 -13.2 4.001 1f 

SO SOo 7 -15.2 4.001 1f 

50 50° 8 -17.1 4.001 1f 

It will be seen that the power pattern adds up very accurately even if 

uniform illumination is approached. The largest differences noticed so far 

are of the order of 0.2%. 

4.3.5. Conclusions 

By integrating the antenna pattern G(e.</J) over the entire sphere. a method 

is presented to make certain whether a calculated or observed pattern of a 

reflector antenna is correct or not. If this integration does not yield 41f. 

the pattern is incorrect. If the pattern yields 41f all parts contributing 

to the integration add up correctly. This does not prove, that low far side

lobes have been calculated correctly. as such sidelobes practically do not 

contribute to the integral within the accuracy of computation. 

It is expected [99] that G.T.D. will not yield 41f as this method shows 

errors in the main direction. 

There remain a number of unsolved problems. The behaviour of P.O. when the 

main reflector is uniformly illuminated or overilluminated 130] has not 

been investigated. Yurther. the behaviour of the pattern when truncated 
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feeds are employed has not yet been explained satisfactorily. 

So far, no methods are known to calculate the influence of struts on the 

far sidelobes. 

Therefore, comparison of a calculated pattern with an observed pattern 

gives no answer to the question whether the pattern has been calculated 

correctly, since a measured pattern always contains the influence of the 

struts. ; 

All in all, P.O. is a reliable method of calculating the radiation pattern 

of reflector antennas with a diameter of more than approx. 25 A. 
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Append ix 4. 1 

Coordinate transformations --------------------------
X 

\ 
\ 
\ 

r-
\ 
\ 
\ 

ax 

------------ ~~--~~------------------z 

y 

Fig. 1 Unit vectors in different coordinate systems 

(x,y,z) t (p,w,~) (x,y,z) t (R,e,~) 

- a sinwcos~ + - aEsin~ - aRsinecos~ + aecosecos</> - ~</>sin</> a = atIJcoswcos~ ax = x -p 
:y = a sinwsin~ + ~wcosws;n~ + a~cos~ :y = aRsinesin~ + aecosesin~ + a</>cos~ e 
az = -apcosw + aljJsinw az = aRcose - aesine 

-
axsinwcos~ + aySinwsin~ - azcosw -

axs;necos~ + alinesin~ + a = aR = azcose 
-p 

~w = axcoswcos~ + ayCOSWSin~ + iizsinw ~e = axcosecos~ + alosesin~ - azsine 

a~ = -axs;n~ + aycos~ a~ = -axsin</> + aycos~ 
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..,....:::::------11 z-axis 

y 

Fig. 1 

No~at and unit veators 

at a parabotoid refteator 

We shall consider a paraboloid illuminated by feed systems with a polarization 

vector 

For a paraboloid 

therefore. the current distribution will be 

or 

Thus, the y component of the current distribution disappears entirely. 
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Generally, the equation r = r(u,v) represents a surface and the unit vector 

to this surface may be written as [73,- p. 70 - 74]. 

-
n = -----

lor x orl 
ru rv 

The differential surface element dS of the surface is 

dS = lor x orl dudv au rv 

If u = ¢ and V = ~ , the surface written in cartesian coordinates is 

r = psin¢cos~ X + psin¢sin~y - p cos¢ i 

After some calculation it is found that 

and 

p' being the first derivative to ¢. Let further the unit vector a
i 

be 

then the vector product a x a. yields 

a
p 

x ai = (~) x (Pc~s~l) = (Si~~) 
o p -sin~ P cos~ p 

and 

1 

(:) x e.,) iix (ap x a
i

) = 
1J p2 + p,2 o cos!; 

1 co.,) ~ p cos/; 
~ p2 + p,2 

-p sin!; p 

(1) 

(2) 

(3) 

(4) 

(5) 

(4.6) 

(6) 

(7) 



-99-

The result is still expressed in P.~.~ coordinates and will have to be 

transformed intoR.e.~ coordinates (Appendix 4.1). Leaving out the term 

1/ ..J ( p 2 + p' 2) Eq. 7 becomes 

01 

[
p,COS~(~ sin~cos~ + ~ sin~sin~ - ~ cos~~] 
p cos~(x coswcos~ + y cos~sin~ + z sin~) 

-p sin~(-x sin~ + y cos~) . X 

[
X(p'SinWcos2~ + pcOS~COS2~ 

~(p'sinwsin~cos~ + pcosWsin~cos~ 

z(-p'COsWcos~ . + psinWcos~) 

+ psin2~) ] 

- psin~cos~) X 

and in R.e.~ coordinates 

o 

(8) 

(9) 

cosecos~(p'sinwcos2~ + pcOSWCOS2~ + psin2~) + cosesin~(p'sin~sin~cos~ 

+ pcos~sin~cos~ - psin~cos~) - sine(-p'cos~coS~ + psi~cos~) 

-sin~(p'sinwcos2~ + pcOSWCOS2~ + psin2~) + cOs~(p'sinwsin~cos~ + 

cos~sin~cos~ - psin~cos~) 

resulting in a e component of 

n X (ap X aile = p' [cosecos~si~cos(~ - ~) + sinecos~cos~l + 

+ p[cosecoswcos~cos(~ - ~) + cosesin~sin(~ - ~) - sinesinwcos~l 
(10 ) 

and in a ~ component of 

n X (ap X ai)~ = p'[-sin~si~cos2~ + cos~sinWsin~cos~l + p[-sin~coswcos2~ 

- sin~sin2~ + cos~cosWsin~cos~ - cos~sin~cos~l 
( 11) 

Eq. II may be modified into 

p'sinwcos~sin(~ -~)-pcos~coswsin(~ -~) - psin~cos(~ -~) 

or 

[p'sin~ - p(l - cosW)lcos~sin(~ -~) - psin~ (12 ) 
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Appendix 4.4 Calculation of back radiation of a paraboloid 

In the case of back radiation e = 11, then, 

411F 1 - cos1)I 
a = - • B = 0 • y = -2p • 0 = 0 • Jo(e.) = 1 and J2 (e.) = 0 

A 1 + cOS1)I 

Then the expressions for Re and Te CEqs. 4 •. 42) become for uniform illumi

nation of the paraboloid 

f
'l' cot!'I' secz~1)I 

R = k 
e A-

simp2pcosa pd1)l 

o 
or as 

p = 2F/(1 + cos 1)1) 

4F 
kcot!'!' simp cosa d$ R = e f

'!' 2 

o 1 + COS1)l 1 + COS$ 

or 

f
'!' 8Fsimp 

Re = kcot~'!' ----
o (1 + COS1)I)2 (

4rrF 
cos -;:-

1 - COS1)I) 
d$ 

1 + cos1)i 

Since 

411F 1 - cos1/! 8rrF simp 
a. = - • then da = 

A- 1 + cos1)I A (1 + COs1)i)2 

Eq. 3 then simply becomes 

fXl 4rrF 1 - cos'!' 
Re = 2coti'l' 0 cos a dCL • CLI being 

A- I + cos'i' 

or CrrF 
1 - cos'l' )-

Re = 2coti'!' sin ~ 
1 + cos'!' 

In a similar way we find for Te 

Te = 2coti'!' j s~~a. da- 2[G
f
(en i 

o . 

For e = 11 I Gf { e) = cot2 i'l' thus 

( 

~4rrF 
Te = 2coti'!' 1 - cos

1
-;:- 1 - cos'l' I~ 

1 + cos'!' \ 
- 2cot~'f.1 

• 

(1) 

(2) 

(3) 

(4) 

(5» 

(6) 
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5. SHAPED DOUBLE REFLECTOR SYSTEMS 

5.1. Introduction 

A disadvantage of the cassegrain system ~s the decrease in antenna 

efficiency by blocking and diffraction introduced by the subreflector and 

supports as explained before. A further limitation of the classical casse

grain antennas lies in the fact that the aperture illumination is mostly 

so selected that the antenna gain reaches a maximum. By doing this, the 

aperture illumination is fixed and no means of controlling the efficiency and 

sidelobes are available. The possibility of obtaining a specified pattern, 

was,however,already reported by Silver [108, p. 474], who shaped the 

reflector surface. 

Kinber [64] discusses the possibility of forming an a priori distribution 

of amplitude and phase in the aperture of an antenna with the aid of two 

reflectors. He shows that a solution exists in the two-dimensional case 

but not necessarily in the three-dimensional case. 

Morgan [80] also indicates the possibilities of deviating from the standard 

hyperboloid and paraboloid of cassegrain systems to·improve the reflected 

wavefront and to prevent power from being reradiated into the feed. 

