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Abstract

Hankel matrices consisting of Catalan numbers have been analyzed by various authors. Desainte-
Catherine and Viennot found their determinant to be [];,< ;< LHE20 and related them to the

i+j A‘
Bender - Knuth conjecture. The similar determinant formula [, ;< %71:2”

to hold for Hankel matrices whose entries are successive middle binomial coefficients
Generalizing the Catalan numbers in a different direction, it can be shown that determinants of
Hankel matrices consisting of numbers Wlﬂ (3”7?1) yield an alternate expression of two Mills —
Robbins — Rumsey determinants important in the enumeration of plane partitions and alternat-
ing sign matrices. Hankel matrices with determinant 1 were studied by Aigner in the definition
of Catalan — like numbers. The well - known relation of Hankel matrices to orthogonal polyno-
mials further yields a combinatorial application of the famous Berlekamp — Massey algorithm in
Coding Theory, which can be applied in order to calculate the coefficients in the three — term

recurrence of the family of orthogonal polynomials related to the sequence of Hankel matrices.

can be shown
(2m+1)
T

I. Introduction

A Hankel matrix (or persymmetric matrix)

Co C1 Co R o |
C1 Cy C3 e Cn
A, = C2 €3 C4 ... Cpg1 | (1.1)
Ch-1 Cn Cpg1 ... Cop_2

is a matrix (a;;) in which for every r the entries on the diagonal i 4+ j = r are the same,
i.e., a;,—; = ¢, for some c,.
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For a sequence cg,cq,co,... of real numbers we also consider the collection of Hankel

. k
matrices A" ), k=0,1,...,n=1,2, ... where
Ck Ck+1 Ck+2 -+ Ckin—1
Ck+1  Ck+2  Ck+3 -+ Cki4n
Aff) = Ck+2  Ck+3  Ck+da -+ Chkynt1 | . (1.2)
Ck4n—1 Ck+n Ckin+1 .- Ck4+2n—2

So the parameter n denotes the size of the matrix and the 2n — 1 successive elements
Cly Ckt1, - - - 5 Ckron—2 Occur in the diagonals of the Hankel matrix.

We shall further denote the determinant of a Hankel matrix (1.2) by

d® = det(AR)). (1.3)

Hankel matrices have important applications, for instance, in the theory of moments,
and in Padé approximation. In Coding Theory, they occur in the Berlekamp - Massey
algorithm for the decoding of BCH - codes. Their connection to orthogonal polynomials
often yields useful applications in Combinatorics: as shown by Viennot [76] Hankel deter-
minants enumerate certain families of weighted paths, Catalan — like numbers as defined
by Aigner [2] via Hankel determinants often yield sequences important in combinatorial
enumeration, and as a recent application, they turned out to be an important tool in the
proof of the refined alternating sign matrix conjecture.

The framework for studying combinatorial applications of Hankel matrices and further
aspects of orthogonal polynomials was set up by Viennot [76]. Of special interest are

determinants of Hankel matrices consisting of Catalan numbers Wlﬂ (2m+1). Desainte —

Catherine and Viennot [24] provided a formula for det(Agk)) and all n > 1, k£ > 0 in case
that the entries c,, are Catalan numbers, namely

For the sequence ¢, = 2ml+1 (2’7;1), m =0,1,... of Catalan numbers it is
49
a0 —a® =1, d= [ LT ferkzon>1 (14)
1<i<j<k-1 +J

Desainte—Catherine and Viennot [24] also gave a combinatorial interpretation of this de-
terminant in terms of special disjoint lattice paths and applications to the enumeration
of Young tableaux, matchings, etc..

They studied (1.4) as a companion formula for [, ;<< Zfiﬁfc,

shown by Gordon (cf. [67]) to be the generating function for certain Young tableaux.

which for integer ¢ was

For even ¢ = 2n this latter formula also can be expressed as a Hankel determinant formed

of successive binomial coefficients (Q”Zjl).

For the binomial coefficients c¢,,, = (2”;:1), m=0,1,...

s
a0 =1, dP= T] ”1—1” for k,n > 1. (1.5)
1 ] —

1<i<j<k
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We are going to derive the identities (1.4) and (1.5) simultaneously in the next section.

Our main interest, however, concerns a further generalization of the Catalan numbers and
their combinatorial interpretations.
In Section III we shall study Hankel matrices whose entries are defined as generalized

Catalan numbers ¢,,, = ﬁ (3”;:1). In this case we could show that
n—1 . . . n 6j—2
4O = H (37 + 1)(63)!('23)!’ 40 — H (igj 1) ‘ (1.6)
(@ + Dl(4)! Lo

These numbers are of special interest, since they coincide with two Mills — Robbins — Rum-
sey determinants, which occur in the enumeration of cyclically symmetric plane partitions
and alternating sign matrices which are invariant under a reflection about a vertical axis.
The relation between Hankel matrices and alternating sign matrices will be discussed in
Section IV.

