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ABSTRACT

Definitions are given for ortogonal parameters in the context of Bayesian inference and like-
lihood inference. The exact. orthogonalzing transfonnatioris are derived for. both cases, and the
connection between the two settngs is made precise. These parametrzations simpliy the interpreta-
tion of likeliood functions and posterior distrbutions. Fuer, they make numerical maximzation
and integration procedures easier to apply. Several applications are studied.

RESUME

Nous presentons des definitions pour des parametres ortogonaux dans Ie contexte de l'inference
de Bayeset de l'inference de vraisemblance. Les transfonnations d' ortogonalisation exactes sont
obtenues dans les deux cas et Ie lien entre les deux approches est precise. Ces parametrsations
simplifient l'interpretationdes fonctions de vraisemblarce et des distrbutions a posteriori. En outre
e1les rendent l'application des procedures de maxrnsation numerique et d' integration plus facile.

Quelques applications sont etudiees.

1. INTRODUCTION

In ths paper we discuss the reparametrzation of statistical models. Loosely speakng,
we seek parametrzations in which inerence about the parameters of mterest is inde-
pendent of the nuisance parameters. A precise definition of ths notion depends on the
inferential context. In a Bayesian analysis, the posterior distrbution of the parameters
is of primar mterest. For ease of mterpretation, we may be interested m having the
parameters a posteriori independent. To implement numerical methods reliably we may
require more - we may want the posterior to be approximately standard Gaussian. Sim-
ilarly, in a non-Bayesian analysis one might view a convenient parametrzation as one for
which the joint lieliood factors. Alternatively, we might like the restrcted maxmum-
likelihood estiate for the parameter of mterest to be in some sense independent of any
nuisance parameters. Ths simplifies interpretation of the likeliood function and is likely
to make numerical maximization technques more successful. In the lielihood context
this has become known as an "ortogonal" parametrzation. For more discussion on the
advantages ofreparametrzation, see Hils and Smith (1992, 1993), Kass and Slate (1992
1993).

Consider for example the Fieller-Creasy problem (Fieller 1954, Creasy 1954). Let
XI and X2 be mdependent Gaussian random varables with means 9 and 92 and unit
varances. Suppose that", = 92/91 is 'of specific interest. Ths problem is considered by

fron (1985) and Fraser and Reid (1989), among others. Figure l(a) shows a contour
plot of the likelihood as a function of", and 9 , having observed XI = 8 and X2 = 4. The
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contours show a dependence of", on 92. Figure l(b) shows the likelihood as a function

of", and = (9i + 92)4 . There is little dependence of", on 

We study varous definitions of independent and ortogonal parameters and give some

automatic methods for their constrction. The transformations that we derive are data-

dependent, an important fact to be kept in mind when considering their application. In

Section 2 we discuss the definitions and their relationships, along with previous work

on ths subject. Section 3 describes a method for constrcting ortogonal parameters 

the Bayesian and non-Bayesian cases. Section 4 ilustrates these methods in a varety 
examples. In Section 5 we consider briefly the relationship between data-dependent and

data-independent transformations. Finally, Section 6 contains a discussion of the results.

2. INDEPENDENT AND ORTHOGONAL PARAMETERS

Let = (Y I, . . . , Y n) be a random sample of d-dimensional vectors, each Y inde-

pendently and identically distrbuted with density fy( y, 0), where the unkown parameter

o lies in a subset of IRP+I . Denote the components of 0 by ("', 11,"" 

). 

We assume

that", is the parameter of interest and that 'Y = (11, 12, . . . 
are nuisance parameters.

The likelihood function wil be denoted by 
L(O), and we assume that L(O) is bounded.

Without loss of generality, we furter assume that the supremum of L(O) is one. A

prior density (if available) is denoted by n(O), and the corresponding posterior density

is denoted by n(OI 

y). 

The maximum-likelihood estimate is

" = ("',

1'1, . . . , 1'p

We consider a transformation of the parameters (\I, 11,"" 
to (ex, I,"" 

), 

where

ex is a strctly monotonic function of 'I and each 
j is an invertble function of 1j when

all the remaining parameters are held fixed. We restrct ex to be a function of 'I only,

so that inferential statements about ex may be directly transferred to statements about""

the parameter of interest. In practice, we may leave", untransformed. We introduce the

transformation ex mainly for theoretical convenience.
Before proceeding we need some notation. Let fJ = 

,..., ), 

and let i j3j =

'E t - log L( ex, fJ) jaex j J be the elements of the expected Fisher information matrx.
Similarly, letja, j3j 

= -

log L(ex, fJ)jaex 
j be the elements of the observed information

matrx. Finally, led. = (ex, l, 2,"', 

The following are several possible definitions for ortogonality of ex and 

Dl. Independence. ex and fJ are a posteriori independent.

D2. Likelihood faCtorization. L(O) = LI(ex) (fJ) for some 
LI and

D3a. Global observed orthogonality. ja,j3/ex, fJ) = 0 for all (ex, fJ), 
= 1

,... ,p.