Publications of Jet Propulsion Lab. [86,88] give the impression that their 

solution, providing the subreflector with a flange to decrease spillover 

losses, is not found ideal. Apparently other solutions proposing more 

radical modifications of the reflector surfaces offer more possibilities. 

The problem of obtaining a dual antenna with a specified amplitude and 

phase distribution in the aperture can be tackled in two ways: 

(a) An arbitrary primary feed with a known radiation pattern illuminates 

a subreflector. The surfaces of main and subreflector must now meet 

certain requirements in order that the required aperture field may be 

obtained. 

(b) An arbitrary main reflector, mostly a paraboloid, is available and an 

arbitrary aperture field is required. The feed must now possess a dic

tated radiation pattern and the subreflector needs modification. This 

paper only deals with possibility (a), as feeds with prescribed radia

tion patterns and large bandwidths [88] are very difficult to realize 

or not at all. Pioneering work as to possibility (a) has been carried 

out by Galindo [39]. 
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In this paper Galindo's method of calculating the reflector surfaces is 

mainly applied. Calculations proposed by Green [44] and Williams [124] are 

also followed. It is noticed that nowadays the work of Galindo [39] and 

Williams [124] is being translated into commercial applications and it is 

expected that this subject will continue to be developed in the years to 

come. 

However, research on these systems is still going on in order to obtain 

even more improvements. Clarricoats et a1. [9] ;have proposed a spherical 

reflector system consisting of two small shaped reflectors. In this way 

the efficiency of the spherical reflector may be improved considerably. 

Clarricoats[lO] also studied the problem with respect to existing systems, 

where it is not possible to shape the main reflector. This is usually the 

case for large apertures such as radiotelescopes and 'antennas for satellite 

communication ground stations. 

This chapter discusses in. general the equations required to design a dual 

reflector system; it also discusses a solution. Further, a solution is 

proposed in which the blockage efficiency is increased to an absolute 

maximum and attention is paid ·to the antenna pattern scattered by shaped 

and non-shaped subreflectors. 

The high overall efficiency, however, is only obtained for one particular 

feed pattern. If the feed pattern differs from. the original for which the 

system has been calculated, the aperture efficiency decreases [89].This may 

happen for an· antenna system whose feed pattern varies with frequency. It 

is the purpose of this chapter to investigate aperture efficiency, sub

reflector blockage efficiency, and spillover efficiency of cassegrain 

antenna systems which do not use a hyperboloid reflector and contain an 

approximate feed system, so that an estimate of the efficiency of the 

system may be obtained. 

The radiation pattern will also be calculated 'to investigate the location 

and amplitude of the near sidelobes • 

5.2. The 4esign of a circularly symmetrical 'antenna system 

5.2.1. The system's geometry 

The design of a two-reflector system utilizes optical. principles such as: 

(1) Snell's Law applied to each reflector. 
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(2) Conservation of energy flow in any solid angle bounded by ray 

trajectories [108, p.112]. 

(3) The surfaces of constant phase are normal to the ray trajectories 

even after a number of reflections (Theorem of Malus) [3, p.131]. 

The application of these laws leads to a number of equations of 

constraint for the system. 

Snell's law applied to the subrefle.ctor [Fig. 5.1] leads to the equation: 

where 

tanlP2 = __ X--,2~-_X.!..I __ 

ex + S - Yl + Y2 

Snell's law applied to the main reflector leads to the equation 

dY2 

dX2 
= -tanH2 

(5.1 ) 

(5.2) 

(5.3) 

If we assume that the antenna system is circularly symmetrical, the 

relative power radiated by the primary feed within the increment d~l of 

o 
T 

x 

Fig. 5.1 Geometry of a shaped dO:A.ble refZector system 

x 

Y2 >1-1 "'I P, ~B 

Y2 ---I--.--;-.----/3::----.... ---V, 
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the pattern G1(l/Id is equal to 2lTGdl/ld SimjJl dWl, where GI(l/I!l is the gain 

function of the primary feed. The total power from Vii = 0 to any angle '1'1 

will be 

f
'l'l 

2lTG t (l/Itl simjJ! dWl 
o 

According to the principle of en~rgy conservation the power within dl/l 1 

should be equal to the power radiated by the corresponding increment of 

the aperture, viz., 2lTH(r} rdr. where H(r} is the illumination function 

of the aperture. The total relative power within the region from zero to 

X2 is 

X2 

f2"1!H(r) rdr 
o 

If both expressions are normalized by the total radiated power, we obtain 

X2. lPl 

ofH(r) rdr o fG 1 (Vill sinViI dVil 

fIb -1'1'1 (5.4) 
H(r) rdr G1 (wil sinWI dViI 

0 0 

If uniform illumination has to be produced in the aperture, Eq. 5.4 will be 

simplified since the function H(r) must be a constant. 

If in the aperture constant phase of all rays is required, the pathlength 

of each ray is simply 

PI + P2 + Y2 = K • (5.5a) 

where all rays are coming from one common point. 

Sometimes the phasefront is not spherical. By adding a term ).(W) to Eq. 

5.5a, the aperture phase becomes 

PI + P2 + Y2 + ).(Wl) = K 

where K is a constant if the aperture has uniform phase. 

With the geometry of Fig. 5.1 we write Eq. 5.5b: 

(5.5b) 
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K = (S - YI)/{cOS~I) + Y2 + [{X2 - XI)2+ (a + S + Y2 - YI)21~ + A{~l) 
(5. 6) 

where a and S are functions of ~l and a + S is a given constant. The inter-

section of the primary rays with the YI axis determines a and S [391. 

Directly from Fig. 5.1 is found 

The boundary conditions are also found ~n Fig. 5.1, v~z, 

K = + a{o/l) + S{o/l) + A{o/j) 

C050/2 
(5.1O) 

After choosing 0/1' 0/2' the ratio OslO, H{r), GI(~I)' and A{~I)' the whole 

system is determined. 

If the antenna is illuminated by a point source A{~I) = 0, a and S are 

readily found from equations 5.8, 5.9 and 5.10 and are constants. 

Using six equations out of Eqs.5.1 - 5.7, the six unknowns (~I' ~2' XI' 

X2• YI and Y2) can be evaluated, and a solution of the modified system is 

found [20]. 

Introducing the term A(~l)' the values a(~l) and B{~l) are no longer constants. 

The wavefront is not spherical and the rays have no common point of origin. 

The Sum a+B is now found from Eq. 5.9 and K from Eq. 5.10. As soon as A{~j) 

is known, a, B and the remaining six unknowns may be found using all 

equations 5.1 to 5.7. 

By substitution, the 7 equations are reduced to two differential equations 

with the three unknowns ~l' YI' and Y2' 

With ~l as the independant variable, the equations are solved by means of a 

computer [20,39]. 
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5.2.2. possible solution of the optimum'blotkage'effitiency 

It has been proved in Sec. 3.4.2 that theoretically the relative blockage 

efficiency in case of uniform illumination becomes 

(nB) = 1 _ ~ 
no A 

(3.46) 

When looking carefully to the blocked parts of a dual shaped antenna system 

with blocking obstacles (in the zero-field concept), it is easily shown 

that, if the antenna is used for receiving only, power of the incoming plane 

waves is intercepted by the obstacles. The power intercepted by these 

obstacles is always wasted and can never be delivered to the feed of a 

shaped reflector system in the proper way. 

We will therefore distinguish between the blocked parts of the aperture, 

where Bplane and Bsph represent shadows in,the aperture of plane waves and 

shadows of (nearly) spherical waves, respectively. By proper shaping no 

parts of the aperture will now be blocked by spherical waves any longer. In 

that case both main reflector and subreflector will have to be provided 

with grooves and ripples (as shown in a example for the subreflector in 

Fig. 5.2) to utilize the power blocked by the subreflector supports. 

The optimum blockage efficiency obtainable in the case of uniform 

illumination,_ assuming the zero field concept, is therefore 

c:) max = 
11 - Bplane 

A 
(3.47) 

Mathematical expressions to calculate the surface shape of main reflector 

and subreflector are still subjects for further study. To utilize the power 

blocked by the subreflector itself, this could have a cone-shaped protube

rance in the middle, which can be calculated very simply. For this purpose 

it is sufficient to replace the lower integration limit of the aperture 

integrals in Eq. 5.4 by ~ Ds instead of zero. 