Let us recall some properties of Hankel matrices. Of special importance is the equation

Co C1 Co ... Cp—1 Qp0 —Cp,

C1 Cy C3 e Cn Qn 1 —Cp+1

Co C3 Cyq oo Cpat . Qn2 — —Cp+2 . (17)
Ch—1 Cn Cpy1 ... Cop—2 an,nfl —Con—1

It is known (cf. [16], p. 246) that, if the matrices AY are nonsingular for all n, then the
polynomials
tj(l‘) = I'j + (ljd‘_ll'j_l + ajyj_ng” —+ ... aj1T + G50 (18)
form a sequence of monic orthogonal polynomials with respect to the linear operator T'
mapping z! to its moment T'(z') = ¢; for all [, i. e.
T(tj(z) - tm(x)) =0 for j #m. (1.9)
and that

T(z™-tj(x))=0form=0,...,5— 1. (1.10)
In Section V we shall study matrices L,, = (I(m, j))m j=01,.,n—1 defined by

l(m,j) =T(™-tj(x)) (1.11)

By (1.10) these matrices are lower triangular. The recursion for Catalan — like numbers, as
defined by Aigner [2] yielding another generalization of Catalan numbers, can be derived
via matrices L, with determinant 1. Further, the Lanczos algorithm as discussed in [13]
yields a factorization L, = A, - U}, where A, is a nonsingular Hankel matrix as in (1.1),
L,, is defined by (1.11) and
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1 0 0 - 0 0
aip 1 0 0 0

U, = aso Q21 r ... 0 0 (1.12)
Gp-10 Qan—-11 QGp—22 ... Apn—1n—2 1

is the triangular matrix whose entries are the coefficients of the polynomials ¢;(z), j =
0,...,n—1.

In Section V we further shall discuss the Berlekamp — Massey algorithm for the decoding
of BCH-codes, where Hankel matrices of syndromes resulting after the transmission of a
code word over a noisy channel have to be studied. Via the matrix L,, defined by (1.11)
it will be shown that the Berlekamp — Massey algorithm applied to Hankel matrices
with real entries can be used to compute the coefficients in the corresponding orthogonal
polynomials and the three — term recurrence defining these polynomials.

Several methods to find Hankel determinants are presented in [61]. We shall mainly
concentrate on their occurrence in the theory of continued fractions and orthogonal poly-
nomials. If not mentioned otherwise, we shall always assume that all Hankel matrices A,
under consideration are nonsingular.

Hankel matrices come into play when the power series

F(z) =co+ 1w+ cox® + ... (1.13)

is expressed as a continued fraction. If the Hankel determinants dq(zo) and d%l) are different
from 0 for all n the so—called S—raction expansion of 1 — zF(z) has the form

Col

Q1
(A

l—aF(z)=1-

(1.14)
]_ _

Namely, then (cf. [55], p. 304 or [78], p. 200) for n > 1 and with the convention dék) =1
for all k it is

a4, Aty -, (1.15)
e s L I OB O '
40 d - dy)

For the notion of S— and J— fraction (S stands for Stieltjes, J for Jacobi) we refer to the
standard books by Perron [55] and Wall [78]. We follow here mainly the (g,, e, )—notation
of Rutishauser [65].

For many purposes it is more convenient to consider the variable % in (1.13) and study
power series of the form
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1 1 Co C1 Co
-F-)=—+—=4+—=+... 1.16
T (3:) Y N ( )
and its continued S—fraction expansion
Co
r— q1
€1
1- v 42
R
x —_—
which can be transformed to the J-fraction
Co
1.17
5 (117)
r — 1 — ﬂg
r — Oy —
r— Qg — ...

with oy = ¢, and o1 = gj41 + e, B; = g;e; for j > 1. (cf. [55], p.375 or [65], pp.
13).

The J-fraction corresponding to (1.14) was used by Flajolet ([26] and [27]) to study
combinatorial aspects of continued fractions, especially he gave an interpretation of the
coefficients in the continued fractions expansion in terms of weighted lattice paths. This
interpretation extends to parameters of the corresponding orthogonal polynomials as stud-
ied by Viennot [76]. For further combinatorial aspects of orthogonal polynomials see e.g.
28], [72].

Hankel determinants occur in Padé approximation and the determination of the eigenval-
ues of a matrix using their Schwarz constants, cf. [65]. Especially, they have been studied
by Stieltjes in the theory of moments ([70], [71]). He stated the problem to find out if a
measure j exists such that

/ gldu(r) = ¢  foralll=0,1,... (1.18)
0

for a given sequence ¢y, ¢i, o, . .. by the approach [ dm“—f? = Z;’io(—l)lﬁ.

Stieltjes could show that such a measure exists if the determinants of the Hankel ma-
trices AY) and AY" are positive for all n. Indeed, then (1.9) results from the quality of
pi(=)
(@)
polynomials (1.8). Hence they obey the three — term recurrence

the approximation to (1.16) by quotients of polynomials where ¢;(x) are just the

tj(x) = (x —ay)tja(x) = Bjmr - tjo(x),  to(z) =1,  h(@)=z—a, (L19)

where
] = (1, and C(jJrl = q]'+1 + ej, Bj = q]'€j fOI‘j 2 1. (120)
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In case that we consider Hankel matrices of the form (1.2) and hence the corresponding
power series ¢ + cpi1T + ck+2x2 + ..., we introduce a superscript (k) to the parameters
in question.

Hence, qﬁk) and e%k) denote the coefficients in the continued fractions expansions

Ck Ck
k ) k) (k
1 q( x (k) €§ )(ﬁ )
- r—aq —
(k) (k) (k)
| e x (k) (k) €y 4o
I e =4 —€ -
(k). (k) _ k) _
1 qs — g3 2
]_ _
and
tg-k) () =27 + (zgkj) a4 agfgj)ﬁgz:j’2 + . (k)x + (z(k)

are the corresponding polynomials obeying the three — term recurrence

tﬁ»k)(x) =(x— Oz§k)) () — ﬁ(k1t§k2( ).