D3b. Local observed orthogonality. ja, j3/&, ) = 0 = 1,.. 

D4. Expected orthogonality. j3j
(ex, fJ) = 0 for all (ex, fJ), 

= 1,... 

Some relationships may be seen among these definitions. If the prior 
n( ex, fJ ) is constant,

then D1 is equivalentto D2. Also, D2 implies both D3a and D3b. The reverse implications

do not hold in general. Propert D4 makes sense only if the reparametrzations don
involve the data . In that case, if we add the proviso that D2, D3a, and D3b hold for

all , we have that D2 implies D4 and D3a implies D4. The condition D4 is the standad

definition as employed by Huzurbazar (1950), Jeffeys (1961), and Cox and Reid (1987).
In general, none of these definitions leads to parametrzations that are unique. Hence

it is convenient to introduce a notion that is stronger than orthogonality. We shall say

that ex and fJ are Bayesian-orthogonal with respect to n 
if, a posteriori ex and fJ possess

a standard + I-dimensional multivarate Gaussian distrbution. And we shall say that 
and fJ are likelihood-orthogonal if L( ex, fJ) is proportional to a standard 

+ I-dimensional
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(a) likelihood contours: original parameters
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(c) likelihood contours: exact likelihood orthogonal paramter
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(b) likelihood contours: beta=radius

(eI likelihood contours: approximal9 orthogonal paraters

FIGUR I: Contours for the Fieller-Creasy example. Unless labelled otherwise, in all contour plots
the parameter of interest vares horizontally and the nuisance parameter vares vertcally.
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multivarate Gaussian density function. Note that Bayesian orthogonality implies D1 and
lielihood ortogonality implies D2, D3a, and D3b.

Several researchers have studied reparametrzations. The problem is considered from
the Bayesian point of view in Huzurbazar (1950), Je:freys(1961 Section 4.31), Dagenais
and Liem (1981), Naylor and Smith (1982), Smithet al. (1985, 1987), and Albert
(1988). Dagenais and Liem (1981) use a parametrc famly of transformatIons to achieve
approximate normality of the posterior. Albert uses data-analytic technques to find
appropriate transformations. This paper provides a rigorous, automatic version of these

methods. Smith eta!. (1985 , 1987) provide excellent overviews of the numerical problems
in Bayesian inference, and they discuss the need to reparametrze. Hils and Smith (1992
1993) discuss graphical methods for choice and assessment of model parametrzations.
From the likelioodpomt of view, ortogonal parameters were studied by Cox and

Reid (1987). They show that the expected ortogonalizing transformations are given by
solving a set of differential equations. In general, these equations are difficult to solve.
Furtermore, they produce a pleasant reparametrzation only m some average sense
rather than m the observed likeliood. In the context of sampling properties of likelihood
functions, the Cox-Reid approach is appropriate. However, our motivation is to transform
the observed likelihood into a more convenient form. Holland (1973) showed that for
a vector parameter ii is not possible in general to varance-stabilze, that is, make the
expected inormation matr equal to the identity matrx; hence it is impossible in general
to make all off-diagonal elements equal to zero. This latter fact was also shown by
Cox and Reid (1987). Propert D4 is a weaker requirement, involving only the (a, ~j)

components.
The remainder of ths paper is devoted to the constrction of ortogonalizmg transfor-

mations. A point that has not been emphasized m the literature is that ortogommzmg
with respect to posterior distrbutions is, m general, m conflict with the idea of orthog-
onalizing with respect to the lielihood function, even if constant priors are employed.
This wil be made precise m Section 3, where we give the exact ortogonalizing trans-
formations in both cases. These transformations do comcide for a. parcular prior that,
generally, is not constant.

r:'

3. METHODS FOR REPARAMETRIZATION

3. 1. The Bayesian Case.

For simplicity we begin with the two-parameter caseO = (""y). It is easy to see that a
transformation to Bayesian ortogonality always exists. We set ~("', y) = 

'YIj

y))

and a(",) 
I ( 

('I)), where is the standard Gaussian distrbution function, 
'YIV

is the conditional posterior distrbution function for y given ""and 
ij 

is the marginal
posterior distrbution function for",. To see that ths is the ortogonalizing transformation
note that by constrction, a is marginally standard Gaussian and ~ is stadard Gaussian
conditional on each fixed value of a. Hence, a and ~ are jointly standard Gaussian.

Note that for each fixed value of"" the cumulative distrbution transform of y is
uniorm, and hence independent of",. Ths fact can be exploited to derive mdependent
posterior parameters if independence is all that is required.