Therefore, 
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f Xz J ~~ 
H(r) rdr G1 (~1) Sin~l d~l 

~OS 
= 

0 (5.11) 

~oJ 
1 

oJ 
'1'1 20 

H(r) rdr G1 (~1) Sin~l d~l 

S 

Using theoretical cosine feed patterns (Eq. 2.3]J Eq. 5.11 is written as 

(5.12) 

The results of a computer program are shown in Fig. 5.3, where the 

coordinates of the reflector system have been calculated for uniform 

illumination. The function Gl(~l) = 122 COS60~1 served as primary feed 

pattern. The diameter of the subreflector is O.lD. The angle '1'2 would 

correspond with an FlO ratio of 0.33 if the cassegrain system had been 

classical. It will be clear that when the mainreflector has been shaped, 

no focus can be defined. 

Apart from showing the shaped contours of main and subreflector, Fig. 5.3 

also presents a true paraboloid with an FlO ratio of 0.33. By causing the 

edges of the two main reflectors to coincide, the differences are clearly 

demonstrated. Computer calculations indicate that the maximum deviation of 

the shaped paraboloid from the true paraboloid is about 0.010. However, it 

is also possible to compare the shaped paraboloid with what is popularly 

known as a best-fit paraboloid, also called regression paraboloid, which 

can be found by the method of least squares. The maximum difference between 

true and shaped paraboloid now reduces to about 0.00050. 

Using a subreflector as discussed above, the increase in blocking 

efficiency obtainable is not very ·important, but the decrease in noise 

temperature may be noticeable 122]. 

It may be noticed that the subreflector is slightly cone-shaped around the 

symmetry axis. However, if Eq. 5.4 is used in stead of Eq. 5.11 the 

subreflector does not show a cone, the tangent at the subreflector vertex 

is perpendicular to the symmetry axis and no improvement of subreflector 

blockage efficiency is obtained. 
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5.2.3. The radiation patterns of shaped subreflectors 

In Chapter 4 much attention has been paid to the physical optics 

approximation to determine the gain function of reflectors. We will 

consider here not only subreflectors with a hyperboloid contour but also 

shaped subrefleetors with and without a "cone" (Fig. 5.2). To make compari

son possible, the shaped reflectors have been so calculated that uniform 

illumination over the aperture of the main reflector is achieved. 

Referring to Fig. 5.1, the system investigated has the following properties: 

¥l = 20u, ¥, = 80° and OslO = 0.2. The feed pattern is that of a cosine 

function as described in Chapter 2 with n = 44 [Eq. 2.31]. Although the 

ratio OslO = 0.2 is somewhat unrealistic, we have chosen this ratio to 

enable us to demonstrate the differences clearly. The diameter of the 

subreflector varies between 15A and 100A. 

Some of the radiation patterns are given in Fig. 5.4a to e. We only show 

the E plane pattern as the H plane pattern is very similar. 

As explained in Chapter 4, it is recommended to verify the results by means 

of calculating Eq.' 4.51, which should yield 4'11. 

The results are found in Table 5.1, together with those of a corresponding 

hyperboloid. 

Table 5.1 Power conservation J G(S¢ )d0. 
4 ' 

OIA n with cone without cone hyperboloid 

15 44 4.08'11 4.08'11 4.07'11 

25 44 4.03'11 4.031r 4.02'11 

50 44 4.00'11 4.0b 4.00'11 

80 44 4.00'11 3.99'11 4.00'11 

100 44 4.00'11 4.00'11 4.00'11 

As may be noticed, the value of the integral is very close to 4n for all 

subreflectors except if O/A is smaller than 25. 

As we have explained before, the shaped subreflector forms part of a double 

reflector system with uniform illumination. Silver [108, p. 433] already 
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pointed out that uniform illumination over the aperture of a paraboloid may 

be obtained by means of a source with a gain function according to 

Eq. 3.10 (Fig. 4.3b). 

As the main reflector of shaped double reflector systems differs only 

little from a true paraboloid, it may be expected that the field reflected 

by the subreflector is very similar to Eq. 5.13. Fig. 5.4.d shows this 

similarity very clearly. 

We also notice that for shaped subreflectors having a cone, the illumination 

of the aperture of the main reflector is not zero in the region blocked by 

the subreflector. This phenomenon is noticed especially for D/A = 15; for 

larger values of D/A it is shown that the illumination of the blocked parts 

decreases rapidly. The blockage angle ~B of the subreflectors under 

investigation is 19
0 

(Fig. 5.1). In Table 5.2 the power blocked by the 3 

sub'reflectors under discussion is given for various values of D/L 

Table 5.2 Power blocked by subreflectors in % 

shaped subreflector 

D/A hyperboloid with cone without cone 

15 10.6 1.3 3.2 

25 10.5 0.8 3.2 

50 10.6 0.4 3.1 

80 10.5 0.2 3.1 

100 10.5 0.1 3.1 

It appears that only for subreflectors with a cone the blocked power 

decreases with increasing diameter. It is not surprising that the hyper

boloid has the largest blockage losses. As follows from the radiation 

pattern, the intensity of the field scattered from the subreflector is 

largest in the area where blockage takes place. This means also that the 

edge of the main reflector is more tapered than when a shaped subreflector 

is used. Using a shaped subreflector, the illumination of the main reflector 

aperture reaches a maximum very near the main reflector edge, after which 

the illumination decreases rapidly. The slope of the decrease becomes 

sharper if the diameter of the subreflector increases. This phenomenon 1S 

in agreement with geometrical optical laws. 
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Table 5,j shows the difference between the angle 0max ' where the radiation 

pattern oli the subreflector reaches its maximum, and the main reflector 

subtending angle ~2' The difference between these two angles becomes smaller 

with. increasing diameter. 

Table 5.3 

Df>--

15 

25 

50 

80 

100 

~2- 0max in degrees 

shaped subreflector 

with cone 

7.5 

5.5 

3 

2.5 

2 

without cone 

8 

5.5 

3.5 

-2.5 . 

2 

The radiation pattern of a shaped subreflector shows edge illumination at 

the Main reflector much higher than that of a hyperboloid. This meanS also 

that in the latter case the spillover along the main reflector edge is much 

lo~er, Tab1e 5.4 shows this phenomenon. 
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Table 5.4 Power transmitted from 0 < e < '1'2 = 800 in % 

shaped subreflector 

Df). hyperboloid with cone without cone 

15 92.3 86.5 86.8 

25 92.8 8B.1 8B.4 

50 93.1 89.6 89.9 

80 93.3 90.3 90.6 

100 93.4 90.6 90.9 

We notice that only at increasing diameter at the main reflector spillover 

losses in shaped double reflector systems decrease, although the level of 

classical cassegrain systems is not reached, even not at Os = 100}". 

It is also useful to consider the power captured by the main reflector minus 

the power blocked. This difference largely determines the efficiency. (Table 5.5) 

Table 5.5 Useful power in % 

shaped subreflector 

Df). hyperboloi d with cone without cone 

15 81. 7 85.2 83.6 

25 82.3 87.2 85.2 

50 82.5 89.2 86.8 

80 82.8 90.1 87.5 

100 82.9 90.5 87.8 

Here the shaped subreflectors with cone also show the best figures. 

If we study the radiation pattern in more detail, we notice that within 

the solid angle from 0
0 

- 75
0 

small oscillations are present and that 

for all reflectors the reflection is nearly in accordance with ~eometrical 

optical laws just as Rusch [96] has found for hyperboloid reflectors. 

Fro~ about 75
0 

- 90
0 

the field intensity decreases tapidly. The power 

available in the solid angle from 00 to 900 is found in Table 5.6, the 

spiilover in this solid angle being shown in brackets. 
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Table 5.6 Power present in solid angle 00 - 900 and spillover 

shaped reflector 

D/A hyperbo 1 oi d with cone without cone 

15 93.2 (0.9) 91.7 (5.2) 92.S (6.0) 

25 93.5 (0.7) 93.4 (5.2) 93.4 (5.0) 

50 93.7 (0.6) 93.7 (4.1) 93.7 (3.S) 

SO 93.S (0.5) 93.S (3.5) 93.S (3.2) 

100 93.S (0.4) 93.S (3.2) 93.S (2.9) 

The solid angle from 90
0 

- 180
0 

shows heavy oscillations and also a large 

sidelobe caused by the spillover of the subreflector. It appears that at 

increasing diameter the total amount of power within the solid angle from 

0
0 

- 90
0

.is almost the same. 

Up till now we have only discussed the results of two reflector systems with 

uniform illumination over the aperture of the main reflector. We noticed 

that the large increase in the aperture illumination is partly spoiled by 

high spillover losses (Table 5.4). 