Several algorithms are known to determine this recursion. We mentioned already the
Berlekamp — Massey algorithm and the Lanczos algorlthm In the quotient—difference
algorithm due to Rutishauser [65] the parameters ¢,  and elf) are obtained via the so-
called rhombic rule

elk) = e(k) + gt — ) e(()k) =0 for all k, (1.21)
(k) (k+1) el (k) _ Ck+1
+ n _
qn+1 = qn w, ql = ? fOI' aﬂ k (122)

I1. Hankel Matrices and Chebyshev Polynomials

Let us illustrate the methods introduced by computing determinants of Hankel matrices
whose entries are successive Catalan numbers. In several recent papers (e.g. [2], [47],
[54], [62]) these determinants have been studied under various aspects and formulae were
given for special parameters. Desainte-Catherine and Viennot in [24] provided the general

solution d\f) = [Ti<ic i<kt % for all n and k. This was derived as a companion formula
(yielding a “90 % bijective proof” for tableaux whose columns consist of an even number
of elements and are bounded by height 2n) to Gordon’s result [36] in the proof of the
Bender — Knuth conjecture [8]. Gordon proved that [T, i<k C”;iji ;1 is the generating
function for Young tableaux with entries from {1,...,n} strictly increasing in rows and
not decreasing in columns consisting of < ¢ columns and largest part < k. Actually, this
follows from the more general formula in the Bender — Knuth conjecture by letting ¢ — 1,
see also [67], p. 265.

By refining the methods of [24], Choi and Gouyou — Beauchamps [21] could also derive

Gordon’s formula for even ¢ = 2n. In the following proposition we shall apply a well -
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known recursion for Hankel determinants allowing to see that in this case also Gordon’s
formula can be expressed as a Hankel determinant, namely the matrices then consist of
consecutive binomial coefficients of the form (2”7?1). Simultaneously, this yields another
proof of the result of Desainte — Catherine and Viennot, which was originally obtained by
application of the quotient — difference algorithm [77].

Proposition 2.1:

a) For the sequence ¢, = 2m1+1 (Qmmﬂ), m =0,1,... of Catalan numbers it is
d9=dP =1, a®= T] LIt I ik sonz1 (2)
1<i<j<k-1 +J

b) For the binomial coefficients ¢, = (2”::1), m=0,1,...

s
a0 =1, a¥ = T] Hi—i” for k,n > 1. (2.2)
1 ] —

1<i<j<k

Proof: The proof is based on the following identity for Hankel determinants.

dHD . qle=1) _ g gk g2 (2.3)

n n+1

This identity can for instance be found in the book by Polya and Szegé [59], Ex. 19, p.
102. Tt is also an immediate consequence of Dodgson’s algorithm for the evaluation of
determinants (e.g. [82]).

We shall derive both results simultaneously. The proof will proceed by induction on n+ k.
It is well known, e.g. [69], that for the Hankel matrices A with Catalan numbers as

entries it is dY) = dY) = 1. For the induction beginning it must also be verified that
d? =n+1 and that 4 = w is the sum of squares, cf. [47], which can also

be easily seen by application of recursion (2.3).
Furthermore, for the matrix A whose entries are the binomial coefficients (%Ij 1), (2::5’),

. it was shown in [2] that dY =1 and d = 2n + 1. Application of (2.3) shows that

d? = ("H)(Q";rl)@"”), i. e., the sum of squares of the odd positive integers.
Also, it is easily seen by comparing successive quotients C’Z—Zl that for n = 1 the product in

(2.1) yields the Catalan numbers and the product in (2.2) yields the binomial coefficients

(2kkj11), cf. also [24].

Now it remains to be verified that (2.1) and (2.2) hold for all n and k, which will be done
by checking recursion (2.3). The sum in (2.3) is of the form (with either d = 0 for (2.1)
or d =1 for (2.2) and shifting k to k 4+ 1 in (2.1))

ﬁi-i—j—d-l—?n'kl—fi-l—j—d—l—?n_ﬁi+j—d+2(n-|—1).kl—fi+j—d+2(n—1)_
o tTImd o gn thdmd s iy g ti—d
2
’ﬁz’+j—d+2n
AL i
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2
B ifi+j—d+2n
N i+j—d

ij=1

[ (k+j—d) T (e —1+5—d+2n) Tl (k+j—d) T2 (1 +j — d+2n)

<H§1(k+j—d+2n>-H§%(k—1+j—d> [5G —d+2n) - TI5Z{(k— 144 —d) _1>

2
B Tfi+j—d+2n
B i+j—d

ij=1

(2n + 2k — d)(2n + 2k — 1 — d)(k — d) (2n —d)(2n +1—d)(k — d) .
'( (2n +k — d)(2k — d)(2k — 1 — d) _@n+k—@@k—@@k—1—@_'>

This expression is 0 exactly if

Cn+2k—d)(2n+2k—1—d)(k—d)— 2n—d)(2n+1—d)(k — d)—
—@n+k—d)(2k —d)(2k — 1 — d) = 0.

In order to show (2.1), now observe that here d = 0 and then it is easily verified that

(n+k)2n+2k—-1)—n2n+1)— 2n+k)(2k—1)=0.

In order to show (2.2), we have to set d = 1 and again the analysis simplifies to verifying

2n+2k—1)(n+k—-1)—2n—1)n—2n+k—-1)(2k—1) =0.