Some calculations have been carried out with shaped reflector systems 

having an edge illumination over the main reflector of -IOdB. The other 

parameters in the system remain the same. The results of this investigation 

are found in Table 5.7. 

Table 5.7 Power distribution of shaped reflector systems 

(DlA = 50, n = 44, '1') = 200, '¥2 ;, SOO, D/D = 0.2} 

edge illumination main reflector - 10 dB 

with cone without cone 

Blocked power 0.5 7.4 

Power up to SOO 93.0 93.1 

Useful power 92.5 S5.7 

Power up to 900 
93.7 93.7 

Spillover up to 900 
0.7 0.6 
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Compared with Table 5.5, the figures of a shaped reflector with cone are 

much better; those of a shaped subreflector without cone decrease as 

relatively more energy is concentrated in the blocked central part of the 

aperture of the main reflector. The spillover decreases considerably. 

5.2.4. Conclusions 

By modifying the reflector surfaces, great advantages can be obtained over 

classical cassegrain antenna systems. The power captured by the subreflector 

is reflected by the subreflector in such a way that together with the 

shaped main reflector a uniform illuminated aperture may be obtained; 

apparently the surplus of power in the middle of the aperture is spread to

wards the edge of the main reflector. Moreover, in this way, spillove·r 

efficiency and illumination efficiency can be optimized independently of 

each other. 

Secondly, the edge of the subreflector may be illuminated much lower than 

in classical cassegrain systems. It is possible to illuminate the edge of 

the subreflector at values as low as -20 dB. By studying Fig. 5.5, where 

the subreflector spillover efficiency ns is shown as a function of the edge 

illumination, it is readily seen that a spillover efficiency of about 98% 

can now be realized. The product of subreflector spillover efficiency and 

aperture efficiency of classical cassegrain antennas is ahout 74%. r20]. 

The increase in antenna efficiency by shaping the reflectors can therefore 

be considerable. The antenna gain can be increased by about 1 dB. This means 

that a modified cassegrain antenna with a main reflector diameter of 27 

metres will have the same gain as a classical cassegrain system with a ma1n 

reflector of 30 metres diameter. 

The low spillover losses have a favourable influence on the antenna noise 

temperature: consequently, this will be lower. A further advantage of low 

subreflector edge illumination is the large decrease in diffraction losses. 

Computations carried out recently [21] show: this clearly. 

A disadvantage is the fact that by illuminating the aperture uniformly, 

diffraction effects at the edge of the main reflector have to be taken 

into account (Chapter 4). In classical systems this contribution can be 

neglected as the illumination is tapered towards the edge. It is possible, 

however, to abandon the overall uniform illumination and leave a one-metre 

ring along the main reflector edge under-illuminated, as demonstrated in the 
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5.3. Mismatched shaped cassegrain antenna sxstems 

5.3.1. Aperture and spillover efficienc¥ 

Let 

o < I/J.l < ~IT (5.14 ) 

be the circularly symmetrical directive gai~ pattern of t~e feed in a shaped 

cassegrain system (Fig. 5.1), designe~ to produce u~iform aPerture illumination 

and let 

o < 1fi 1 < iIT (5.15 ) 

be the directive gain pattern of a different feed. 

The general expression for the aperture efficiency of a shaped cassegrain 

system designed for G1 but illuminated by G2 is giv~n by [89]: 

'1'1 

b f [Gd1fiIl] i[G2 (I/J.Il] i sin1fil d1/J.1[2 

nA 
f'¥l f'¥l (5.16 ) 

G1 (1fil) Sin1fil dl/J.l G2(1fil)sin1fil d1fil 
0 o . 

where '1'1 is the subtended angle of the subreflector.· It can easily be 

proved that this expression also applies to subreflectors with cone-shaped 

protuberances [22]. 

For this purpose we will use the principle of the power conservation flow 

along the ray trajectories as discussed in Sec" 5.2.1, viz.: 

(5.17) 

If we take the aperture distribution to be uniform, Hj(r) will have to be 

constant. Integrating Eq. 5.17, this constant C is readily found: 

(5,18 ) 
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Substituting C for H1(r) in Eq. 5.17 leads to 

c = ~i n1/l1.~l 
Gj{ 1/11) r dr 

If now the feed pattern changes from G1(1/Ij) into G2(1/Il) we find from 

Eq. 5.17 in a similar way 

Combining the equations 5.19 and 5.20, we obtain 

(5.19) 

(5.20) 

(5.21) 

where H2 (r) is the new aperture distribution corresponding with the feed 

pattern G2(1/Il). The aperture efficiency [108, p.177] is then found from the 

relation 

f!O 
1,0 [Hdr)]i rdr 12 

l1A = 
211 5 

A r~O (5.22 ) 
H2 (r) rdr 

~Os 

2 2 
A being the illuminated part of the aperture, which is equal to In(O -05 ) 

not considering the contribution of the struts. 

The aperture is further defined by ~Os < r <~O; if the aperture illumination 

is uniform, nA = 1. By means of Eqs. 5.19, 5.20 and 5.21 we find for the 

aperture efficiency 

2 2 
Substituting in Eq. 5.23 in[D -05 ] for A and Eq. 5.18 for C, we finally 

obtain Eq. 5.16. If we substitute Eqs. 5.14 and 5.15 in Eq. 5.16 and 

solve the integrals, we obtain 
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n = 4(m + 1)(n + 1) 
A (n + m + 2)2 ' 

11 - (cOS'I'll ~(n+m+2)]2 _ 

(5.24) 

It is easily shown that for n = m, nA = 1. 

The spillover efficiency is readily found from the expression 

f
'l'l 

ns = ~ G2(~1) s;n~l d~l (5.25) 

which leads to 

m + 1 
ns = 1 - cos '1'1 (5.26) 

The simple relations found in Eqs. 5.24 and 5.26 now offer the possibility 

of investigating the aperture efficiency, spillover efficiency and their 

product as a function of n, m and '!'l' It appears that in shaped double 

reflector systems no other parameters are of importance in calculating the 

aperture and spiltover efficiency. 

A typical example is found in Fig. 5.7, which shows ,the results of a 
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shaped double-reflector system with uniform aperture illumination and 

n = 60. The subtending angles of main reflector and subreflector are 600 

and 20
0 

respectively. The edge illumination of the subreflector is then 

about -16 dB. The spillover efficiency reaches 100 percent because at 

increasing m the directive gain pattern of the feed becomes narrower and 

narrower so that more and more power is intercepted by the subreflector 

and transported to the main reflector. 

The aperture efficiency decreases more rapidly for m < n than in the case 

of m > n. The result is that the product of aperture ·and spillover 

efficiency no longer has its maximum at m = 60, but at m ~70.Furthermore 

it appears that for m > 70 the overall efficiency decreases only gradually. 

This phenomenon is also noticed for different edge illuminations of the sub

reflector, and for different values of 0/1 (see Fig. 5.8a where the maximum 

of the product of Eqs. 5.24 and 5.26 has been plotted for different values 

of 0/1 and m, with n = 60). For larger values of 0/ 1 ns x nA approaches 1. 

This is due to the fact that the spillover efficiency is almost 1. Fig. 
o 0 

5.8b. shows the total efficiency for antennas with 0/1 = 20 (0/ 2 = 60 ), 

shaped so that the edge illumination is approximately 10, IS and 20 dB 

respectively. 

5.3.2. Aperture illumination 

It has previously been pointed out [89] that the illumination over the 

aperture is given by 

where C is a constant. 

Using the gain functions for Eqs. 5.14 and 5.15, Eq. 5.21 becomes 

H(r) = C.(m + 1)/(n + 1) cosm-n ~I 

(5.21) 

(5.27) 

The edge illumination of main reflector and subreflector will differ 

considerably for different values of m. The edge illumination at the main 

reflector follows from Eq. 5.27 and that of the subreflector from cosmo/I. 

In the case of the subreflector the small difference in space loss for 

~l = O. and ~I = 0/1 has been neglected. Fig. 5.9 shows this edge illumination 



-123-

as a function of m, where n = 60 gives uniform aperture illumination. 

It is also possible to calculate the illumination over the aperture for the 

case where m ~ n. For that purpose H(r) has to be calculated which may be 

done by means of Eq. 5.27, given the relationship between ~I and r. This 

relationship can be expressed only numerically , as it must be calculated 

from the nine equations determining 

same example discussed before, D/Ds 

results are shown in Fig. 5.10 

a shaped cassegrain system [20]. For the 
o 

= 0.1, '!'I·= 20 , '¥, = 50° , etc., the 

It is worth mentioning that for the case of m < n, the aperture illumination 

shows higher edge illumination than the centre of the aperture, while for 

m > n the aperture illumination becomes more normal and is tapered towards 

the edges. 

5.3.3. The radiation pattern near the axis 

This pattern may be found from scalar aperture theory [108, Ch. 6], where 

the pattern of a circular aperture (Fig. 5.11) becomes 

g(e,$) = f f F(r,$') ejkr sine cos.($ - $') rdr d~' (5.28) 

The illumination function F(r,,') is equivalent to IH(r)I~. As 

explained [22], we ·let the aperture illumination be zero for 0 

for purposes ·of obtaining maximum blockage efficiency. Then 

previously 

< r < ~D 
S 

f
lo f2~ 

g(e,$) = [H(r)]~ rdr ejkr sine cos($ - $') d$' , 

10 0 
s 

(5.29) 

or, carrying out the integration over $', 

f
~o 

g(e) = 2rr [H(r)]~ Jo(kr s;n8) rdr 

!o s 

(5.30 ) 

where Jo(krs;ns) is the Bessel function of 

the aperture illumination function IH(r)l! 

zeroth order. Again, knowing 

numericallY, the radiation 

pattern near the main lobe may be calculated. The computed results are 

shown in Fig. 5.12. 

Compared with uniform illumination(n = 60),it appears that for values 

m < n the system has very high sidelobes; if, for instance, m = 20, which 

results in an illumination that is about 14 dB higher at the edges than in 
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the centre, the first sidelobe increases to about -14.5 dB, while -17.6 dB 

is normal for uniform illumination. For values of m > n, we obtain the more 

normal situation, where the aperture is tapered towards the edges. 

5.3.4. Subreflector blockage efficiency 

The antenna system has been shaped in accordance with the relations presented 

in a previous paper [22]. This means that if the aperture is illuminated 

uniformly, 

nB = 1 _ 
no 

B 

A 

(3.46 ) 

where A is the surface of the unblocked aperture, B that of the blocking 

obstacles and no the efficiency of an unblocked aperture. 

Blockage caused by the subreflector supports has been neglected for the 

moment, but the subreflector has been taken into account, resulting in a 

cone-shaped protuberance. Since in the calculations in this paper Ds = 0.1 D. 

nB/nO = 0.99 will be the absolute maximum. 

To obtain an impression of the overall efficiency, the result of Fig. 5.8 

should be multiplied by this factor. It may be shown from Fig. 5.12 that the 

radiation patterns are not a result of a radiating unblocked aperture, 

but from a circular aperture blocked in the middle by a circular obstacle. 

This results in an irregular distribution of the second, third and further 

sidelobes, e.q. for m = 100 the third sidelobe is higher than the second. 

5.3.5. Conclusions 

The examples presented here prove that the product of spillover efficiency 

and aperture efficiency of shaped double reflector systems has a certain 

maximum value. This value is not found with feed patterns for which the 

antenna system has uniform illumination, but is found with those having a 

beamwidth somewhat smaller than that for which the shaped antenna system 

was designed. Various computer experiments have been carried out, for 

different edge illuminations of the subreflector and for different sub

reflector subtending angles, all showing similar phenomena. 

Further results show that the overall efficiency rapidly decreases for 

antenna systems having a feed with a much wider beamwidth than that for 



which the system was designed. The, theo.ry' developed is of great- iml'ortance 

to those antenna .systems equipped, wit·!), a feed: system having a h:equ,ell;cy 

depeooent radiation' pat.tern. It. appears, that the, best, result!!, are, obta;il).ed 

if the antenna system is designed' and shaped' for the lowest frequencY to, 

be used by the system., 

Great. care has, to be taken when a feed is employed hav.ing: a wide'l1 beamw:idth. 

than the feed for which the antenna system has been shaped. the, edgeS. of" 

the aperture are in this case· .,'Ver-iU1.IlDinated •. resu.1 ting in neaJ1~ill s,id.e~ 

lobes, which are even. higher than thos,e of a uniformly l,llwninated apel11::ure. 
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6. OFFSET ANTENNAS 

6.1. Introduction 

As explained in the previous chapters, the front-fed paraboloid antenna and 

the various types of symmetrical double reflector antennas, such as the 

cassegrain antenna, suffer from aperture blockage caused by subreflector, 

feed and supports. Depending upon the geometry of these components within the 

antenna system and the radiation patterns of the primary feed, a considerable 

amount of transmitted power may get lost by scattering against the obstacles. 

However, it is possible to construct so-called offset reflector antennas by 

locating the feed or subreflector outside the ray trajectories coming from 

the aperture of the main reflector. Therefore, there is no blockage at all. 

If the paraboloid antenna is front-fed and if we want such an antenna to 

become offset, the symmetry axis of feed and paraboloid must no longer 

coincide but form an angle known as the offset angle ~O. The reflector is 

now formed by a surface which is found by intersection of the paraboloid 

and a cone with top angle ~. The latter then becomes the subtended angle of 

the parabolo'id (Fig. 6.1). 

It is also possible to construct an offset cassegrain antenna known as the 

open cassegrain antenna (Fig. 6.2). The constructions used nowadays [67] 

locate the feed mostly at the surface of the main reflector on the symmetry 

axis of the hyperboloid subreflector. The symmetry axis of hyperboloid and 

paraboloid do not coincide. 

It is the purpose of this chapter to discuss some of the properties of these 

antennas. We shall first look into the geometry and calculate further the 

gain factor. 

Finally, the cross-polarization properties will be investigated in detail. 

6.2. The geometry of offset antennas 

Describing the geometrical properties of offset antennas, the paper of Cook, 

Elam and Zucker [12] is of great importance and a short review of this 

paper is certainly required here. The use of two sets of rectangular co

ordinates is very practical. The first set, xp ' yp and zp' with the 

origin at the paraboloid focus and Zp lying along the axis of revolution, 

is shown in Fig. 6.3. The coordinates x
s

' Ys and Zs in Fig. 6.4 have the 
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same origin but rotated so that Zs coincides with the symmetry axis of the 

hyperboloid. It is indicated that the equation of the paralioloid is 

(6.1) 

As Cook et al. IJ2] explain, the curves of intersection of the paraboloid 

surface with cones * = ~2 are ellipses and lie in planes perpendicular to 

the X
p

' zp plane. The projections of these intersections on to the aperture 

plane (Xp,yp) are circles and given by 

(x -p 
2F s i n~ ° ) 2 

COS~2 + COS~o 
+ Y 2 

P 
( sin~2 )2 (6.2) 
COS~2 + cos~o 

It also appears that the intersection of cones having a constant value of . 
*s' i.e. 10°,20°,30° and 40°, with a plane perpendicular to the zs-axis 

are all concentric circles around the zs-axis. The intersections of these 

cones with the paraboloid are ellipses. Projecting these ellipses on to the 

aperture xp - yp plane yields circles again; however, these circles are no 

longer concentric (Fig. 6.5) since radius and centre noint are functions of 

~o and ~s' 

The projection on the x
p

' yp plane of the intersections of the planes 

defined by the zs-axis and the line in the Xs - Ys plane, making a constant 

angle ~ = ~c with the xS-axis is a circle (Fig. 6.5). It may be proved [18] 

that these circles are given by 

+ 2Fcot~0}2 + (y _ 2F COt~C}2 = 
Psi n~ ° 

(6.3) 

In the following we shall concentrate on open cassegrain antennas having 

the phase centre on the surface of the paraboloid. If ·the diameter of the 

aperture is D, it follows from Eq. 6.2 that 

D = 
4Fsin~2 (6.4 ) 

COS~2 + COS~a 

It can lie proved I]8J that the diameter of the hyperooloid subreflector 

under no-olockage conditions is represented hy 

(6.5) 
11 + Cos('I'a - '1'2)] sin('I'a + 1:'2) 
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(6.6) 

The relationship Eq. 2.9 between 1'1 and 1'2 as" discuS"sed in Chapter 211lay also 

be used here. The equations 6.4, 6.5, 6.6 and 2.9 describe the geometry of 

the open cassegrain antenna entirely. There are 7 parameters. We shall take 

the offset angle ~a, the dia1lleter D and the !rUbtending angle of the hyper

boloid ~l' as independent variables. The entire system is then defined. 

6.3. The gain factor of open cassegrain antennas 

The gain factor of the conventional circular paraboloid reflector and the 

influence of the primary pattern width and angular aperture on the gain 

factor have been derived by Silver [108, p.413]. 

Pagones I82] has derived the gain factor of the offset reflector and has 

also taken into consideration the effects of pattern width and angular 

aperture. This chapter deals with similar calculations carried out for the 

open cassegrain antenna. For this purpose we shall have to make use of some 

of the equations mentioned already in Chapter 2, viz. Eqs. 2.9 and 2.11. 