O
Remarks:
1) As pointed out in the introduction, Desainte-Catherine and Viennot [24] derived iden-
tity (2.1) and recursion (2.3) simultaneously proves (2.2). The identity det(AY)) = 1
when the ¢,,’s are Catalan numbers or binomial coefficients (2"::1) can already be found
in [52], pp. 435 — 436. d dn , and d for this case were already mentioned (in the proof

(4)

of Theorem 2.1. The next determinant in this series is obtained via dcfg‘) = ?;)rl For the

—1

n—1
Catalan numbers then d\ dﬂl{)d(g) = nlnt1)® ("+21)8(§"+1)(2"+3)
2) Formula (2.1) was also studied by Desainte-Catherine and Viennot [24] in the analysis
of disjoint paths in a bounded area of the integer lattice and perfect matchings in a
certain graph as a special Pfaffian. An interpretation of the determinant d'¥) in (2.1) as
the number of k—tuples of disjoint positive lattice paths (see the next section) was used
to construct bijections to further combinatorial configurations. Applications of (2.1) in

Physics have been discussed by Guttmann, Owczarek, and Viennot [40].

3) The central argument in the proof of Theorem 2.1 was the application of recursion
(2.3). Let us demonstrate the use of this recursion with another example. Aigner [3]
could show that the Bell numbers are the unique sequence (¢, )m—o0.1.2,.. such that
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det(AL)) = det(AL) =Tk, det(AP) = rppr [ & (2.4)
k=0 k=0

where 7, = 14+ > " n(n—1)---(n — 1+ 1) is the total number of permutations of n
things (for det(Afzo)) and det(A%l)) see [27] and [23]). In [3] an approach via generating
functions was used in order to derive d'Y) = det (Aq(f)) in (2.4). Setting AP =1y [T, !
in (2.4), with (2.3) one obtains the recurrence r,; = (n+ 1) - r,, + 1,79 = 5, which just
characterizes the total number of permutations of n things, cf. [63], p. 16, and hence can
derive det(Ag)) from det(A%O)) and det(Ag)) also this way.

4) From the proof of Proposition 2.1 it is also clear that [],; ;. itj—dtn

iti—d
of Hankel determinants d\” only for d = 0, 1, since otherwise recursion (2.3) is not fulfilled.

yields a sequence

As pointed out, in [24] formula (2.1) was derived by application of the quotient — difference
algorithm, cf. also [21] for a more general result. The parameters ¢ and e also can
be obtained from Proposition 2.1.

Corollary 2.1: For the Catalan numbers the coefficients quk) and e in the continued

fractions expansion of y >*°_, IE J;n) =1 (Q(k; +"2+1)xm as in (1.14) are given as
) _ (2n+2k —1)(2n + 2k) o) (2n)(2n +1) (25)
T T ontk—1)@ntk) " T @ntk)@ntk+l) ‘

For the binomial coefficients (2”31)

oo () are

the corresponding coefficients in the expansion of

w _ (2n+2k)(2n + 2k + 1) L) (2n—1)(2n) (2.6)
b T T onrk—1)2ntk) . ™ T @nikhCntkt 1) '
Proof: (2.5) and (2.6) can be derived by application of the rhombic rule (1.21) and (1.22).

They are also immediate from the previous Proposition 2.1 by application of (1.15), which

for k > 0 generalizes to the following formulae from [65], p. 15, where the d'¥)’s are Hankel
determinants as (1.3).

(k+1) (k) (k) 4(k)
q(k) _ d” dnfl €(k) _ dnJrldnfl )
n dq(zk)dikjll) ’ n 4 gD
O
Corollary 2.2: The orthogonal polynomials associated to the Hankel matrices AW of
Catalan numbers ¢,,, = 2m1+1 (QT;?LLI) are
k k) (k k k 4k + 2
1) = (@ = o)y = @), 7@ =1, V@) =25

where
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(k) 2k(k —1) *) _ (2n + 2k — 1)(2n + 2k)(2n)(2n + 1)

:2— .
Fnt1 2n+k+2)(2n+k)’ b Cn+k—1)2n+k)?22n+k+1)

Proof: By (1.20), ) — q,(lk) el as in the previous corollary and

o® Ly  2n A2k 1)(2n 42k +2)(2n+ k) + 2n)2n+ )20+ k +2)
il = np1 T = (2n+k+1)(2n+k+2)(2n+ k)

8n® + 8nk + 8n+ 2k +4k° 2k(k — 1)

2n+k+2)2n+k) 7 2n+Ek+2)2n+k)

O

Especially for small parameters k the following families of orthogonal polynomials arise
here.

]

) = S0 (" ) ey
with recursion

Uun () = 22 - up_1(x) — upy_so(x), up(z) =1, uy(z) = 2x

come in for Hankel matrices with Catalan numbers as entries. For instance, in this case
the first orthogonal polynomials in Corollary 2.2 are
1 1 T

i
106 = Jus(y), ) = Suann ()

Corollary 2.3: The orthogonal polynomials associated to the Hankel matrices Aff) of

binomial coefficients ¢,,, = (2";jl) are
4k + 6
1B(@) = (@ — o, — 8000, ), @) =1, @) =2 T
k+2
where
NCOREP 2k(k+1) g® (2n +2K)(2n + 2k + 1)(2n — 1)(2n)‘
il (2n+k+2)(2n + k)’ L Qnt k- D20+ E)2@2n+k+ 1)
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Proof: Again, @(Lk) = qﬁf) . e%k) as in the previous corollary and

O q(k) Lol _ (2n+2k+2)2n+ 2k +3)((2n+ k) + (2n — 1)(2n)(2n + k + 2)
el el 2n+k)2n+k+1)2n+k+2)

_ 8n® +8nk +8n + 2k +4k 2k(k +1)

2n+k+2)2n+k) 7 2n+Ek+2)(2n+k)

ITI. Generalized Catalan Numbers And Hankel Determinants

For an integer p > 2 we shall denote the numbers #(W”Jrl
pm—+1 m

numbers. The Catalan numbers occur for p = 2. (The notion “generalized Catalan
numbers” as in [42] is not standard, for instance, in [39], pp. 344 — 350 it is suggested to
denote them “Fuss numbers”).