We shall use tapered cosine patterns as indicated by Eq. 2.31. 

Combining the equations 2.9, 2.11 and 2.31 results in 

G2 {1'Z) = 2{n+1) cosn[2arc tan{{e-1)/{e+1) tan~1'z}l 

X sinz[2arc tan{{e-l)/{e+1) tan!1'z}j 

5 i n2WZ 
(6.7) 

Following the methods carried out by Pagones [82], it ,is now readily found 

that the gain factor of an open cassegrain antenna may be represented by 
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j " 9 = 2(n+1) [COS'l'~ + COS'l'2 ] ~ cos~n [2 arc tan {:~i tan~lJi2}J 
51 n'l'2 . 

0 

[2 arc tan {:~i tan~lJi2} ] 
2 

sin 
x dlJi2 

COS'l'2 + COSlJi2 (6.8) 

Mention has been made in Sec. 6.2. of four equations defining the entire 

antenna geometry. These equations contain 7 variables, viz.: 

(I) D = diameter of the aperture of the main reflector 

(2) F = focal distance of the paraboloid main reflector 

(3) '1'0 = offset angle of the antenna 

(4) '1'2 = Subtending angle of the main reflector measured from the 

paraboloid's focus 

(5) Ds = maximum diameter of the subreflector giving no blockage 

(6) e = eccentricity of the hyperboloid subreflector 

(7) '1') = sub tending angle of the subreflector, measured from the 

hyperboloid's focus which is located on the surface of the 

main reflector. 

As we have only 4 equations and 7 unknowns, 3 unknowns have to be chosen. 

Therefore, we take D fixed and '1'0 as a parameter, while '1') is a variable. 

It is this last angle which is responsible for the amount of spillover 

originated by the primary feed. 

The results are found in Table 6.1 below. 

It appears that for various values of the subtending angle '1') a maximum is 

found. It is also noticed that this maximum is mostly of the order of 80% 

and has a tendency to decrease for higher values of the offset angle '1'0' 

This value of 80% is practically the same as found by Silver [108, p.413] 

for symmetrical paraboloids and by Pagones [82] for offset paraboloids. 

Fig. 6.6, finally, shows the gain factor as a function of the primary 

source with the subtending angle 'l'), as a parameter for 'l'o = 50 0 being a 

typical value for the offset angle. 

If diffraction effects of the subreflector have to be taken into account, 

the values found in Fig. 6.6 will decrease in accordance with Sec. 2.4.2. 
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Taole 6.1 

'1'0 '1'[ '1'2 gainfactor 9 n 

9 

30 6 18.42 n > 250 

8 14.41 0.813 n > 250 

40 6 28.97 n > 250 

8 25.06 0.810 n > 250 

10 21.06 0.810 162 

12 16.96 0.811 112 

50 6 39.85 n > 250 

8 36.12 0.792 n > 250 

10 32.30 0.796 162 

12 28.30 0.800 112 

14 24.18 0.804 82 

16 19.94 0.807 62 

60 6 51.14 n > 250 

8 47.77 0.750 n > 250 

10 44.22 0.760 160 

12 40.49 0.770 112 

14 36.55 0.778 82 

16 32.42 0.786 62 

18 28.11 0.794 48 

20 23.65 0.800 40 

70 6 63.01 n > 250 

8 60.26 0.654 246 

10 57.23 0.672 156 

12 53.98 0.690 108 

14 50.45 0.708 80 

16 46.62 0.725' 62 

18 42.53 0.742 48 
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6.4 Cross polarization properties 

6.4.1. Introduction 

It has been known for several years that, if a paraboloid reflector antenna 

is fed by a linearly polarized electrical dipole, the antenna system will 

radiate not only energy in the main polarization, but also a fair amount 

in an unwanted polarization, mostly called cross polarization or depola

rization. 

Condon [111 was one of the first to give a detailed analysis of this 

phenomenon. It appears that cross-polarized lobes, also called Condon lobes, 

are formed, having a maximum in planes at 45
0 

to the principle plane. 

Silver [108, p.423] also mentions this cross-polarization, mainly as an 

abstract of Condon's work. 

Cutler [15] gives a physical explanation as to the relation between 

aperture electric. field lines and the polarization of the dipole feed, 

and explaines the very unfavourable situation which occurs if the focus 

of the paraboloid falls between the aperture and apex of the paraboloid. 

This work has been continued by Jones [57], who investigated the radiation 

characteristics of paraboloid reflector antennas excited in their foci 

by a short electrical dipole feed, a short magnetic dipole feed, and a 

plane wave source, being a combination of an electric and a magnetic 

dipole. If this dipole pair is represented by dipole fields of equal 

intensity, commonly known as Huygens source, it has been proved that 

the cross-polarized component of the aperture illumination could be 

made to disappear [57]. 

Kofman [68] has extended this work by considering other conical sections 

of revolutions as well as the paraboloid. The cross-polarized pattern 

of the reflector excited by any arbitrary feed system may be calculated, 

using the methods of Afifi [2], while Potter [851 has found an analytical 

expression for the polarization loss or polarization efficiency. 

It is the latter expression which will also be reviewed in this paper. 

Potter [871 has also found a similar expression for cassegrain antennas 

which will be included in the present study. 

Watson and Ghobrial [122] have investigated the cross-polarization iso

lation at off-axis incidence for classical cassegrain antennas and front

fed paraboloidal reflectors. It is shown that the cassegrain antenna is 
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much superior to the equivalent front-fed antenna. 

Not much is known so far .about offset paraboloids and open cassegrain [12] 

antennas. Hanfling [45] has shown a stereographic mapping method which 

contains the aperture field lines of an offset antenna, excited by several 

field sources, but without further details, while Graham [41,42] describes 

the polarization of offset antennas and states that an offset cassegrain 

antenna can be designed to have low cross-polarization losses, which was 

experimentally found out by letting the axis of main- and subreflector 

differ only a few degrees. No calculations have been mentioned. 

Since plans now exist of frequency re-use above 10 GHz by polarization 

diversity, the interest in cross-polarization problems has recently 

increased considerably. 

Ludwig [76] has published a paper on the definition of cross-polarization, 

and Kinber and Tischenko [66] calculated the current distribution of 

various reflector antennas with different illumination. Unfortunately no 

numerical results are shown. 

Chu and Turrin [8] have discussed the beamshift of offset antennas with 

circular polarization and have calculated the level of cross-polarization 

sidelobes. The poor polarization performance of the open cassegrain antenna 

has been predicted. 

It is the purpose of the present paper to obtain a more detailed insight ' 

into the cross-polarization losses of offset antennas. For this purpose 

we shall compare the front-fed paraboloid, the true cassegrain antenna, 

the offset front-fed paraboloid, and the open cassegrain antenna. In 

all the cases we shall use a short electrical linearly polarized dipole 

and a Huygens source as a primary radiator. We will first compare the 

aperture electric fields, define afterwards the polarization efficiency and 

calculate this for different configuratonsi. Finally, we show a practical 

example. 

6.4 •. 2. Aperture fields of. reflector. antennas. illuminated by an electric dipole 

Let us consider a short electric dipole of length 1 [108, p.92], lying 

along the X axis of a cartesian coordinate system (Fig. 6.7), with a 

current I flowing in the direction of the positive x-axis. 
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Expressed in P,~,~ coordinates, the far zone components of the complex 

electric field are 

E = E~ii~ + E~iif; or 

E- = jnIle-jkp(_a- . ) 
COs~cOSf; + a< Sln~ , 

2 AP ~ <, 

-
where n = 120 11 Ohms, a~ and af; are unit vectors along the II; and I; axes, 

respectively, and k the wave number. 

In x,y,z coordinates Eq. 6.9 becomes 

where E 
-'k = jnIle J P/2AP. 

(6.9) 

If the dipole is oriented along the positive Y-axis, it is readily seen that 

the electric field becomes 

(6.11) 

or 

These fields will induce surface currents in any arbitrary reflector using 

geometrical optical techniques. 

Using the method employed before by Jones [57) the aperture field may now 

be found by calculating the surface-current density of the reflector 

R = 2(n X Hi)' Hi being the incident field and.n the unit vector 'normal to 

the surface at the point of incidence and projecting R on the aperture. 

A simpler way to find the aperture field may be followed by investigating 

what happens with the fields E~ii~ and Ef;af; at the point of incidence. From 

Fig. 6.8 it is readily seen that the vector Ef;al; is perpendicular to the 

plane comprising the Z-axis, radius p from focus to the surface of the 

reflector, the reflected ray, and the vector n at the point of incidence 

(plane FGH). After reflection this vector remains perpendicular to the sur

face, but its direction reverses. Therefore, 

(6.13) 

the index r indicating reflection. 
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Fig. 6.7 ELectric dipoLe oriented aLong the 
positive x-axis of a oartesian 
ooordinate system 
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Fig. 6.8 Geometry of the parabolic reflector with incident and 
reflected rays end Vectors 
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The vector Eljialji lies in plane FGH and is perpendicular to the radius. To find 

out what happens with Eljialji We will use Fig. 6.8 and define the indices nand 

T as the directions normal and tangential to the paraboloid surface at the 

point of incidence. We now resolve E", in E", and E", resulting in 
't' 't',n 't', T 

Elji,n = Elji sinH 

E lji ,1 (6.14) 

After reflection, E", is continuous and E", reverses its sign. Therefore, 
,/"n '1'1 T 

E~'1 = -E1jJ cos~lji (6.15) 

-By means of vectors a.l. and all [Fig. 6.8] and by resolving Elji,n and Elji,1 

along these vectors it is readily found, using Eqs. 6.15 that 

Er = _E
r 

sin,lji + Er COS!lji = -E;", (6.16) 
~ Iji,n lji,T 0/ 

E// = E
r COS~lji + Er s;n~lji = O. (6.17) 
lji,n lji,T 

-
The unit vector ':L. may be written 

a = xcos~ + ys;n~ 
1. 

If we use an electric dipole oriented along the positive X-axis, the 

reflected field rr follows from Eqs. 6.9, 6.16 and 6.1-8 resulting in 
lji 

rr = Eo cosljicos~ (cos~,s;ns,O), 
lji 

and Eq. 6.13 becomes 

-r -
E~ = -Eos;n~ a~ 

By means of Eqs. 6.9, 6.13 and 6.19 the aperture field EA yields 

(6.18) 

(6.19) 
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EA = Er(X,y,Z) = Eocos~cos~(cos~,sin~,O) - Eosin~(-sin~,cos~,O) 

EA = Eo[O - cos2~(l - cOS~)}x - ~sin2~(1 - cos~)y] 

. I1 -jk(F + zo) 
Jl1 e 

EO = -----,---
2Ap 

(6.20) 

Using the same technique as described above, we readily find the aperture 

field, if the dipole is oriented along the positive y- or z-axis [34]. 

The offset paraboloid is illustrated in Fig. 6.9. If the electric dipole is 

located in the focus of the paraboloid oriented along the positive x'-axis 

of a x' ,y' ,z' coordinate system, the aperture field appears to be 

(6.21) 

The results in case that the dipole is oriented along the y' or z' axis are 

found elsewhere [34]. 

The same technique as used for the front-fed paraboloid may be employed to 

calculate the fields in the aperture of a cassegrain antenna. However, there 

are some fundamental differences because the dipole field is reflected twice 

before it arrives at the main reflector aperture. Therefore -the components 

E~ and E~ are to be known after this double reflection in order to calculate 

this aperture field. If the electric dipole is located in focus F1 and 

oriented along the positive x-axis [Fig. 6.10], the aperture field is 

(6.22 ) 

In Eq. 6.22 
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where p' .is the distance between the primary focus and the surface of the 

main reflector. It is readily found that r = fie + F + Z and 
a 0 

p' = 2F/(1 + CoS~) + fie, where f is the distance between the two hyperboloid 

foci, e the hyperboloid eccentricity and Zo the depth of the paraboloid. If 

the dipole is oriented along the positive y or Z-axis similar equations may 

be found [34]. 

The calculation of the aperture field of an open cassegrain antenna is much 

more complicated than the previous ones. The geometry is presented in Fig. 

6.11. In general, the planes KGH (with the Z-axis) and F1KG (with the z' 

axis) will not coincide. Therefore, the ray from the primary focus Fl to 

the subreflector and the ray reflected from the paraboloid (GH) will 

generally not be located in the same plane. The calculation of the aperture 

field leads to long algebraic equations. The reader is referred to a report 

recently issued [34] where a detailed description of these equations is 

given [121]. 

6.4.3. The aperture fields of reflector antennas illuminated by a Huygens 

source 

A combination of an electric dipole and a magnetic dipole of equal intensity 

and crossly oriented is often called a Huygens source [57]. If this source is 

located in the focus of a paraboloid antenna in such a way that the electric 

dipole orients along the positive x-axis and the magnetic dipole along the 

positive Y-axis, the aperture fields are readily found by superposition of 

the aperture fields caused by illumination with electric and magnetic dipole. 

The reader is referred to a report [34] recently issued for the aperture 

fields of reflector antennas fed by a magnetic dipole.· 

In accordance with Jones [57], we find 

(6.23) 

In the same way if the electric dipole is oriented along the +y axis and the 

magnetic dipole along the -x axis 
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(6.24) 

It appears that in both cases the cross-polarization component disappears. 

A classical cassegrain antenna shows similar results and the cross

polarization component disappears as well. 

The aperture field of an offset entenna illuminated by a Huygens source may 

be found by combining the aperture fields originated by an electric dipole 

oriented along the positive x'-axis and a magnetic dipole oriented along 

the positive y'-axis, or by an electric dipole oriented along the positive 

y'-axis and the magnetic dipole along the negative x'-axis. As will be 

noticed, the cross-polarization component does not disappear. 

If we try to find the aperture fields of an open cassegrain antenna, it 

appears also that no simplification takes place. Therefore, it is of little 

value to rewrite here the equations found before. As will be noticed, the 

cross-polarization component in the aperture does not disappear either. 

6.4.4. The polarization efficiency 

In accordance with Potter [85], the polarization efficiency of an antenna is 

defined by the ratio of the antenna gain if the cross polarized energy were 

zero everywhere, to the antenna gain including the effects of cross-polari

zation. Thus 

f
2j'¥ 

1 . Emp(1ji.~) p2sinl/i dl/id~12 
_ 0 0 

np -j" 2rr ( '¥[ E2mp ("" e) 1 J 0/ ~ + E2Cp(1ji,~)]2 p2sin1jid1jid~12 

o 0 

(6.25) 

where Emp(1ji,~) represents the electric field in the aperture with principal 

polarization and Ecp (1ji,s) that of the cross polarization. By means of Eq. 6.25 

and the equations of the electric field in the aperture found in the pre-

vious paragraphs it is now possible to calculate the polarization efficiency. 

In the case that a front-fed paraboloid is investigated, the distance p 

between paraboloid and focus is p = 2F/(l+cos1ji), and because all the fields 

involved are proportional to exp[-jk(F+zo)]/p, Eq. 6.25 may be replaced by 
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np =0 Ya21~Emp(tj;,f,)/EO}Z + {ECp(tj;.f,)/EO}Z]~ tan~tj; dtj;dt;12 

(6.26 ) 

If the paraboloid is illuminated by an electric dipole oriented along the 

+x-axis, the aperture fields to be used are 

~p = Eo[l - cosZf,(l - COStj;)] (6.27) 

ECp = -!EO sin2f,(1 - costj;) (6.28) 

where 

jnIle-jk(F + Zo) 

Eo=---~---
2Ap 

It is possible to simplify Eq. 6.26 by substituting Eq. 6.27 and Eq. 6.28, but 

this does not increase the insight into the problem. An approximation of this 

equation as carried out by Potter [85], has the drawback that it gives only 

reliable results for very shallow paraboloid reflectors with subtending 

angles of less than 60 degrees. The results of Eq. 6.26, computed without 

any approximation, applied to front-fed paraboloid reflector antennas are 

presented in Fig. 6.12. 

In the case of a classical cassegrain antenna (Fig. 6.10), the integration 

is carried out over the angles f, and tj;2' We can now replace Eq. 6.26 by 

2Tr 'I'z 

I ofofEmp(F;,ljJ2)/Eotan~ljJ2 d~dljJ212 
(6".29 ) 

np = 1~2~'I'[(Emp(S,ljJ2)/Eo)2+ (Ecp(s,ljJ2)/Eo)21~ taniljJ2 dsdljJ212 

o 0 

If the subreflector is illuminated by an electric dipole, oriented along the 

positive x-axis, the aperture fields to be used are 

Emp/Eo' = -1 + cosZ<;[1 - cos 2arc tan{(e -1)/(e + 1) tani<PzJI (6.30) 

Ecp/Eo' = isin2f,[1 - cos 2arc tan{(e - 1)/(e + 1) tan!tj;z}] (6.31) 
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Fig. 6.13 shows the computed results, where the polarization efficiency is 

given in relation to the sub tended angle of the main reflector with the 

magnification ratio M = (e + l)/(e - 1) as a parameter. 