Their generating function

) as generalized Catalan

Gyl =Y o (M (31)

m=0
fulfills the functional equation

Cp(r) =1+ Cy(z)?,

from which immediately follows that

1
=1—xz-Cylz)P" 3.2
Cp(l') Z p(l') ( )
Further, it is
_ - 1 pm—+p—1

C p—1 _ - m. 3.3

b(7) 77;]pm—i-p—l( m—+1 )x (3:3)
It is well known that the generalized Catalan numbers I#H (pmmﬂ) count the number of

paths in the integer lattice Z x Z (with directed vertices from (i, j) to either (i,5 + 1) or
to (i + 1,7)) from the origin (0,0) to (m, (p — 1)m) which never go above the diagonal
(p — 1)x = y. Equivalently, they count the number of paths in Z x Z starting in the
origin (0,0) and then first touching the boundary {(I+1,(p—1)I+1):1=0,1,2,...} in
(m,(p—1)m+1) (cf. e.g. [75]).

Viennot [76] gave a combinatorial interpretation of Hankel determinants in terms of dis-
joint Dyck paths. In case that the entries of the Hankel matrix are consecutive Catalan
numbers this just yields an equivalent enumeration problem analyzed by Mays and Woj-
ciechowski [47]. The method of proof from [47] extends to Hankel matrices consisting of
generalized Catalan numbers as will be seen in the following proposition.

et ()

p > 2 a positive integer, then det(A%k)) is the number of n—tuples (7o, ..., V1) of vertex

Proposition 3.1: If the ¢,,’s in (1.2) are generalized Catalan numbers, ¢,, =
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— disjoint paths in the integer lattice Z x Z (with directed vertices from (i, j) to either
(1,7 4+ 1) or to (i + 1, 7)) never crossing the diagonal (p — 1)z = y, where the path =, is
from (—r,—(p — 1)r) to (k+r,(p — 1)(k+1)).

Proof: The proof follows the same lines as the one in [32], which was carried out only for
the case p = 2 and is based on a result in [46] on disjoint path systems in directed graphs.
We follow here the presentation in [47].

Namely, let G be an acyclic directed graph and let A = {aq,...,a,1}, B={bo,...,bp_1}
be two sets of vertices in G of the same size n. A disjoint path system in (G, A, B) is a
system of vertex disjoint paths (7o, ..., Vn—1), where for every i = 0,...,n — 1 the path
7; leads from a; to by(;) for some permutation o on {0,...,n — 1}.

Now let p;; denote the number of paths leading from a; to b; in G, let p* be the number
of disjoint path systems for which ¢ is an even permutation and let p~ be the number
of disjoint path systems for which o is an odd permutation. Then det((p;;)i j=0,.n—1) =
pT — p~ (Theorem 3 in [47]).

Now consider the special graph G’ with vertex set

V={(u,v) €EZXZ: (p—1)u<v},

i. e. the part of the integer lattice on and above the diagonal (p — 1)x = y, and directed
edges connecting (u,v) to (u,v + 1) and to (u + 1,v) (if this is in V, of course).

Further let A = {ag,...a,-1} and B = {by,...b,—1} be two sets disjoint to each other
and to V. Then we connect A and B to G’ by introducing directed edges as follows

a; — (—i,—(p — 1)7), (k+i,(p—1)(k+1)) — b, i=0,...,n—1. (3.4)
Now denote by G” the graph with vertex set VU AUB whose edges are those from G’ and
the additional edges connecting A and B to G as described in (3.4).

Observe that any permutation ¢ on {0,...,n — 1} besides the identity would yield some
j and [ with o(j) > j and o(I) < [. But then the two paths 7; from a; to bs(;) and 7
from a; to b,y must cross and hence share a vertex. So the only permutation yielding
a disjoint path system for G’ is the identity. The number of paths p;; from a; to b; is

the generaliz.ed Catalgn number. m(}’ (](“,j ;:jfj))“) So the matrix (pzlj). i_s of Hankel
type as required and its determinant gives the number of n — tuples of disjoint paths as
described in Proposition 3.1. O
Remarks:

1) The use of determinants in the enumeration of disjoint path systems is well known,
e.g. [31]. In a similar way as in Proposition 3.1 we can derive an analogous result for the
number of tuples of vertex — disjoint lattice paths, with the difference that the paths now
are not allowed to touch the diagonal (p—1)x = y before they terminate in (m, (p—1)m).

Since the number of such paths from (0, 0) to (m, (p—1)m) is pmjpfl (p”:jffl) (cf. e.g. the

appendix), this yields a combinatorial interpretation of Hankel matrices A%k) with these
numbers as entries as in (1.2).

2) For the Catalan numbers, i. e. p = 2, lattice paths are studied which never cross the di-
agonal x = y. Viennot provided a combinatorial interpretation of orthogonal polynomials
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by assigning weights to the steps in such a path, which are obtained from the coefficients
in the three-term recurrence of the orthogonal polynomials ([76], cf also. [26]). In the
case that all coefficients o are 0, a Dyck path arises with vertical steps having all weight
1 and horizontal steps having weight 3; for some j. For the Catalan numbers as entries
in the Hankel matrix all 3;’s are 1, since the Chebyshev polynomials of second kind arise.
So the total number of all such paths is counted. Observe that Proposition 3.1 extends
the path model for the Catalan numbers in another direction, namely the weights of the
single steps are still all 1, but the paths now are not allowed to cross a different boundary.

In order to evaluate the Hankel determinants we further need the following identity.

Lemma 3.1: Let p > 2 be an integer. Then

(i (pﬂ:’b) Im) . (g pm1+ : (pmm+ 1) xm) _ i (pmm+ 1) o s

m=0 m=0

Proof: We are obviously done if we could show that for all m =0,1,2,...

() =2 () C0s)

In order to do so, we count the number (”m+1) of lattice paths (where possible steps are

from (i, ) to either (¢, 4+ 1) or to (i + 1,j)n§ from (0,0) to (m, (p —1)m + 1) in a second
way. Namely each such path must go through at least one of the points (I, (p — 1)l + 1),
l=0,1,...,m. Now we divide the path into two subpaths, the first subpath leading from
the origin (0,0) to the first point of the form (I, (p — 1)l + 1) and the second subpath
from (I, (p—1){+1) to (m, (p—1)m+1). Recall that there are —— (pl+1) possible choices

pl+1
for the first subpath and obviously there exist ( p(m= l)) possibilities for the choice of the
second subpath. O
Theorem 3.1: For m = 0,1,2... let denote ¢,, = 37nl+1 (3"::1) and b, = 3m1+2 (3;”:12).
Then
Co C1 Cy ... Cph—1
C1 (&) C3 cee Cp n—1
2
Co C3 Cy4 e Cpyi H 3] +1 ( {) 7
. PR LY + 4j)!
Ch—1 Cn Cpg1 ... Cop—2
C1 Cy C3 e Cp,
C2  C3 C4 ... Cppa 65—2

C3 Cy Cs N — H ( 2.]' ) (36)

Cn Cpt1 Cpy2 .. Cop—1
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and

by by by ... b,

by by by ... by .

bbby b | D) 57)
S P (47 + D)) ‘
bn bn+1 bn+2 B b2n—1

Proof: Observe that

(3m> LGB T (i + DT (35 +2)
m! T, (24) T (25 + 1)

m—1 . m—1 .
mHj:o (% +J) Hj:o (% +])
m! T (3 + )

-3

m

and accordingly
<3m+ 1) T GH T (B + 9 [T (35 +2)
m! T (20) T (27 +3)
Then with (3.2) and (3.5) we have the representation
22:0 (ST;n)xm — F(a75777y)
22:0 (3”::1)3;771 F(a7ﬁ+177+17y)’
which is the quotient of two hypergeometric series, where

af ala+1)5(F+1) 2+@(@+1)(@+2)ﬁ(ﬁ+1)(5+2) 2

=)

S G+ TS+ i)

m—1 .
m m! szo (% +J)

D(x) :==1—z-C3(z)* =

Fla, B,7,y) =14+ —y+ Y Yot
( ) v 2l y(y+1) 3y(r+ 1)y +2)
with the parameter choice
2 1 1 27
a=g, B=g, v=5 y=¢ (3.8)

For quotients of such hypergeometric series the continued fractions expansion as in (1.14)
was found by Gauss (see [55], p. 311 or [78], p. 337). Namely for n =1,2,... it is

_ (e+n)(y=F+n) _ (Bt+n)y—a+n)
" " (y+2n—1D(v+2n)

(v+2n)(y+2n+1)

Now denoting by qﬁLD) and e'”) the coefficients in the continued fractions expansion of
the power series D(x) = 1 — xC3(z)? under consideration, then taking into account that
Y= 274795 we obtain with the parameters in (3.8) that
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(D) _ 3(6n+1)(3n+2) P) = 3(6n—1)(3n + 1)‘ (3.9)
" T 2(dn+1)(dn+3) " T 2Un—1D){An+1)
The continued fractions expansion of 1+ zC3(z)? differs from that of 1 —zC3(z)? only by
changing the sign of ¢y in (1.14).
So, by application of (1.15) the identity (3.7) for the determinants d? and d of Hankel
matrices with the numbers 3ml - (i;”:f) as entries is easily verified by induction. Namely,
observe that

(6n—1)(3n+1)  2(6n)(6n —1)(2n)(3n+ 1)

(4n —1)(dn+1)  (4n+1)(4n)2(4n — 1)

3
2

Bnt+16n)2n)! 20" dY 4P,

dn+DlEn) (2 40 40
and that
3(6n+1)(Bn+2)  (6n+4)(6n+3)(6n+2)(6n+1)(2n+1)
2(4n+1)(4n+3)  2(4n+3)(4n +2)2(4n + 1)(3n + 1)
_ Gda)  (n+iEn)! Y, 4
2(0%) Bn+1)(6n)!(2n)!  g© g

where d”,,d" | dV d, dﬁfﬁl are the determinants for the Hankel matrices in (3.7).