When an offset paraboloid antenna is investigated Eq. 6.26 may still be 

used, however, the integration limits will differ. As explained before [34] 

~ will have to be integrated between % - 0/ and % + ~. The integration 

limits of ~. ~L and ~R are 

~L = -arc cos (cosf - cosfocos*)/(sinfosin*) (6.32) 

~R = +arc cos (coso/ - cOs%cos~)/(sin%sin~) (6.33) 
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where ~o is the offset angle and ~ the angular aperture of the main reflector. 

(In the open cassegrain antenna ~ is called ~2). 

Eq. 6.26 is then written as 

(6.34) 

where the main and cross polarized fields for the offset paraboloid and 

open cassegrain antenna have been discussed in the previous sections for 

various illuminations. 

In the case of an open cassegrain antenna the efficiency factor becomes a 

little more complicated. It is readily shown that the factor Eo in the 

aperture fields is equal to that of the classical cassegrain antenna and 

that the integration limits are the same as for the ·offset antenna. Fig. 

6.14 shows the polarization efficiency Of an offset paraboloid illuminated 

by an electric dipole oriented along the positive x'-axis and positive 

y'-axis respectively, as well as illuminated by a Huygens source. 

The results obtained with an open cassegrain antenna are given in Fig. 6.15. 

The eccentricity of the hyperboloid subreflector was 1. 5. For both offset 

and open cassegrain antennas the offset angle served as a parameter. 

6.4.5. A practical example 

In the previous section a Huygens source was presented with equal intensities 

of a magnetic and an electric dipole. However, many feed patterns may be 

divided in electric and magnetic dipoles with unequal intensities. In this 

section we work out a practical example. 

A popular feed system used to illuminate a reflector surface is the open 

waveguide excited with the TE 10 mode described by Silver [I08,p.343] and 

Jones [57] and discussed in Sec. 4.2.2. 
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If we want to study the cross-polarization properties of antennas illumina

ted by this feed, we must know the waveguide dimensions, frequency range 

and cut-off frequency. 

If we study a rectangular waveguide in the X-band (8,200 - 12,400 MHz) the 

dimensions a and bare 0.900 x 0.400 inches and the cut-off frequency is 

6560 MHz. The proportions of the lowest and highest frequencies to the cut

off frequency are 1.25 and 1.90"a relationship which is also found for 

waveguides in other frequency bands. Let Aj be the longer wavelength = 3.66 

cm and A2 the shorter = 2.42 cm. The wavelength in the waveguide is then 

for Aj 

AgiO = 3.66/~1 - (3.66/4.57)2 = 6.11 cm, 

and for A2 

A = 2.421";/1 - (2.4214.57)2 = 2.85 cm glo , 

From Eq. 6.38 we then obtain for 

and Sio/k = A2/Ag = 2.42/2.85 
10 

Sio/k =. AdA 
910 

'" 0.85 

= 3.66/6.11 = 0.60 

The polarization vector is now for Aj 

cos~ 

ai - -- (1 + 0.60 COS1/! ) a1/! 
p 

and for A2 

COSt,; 
a. ---

1 
p 

.sint,; 
(0.60 + cos1/!)at,; 

p 

sint,; 
(0.85 + cos1/!)at,; 

p 

(6.35) 

(6.36 ) 

The polarization properties apparently depend on the frequency. If such a 

feed is used to illuminate a front-fed paraboloid antenna, it is readily 

found by means of the theory developed in Sec. 6.4.2. that the aperture 

field 

Cost,; 
Eo (1 + mcos1/!) (cos~.sin~.O)x 

1 + COS1/! 
sinE; 

-Eo (m + cos1/!) (-s;n~,cos~,O)x 
1 + cos1/! 

or 
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Eo 
EA = --- [{(l + mcoslji)cos2i; + (m + coslji) s;n2i;}x + 

1 + cOSlji 

+ {(1 + mCOS\jJ) cosi;s;ni; - (m + COS\jJ) cosi;sini;}y] 

where m = Solk is any value between 0.60 and 0.8S. 
(6.37) 

E is the amplitude factor of the feed system and is in accordance with 
o 

Silver [108, p.343] 

COS[(1Ta/A) s;n\jJcosi;] s;n[(1Tb/A) s;n\jJs;ni;] 

E =---------~x--------
o ((1Ta/A) s;n\jJcosi;]2 - a1T2 (1Tb/A) s;n\jJs;ni; 

(4.3) 

The results for three different values of m are given in Fig. 6.16. 

6.4.6. Conclusions 

It has been demonstrated in the foregoing that by calculating the aperture 

electric fields of antennas with a paraboloid (main) reflector, expressions 

may be derived for the polarization efficiency or polarization loss. These 

expressions are found not only for front-fed paraboloids, but also for 

classical cassegrain antennas, front-fed offset paraboloids, and open 

cassegrain antennas. Both electric dipole excitation and excitation by a 

Huygens source are investigated as they give a good insight into the 

problems and facilitate comparative studies. Moreover, there are a number 

of realistic feeds, such as a rectangular horn excited in the TE lo mode, 

having polarization properties close to the Huygens source. An example of 

this kind has been worked out, showing that the polarization losses decrease 

considerably if the polarization vector approach that of a Huygens source. 

If investigations are required for feeds with polarization properties 

different from those as discussed here, the same techniques may be used. 

After the electric aperture field has become known, an expression may be 

found for the polarization efficiency np' Carrying out the computation, it 

is readily seen that the front-fed paraboloid has very bad polarization 

properties, becoming worse for deep paraboloids. In the case that the focus 

falls within the aperture plane (~2~ 90°), the pOlarization efficiency 

falls to 89% (Fig. 6.12). On the other hand, the true cassegrain antenna 

has much better properties, which not only depend upon the subtending angle 
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of the main reflector, but also on the magnification ratio M = (e+I)/(e-I), 

which has been introduced as a parameter (Fig. 6.13). The results become 

worse for low M values and deep main paraboloids; however, for M = 2 and 

f2 = 90 degrees, the true cassegrain antenna still retains a polarization 

efficiency of 99%, being considerably more than in the case of front-fed 

paraboloids with equal f2' Offset paraboloid antennas show an increase in 

the losses at increasing subtend,ing angle and increasing offset angle. If 

we compare the front-fed paraboloid with the offset paraboloid, it appears 

that the fermer shows better results at equal subtending angles than the 

offset antenna with an electric dipole polarized along the x'-axis; e.g. 

a front-fed paraboloid with a sub tending angle of 60 degrees has a polari

zation efficiency of 98,5%, while an offset paraboloid with subtending and 

offset angles of 60 degrees shows an efficiency of only 91% (Fig. 6.14). 

If the dipole is polarized along the y'-axis, the efficiency even drops to 

89%. 

If we study the r"esults obtained with an open cassegrain antenna illuminated 

by an electric dipole, it appears that not much difference is noticed if the 

dipole is oriented along the x"-axis or y"-axis. At offset angles and 

subtending angles of about 60 degrees it appears that the efficiency drops 

to 90% which is of the same order as for offset front-fed paraboloids 

(Fig. 6.15). The results obtained by illumination by a Huygens source are, 

both for offset antennas and open cassegrain antennas, similar to those 

obtained by illumination by an electric dipole. The results clearly depend 

on the offset and sub tending angles rather more than on the polarization 

of the feed. At offset angles and main reflector sub tending angles of ca. 

60 degrees an efficiency of ca. 90% is noticed again. 

We also investigated the losses of open cassegrain antennas in relation to 

the eccentricity of the hyperboloid subreflector. Using eccentricities of 

2.0 and 2.5, the results are very similar to those with eccentricities of 

1. 5. 

Compared with the symmetrical front-fed paraboloid antenna and the classical 

cassegrain antenna, offset antennas are very unfavourable when illuminated 

by a Huygens source. The Huygens source gives zero polarization losses for 

symmetrical paraboloid reflector antennas, but the losses of offset antennas 
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are of the same order as those calculated for offset antennas illuminated 

by an electric dipole. This conclusion is supported by the fact that for 

eccentricities differing from e = 1.5 similar results are obtained. 

More study is required to find out whether feeds may be'designed having 

polarization properties which may improve the polarization losses of 

offset antennas. However, the present study makes the use of offset 

antennas for purposes where a polarization discrimination of more than 

30 dB is required, very questionable. 
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