n—1» “n—1
In order to find the determinants for the Hankel matrices in (3.6) with generalized Catalan

numbers ﬁ“(?’"::l) as entries, just recall that D(z) = 1 — 2Cs(x)?* = cgl(x)' So the

continued fractions expansion of

—x —x
1+2C3(z)=1—-————==1-—
1 — 2C53(x)? ¢\
1—
ey
1 1
q(C) T
1_ %
1 —
is obtained by setting qﬁc) =1, egc) = qSLD) forn > 1 and qﬁc) = efﬂ for n > 2. 0

Problem: In the last section we were able to derive all Hankel determinants d%k) with

Catalan numbers as entries. So the case p = 2 for Hankel determinants (1.2) consisting of

1 (pm-i-l
pm—+1 m

d'Y. However the methods do not work in order to determine d for k > 2. Also they
do not allow to find determinants of Hankel matrices consisting of generalized Catalan
numbers when p > 4. What can be said about these cases?

numbers ) is completely settled. For p = 3, the above theorem yields d%o) and

Let us finally discuss the connection to the Mills — Robbins — Rumsey determinants
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T, (z, p) = det <2;Z§ (Ztt/Z) (ij_ t) ij_t> . : (3.10)

§,j=0,....,n—1
where 1 is a nonnegative integer (discussed e.g. in [50], [6], [5], [22], and [57]). For p =0, 1
it is T,,(1, u) = d" - the Hankel determinants in (3.6). This coincidence does not continue
for pu > 2.

Using former results by Andrews [4], Mills, Robbins, and Rumsey [50] could derive that

To(1, p) = det ((““H ) - %EA%(%) (3.11)

where Ag(p) =2 and with (z); =z(z +1)(x +2)---(x +j — 1)

(1 + 2k + 2)x(Gp + 2k + F)i
(R)e(gp + &+ 31
They also state that the proof of formula (3.11) is quite complicated and that it would be
interesting to find a simpler one. One might look for an approach via continued fractions

for further parameters p, however, application of Gauss’s theorem only works for y =0, 1,
where (3.9) also follows from (3.11).

Mills, Robbins, and Rumsey [50] found the number of cyclically symmetric plane partitions
of size n, which are equal to its transpose-complement to be the determinant 7,,(1,0).
They also conjectured T,,(x, 1) to be the generating function for alternating sign matrices
invariant under a reflection about a vertical axis, especially T,,(1,1) should then be the
total number of such alternating sign matrices as stated by Stanley [68]. We shall further
discuss this conjecture in Section IV.

The determinant 7,,(1, u) = det < 5282 (Ztt‘;) ( . J j)) , comes in as counting func-
i,j=0

Aoy, (H) =

, k>0.

tion for another class of vertex—disjoint path families in the integer lattice. Namely, for
such a such a tuple (7o, ...,7n—1) of disjoint paths, path 7, leads from (i, 2i+ ) to (24, 4).
By a bijection to such disjoint path families for 4 = 0 the enumeration problem for the
above — mentioned family of plane partitions was finally settled in [50].

IV. Alternating Sign Matrices

An alternating sign matriz is a square matrix with entries from {0,1, —1} such that i)
the entries in each row and column sum up to 1, ii) the nonzero entries in each row and
column alternate in sign. An example is

000 1000
100 -1001
000 1000
010 -1010 (4.1)
000 1000
0011100
000 1000
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Robbins and Rumsey discovered the alternating sign matrices in the analysis of Dodgson’s
algorithm in order to evaluate the determinant of an n x n — matrix. Reverend Charles
Lutwidge Dodgson, who worked as a mathematician at the Christ College at the University
of Oxford is much wider known as Lewis Carroll, the author of [18]. His algorithm, which
is presented in [16], pp. 113 — 115, is based on the following identity for any matrix ([25],
for a combinatorial proof see [82]).

det ((aij)ij=1,..n) - det ((aij)ij=2, n-1) = det ((ai;)ij=1,..n-1) - det ((ai;)ij=2...n) —
—det ((a;;)i=1,..n—1j=2..n) - det ((ai;)i=2,  nj=1..n-1) - (4.2)

If (a; ;)i j=1,..n in (4.2) is a Hankel matrix, then all the other matrices in (4.2) are Hankel
matrices, too. Hence recursion (2.3) from the introduction is an immediate consequence
of Dodgson’s result.

In the course of Dodgson’s algorithm only 2 x 2 determinants have to be calculated.
Robbins asked what would happen, if in the algorithm we would replace the determinant
evaluation a;;a;t1, 41 — @i j+10i+1,; by the prescription a;ja;41 41 + @i j110i41;, Where x
is some variable.

It turned out that this yields a sum of monomials in the a;; and their inverses, each
monomial multiplied by a polynomial in . The monomials are of the form [[;,_, a?;-j
where the b;;’s are the entries in an alternating sign matrix. The exact formula can
be found in Theorem 3.13 in the book “Proofs and Confirmations: The Story of The
Alternating Sign Matrix Conjecture” by David Bressoud [16].

The alternating sign matrix conjecture concerns the total number of n x n alternating
sign matrices, which was conjectured by Mills, Robbins, and Rumsey to be H;:& ((3 jj:jl))!!.
The problem was open for fifteen years until it was finally settled by Zeilberger [80]. The
development of ideas is described in the book by Bressoud. There are deep relations to
various parts of Algebraic Combinatorics, especially to plane partitions, where the same
counting function occurred, and also to Statistical Mechanics, where the configuration of

water molecules in “square ice” can be described by an alternating sign matrix.

As an important step in the derivation of the refined alternating sign matrix conjecture
. . . m+1
[81], a Hankel matrix comes in, whose entries are ¢,, = % The relevant orthogonal

polynomials in this case are a discrete version of the Legendre polynomials.

Many problems concerning the enumeration of special types of alternating sign matrices
are still unsolved, cf. [16], pp. 201. Some of these problems have been presented by
Stanley in [68], where it is also conjectured that the number V(2n + 1) of alternating sign
matrices of odd order 2n 4 1 invariant under a reflection about a vertical axis is

n 6] 2)

V(2n +1) H24]1

J=1

A more refined conjecture is presented by Mills, Robbins, and Rumsey [50] relating
this type of alternating sign matrices to the determinant 7, (z,1) in (3.10). Especially,
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(6]’—2

T.(1,1) = [T}, 2(42]:_1)) is conjectured to be the total number V(2n 4+ 1). As we saw in
J

Section III, the same formula comes in as the special Hankel determinant dg), where in

(1.2) we choose generalized Catalan numbers 5—— (*"+1) as entries.

Let us consider this conjecture a little closer. If an alternating sign matrix (short: ASM)
is invariant under a reflection about a vertical axis, it must obviously be of odd order
2n + 1, since otherwise there would be a row containing two successive nonzero entries
with the same sign. For the same reason, such a matrix cannot contain any 0 in its central
column as seen in the example (4.1).

In [15], cf. also [16], Ch. 7.1, an equivalent counting problem via a bijection to families
of disjoint paths in a square lattice is presented. Denote the vertices corresponding to
the entry a;; in the ASM by (i,7), i,7 =0,...,n— 1. Then following the outermost path
from (n—1,0) to (0,n — 1), the outermost path in the remaining graph from (0,n — 2) to
(n —2,0), and so on until the path from (0,1) to (1,0) one obtains a collection of lattice
paths, which are edge-disjoint but may share vertices.

Since there can be no entry 0 in the central column of the ASM invariant under a reflection
about a vertical axis, the entries ag ,, @2 5, @4, - - ., Q2np, must be 1 and a; , = a3, = a5, =
...Q2n, = —1. This means that for i = 0,...n — 1 the path from (2n —,0) to (0,2n —1)
must go through (2n — i, n) where it changes direction from East to North and after that
in (2n — ¢ — 1,n) it again changes direction to East and continues in (2n — ¢ — 1,n + 1).
Because of the reflection-invariance about the central column the matrix of size (2n +
1) x (2n + 1) is determined by its column numbers. n + 1,n + 2,...2n. So, by the
above considerations the matrix can be reconstructed from the collection of subpaths
(foy ft1s - - - 5 pin—1) where p; leads from (2n —i —1,n 4 1) to (0,2n — 7).

By a reflection about the horizontal and a 90 degree turn to the left, we now map the
collection of these paths to a collection of paths (v, 11, ..., v,—1) the integer lattice Z X Z,
such that the inner most subpath in the collection leads from (—1,0) to (0,0) and path
v; leads from (—2i — 1,0) to (0, 7).

Denoting by v; s the y—coordinate of the s-th vertical step (where the path is followed from
the right to the left) in path number 4,7 = 1,...,n— 1 — path 1 does not contain vertical
steps — the collection of paths (v, vy, ...,v,—1) can be represented by a two—dimensional
array (plane partition) of positive integers

Un—1,1 Un—12 Un—12 e Un—1,n—2 Un—1n-1
Un—2,1 Un—22 e Un—2,n—2
: : (4.3)
V2,1 V2,2
V1,1
with weakly decreasing rows, i. e. v;; > v;9 > ... > v;; for all ¢, and the following

restrictions:
1)2i —1<w;<2i+1foralli=1,...,n—1,
2) vs — V51 < 1forall i,s with s > 4.
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3) Vit1i41 > v forall1 <i<n-—1.

So for n = 1 there is only the empty array and for n = 2 there are the three possibilities
vip = 1, vi1 = 2, 0or v;; = 3. For n = 3 the following 26 arrays obeying the above
restrictions exist:

1 2 2 2 2 2 2 2 3 3 3
3 2 3 3 4 3 4 4
2 2 3 3
Now consider a collection (Yo, 71, .., Vn—1) of vertex disjoint paths in the integer lattice

as required in Theorem 3.1, where the single paths are not allowed to cross the diagonal
2z = y and path 7; leads from (—i, —2i) to (i+ 1, 2i+2). Obviously, the initial segment of
path 7; must be the line connecting (—i, —2i) and (—i,7+2). Since no variation is possible
in this part, we can remove these initial segments and obtain a collection (ng, ..., 7,—1)
of vertex—disjoint paths, where now 7); leads from (—i,7 4+ 2) to (i + 1,2i + 2).

We now denote by v; s the position of the s-th vertical step (i. e. the number of the
horizontal step before the s—th vertical step in the path counted from right to left) in
path n;, ¢ =1,...,n — 1 and obtain as a representation of the collection (79, ...,7,—1) a
two—dimensional array of positive integers with weakly decreasing rows as in (4.3), where
the restrictions now are:

1)2i —1<w; <2i+1foralli=1,...,n,
2) Vs — v 51 < 2 forall i,s with s > 4.

Again, for n = 1 there is only the empty array and for n = 2 there are the three choices
vip =1, vi; = 2, or v1; = 3 as above. For n = 3 the first 22 arrays above also fulfill
the conditions 2’), whereas the four arrays in the last row do not. However, they can be
replaced by