Now we give an algorith for approximatig a and ~. Let ("'I, "'2,..., 'Ik) be a grd
of", values, and let (YI, Y2,..., Yk) be a grd of y values. Estimate 'YlV

and F
ij 

F: 
- L =I L("'j, ya1t("'j, Yi)

'YlVj y, 
Li=1 L("'j, Yi)1t("'j, Yi)

= 1,

, ..., 



1994 MODEL REPARAMETRIZATION 167

and
L;=I L('I, Yi)1t("'j, Yi)

'I 'I, 
Lj=1 Li=1 L('I, 'Yi)n("'j,

Clearly, if and are reasonably well behaved, then the estimates wil converge to the
tre distrbutions as the grd size increases. Plugging the estimates into the expres ions
for a and ~ yields transformations and ex, say. These are . approximations to the exact
orthogonalizing transformations.

It may not be necessar to car out the orthogonalization in this way. A useful
approximate Bayesian ortogonalization can easily be derived. First, note that if the
distrbution of y is Gaussian for each fixed"" but with mean and varance possibly
depending on"" then the transformation ~ is

~("', y) = y - 

my(",)

("')

where 
my('I) 

'E (yl",) and 

("') 

fo/ar (yl",)) L In general, this form of ~ may be
regarded as an approximation to the exact transformation. As long as y is approximately
Gaussian for each fixed"" then this approximate transformation wil suffice. Note that this
is a much weaker assumption than assuming that the joint distrbution is approximately
Gaussian.

Our algorithm may be simplified by using this approximate transformation. We simply
set = t y - ii('I) J ('I), where ii('I) and 

("') 

are the estimates of 
my(",) 

and ('I)
obtained from 

YI'I 
and 

'I 
In case this transformation is unsuccessful, we can always

resort to the exact form.

= 1 , 2

, ...

EXAMPLE 1 (The Fieller-Creasy problem). For the problem described in the introduc-
tion, Figure l(e) shows the posterior contours corresponding to the exact Bayesian-
ortogonalizing transformations, while Figure l(d) displays the likelihood contours after
this Bayesian transformation has been cared out. An important point is that the Jacobian
of the approximate transformation is a function of 'I only. Thus a plot of the posterior
contours corresponding to the approximate transformations would differ from Figure l(d)
only by some stretching factor in the ",-direction.

So far we have restrcted ourselves to the two-parameter case. With more than two
parameters, the exact reparametrzation is

~I = YII'l (YdJ,

~2= Y21'1Yl (Y2))' (1)

where the subscripted denotes the conditional distrbution given the subscripted random
varables. The transformation a is as before. The approximate version is' the same as that
given in the two-parameter case with the mean and standard deviation of the conditional
distrbution of Yj given 'I, Yt...., Yj-

2. The. Non-Bayesian Case.

In general, the reparametrzation given in the previous section does not ortogonalize
the lielihood, even if the prior n(\I, y) is constant. To see this note that

1t(a, ~I Y) L(a(",), ~(9))1t(a(",), ~(9))J("" y: a, ~)
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In a sense, (5) is doing too much, since it (approximately) produces a set of mutually
ortogonal parameters. If only", is of interest, the approximation (6) may be adequate.
In Tibshirani and Wasserman (1989), we examne this approximation in the Box-Cox
transformation model and find that it works reasonably well.

4. FURTHER EXAMPLES
EXAMPLE 2 (Exponential model). It is instrctive to consider a one-parameter ex-
ample. Here the goal is to transform to normality. Let YI,..., be exponential
with mean",. Then the likelihood-normalizing transformation a(\I) ' sign(", \1)

Y I'" - 1 - loge Y I",) J L Note that, to first order 'E 
2 = 0, so the parametrzation is

only weaky data-dependent. This reparametrzation agrees with the Bayesian-normalizing
transformation for the prior

nY fi(", 

1t(",) ex sign(\I- \1) 
Y I", - 1 - loge Y 1\1))2

EXAMPLE 3 (Gama model). Albert (1987) considered the gama modelnlj 
L(", 

y) = 

L- p lj sfy
P(",)

with data = 20 = 2269, log = 93. 47. The expected orthogonalizing transformation
is ~ = 'I, as derived by Cox and Reid (1987); Albert also deduced ths reparametrzation
from a graphical method. Figure 2 shows the likelihood contours correspondmg to the
original parameters, to the Cox-Reid parametrzation, and to the exact and approximate
likelihood orthogonalization. The virtes of reparametrzing this problem are discussed
by Albert (1987).

The components of the approximate reparametrzation m(",) and s(",), are shown in
Figure 3(a) and (b). In the important range for", (5 to 15), they both are approximately
ofthe form II",. Now (y 

- ",

)1\1 = 'I - 1 , which is equivalent to the expected
ortogonalizing transformation. Figure 3(c) shows a plot of the approximate ~ versus
'I for each of the grid points. If the two transformations were equivalent, then the
parametrzations would be linear functions of each other. This is almost the case.

5. DATA-DEPENDENT AND DATA- INDEPENDENT TRANSFORMATIONS

The. ortogonalizing transformations used in this paper are data-dependent. Here, we
briefly investigate this dependence. We simulate datasets from a gama model (Example
3), with parameters set equal to the maximum-likelihood estimates from the original fit.
For each dataset, we computed m(",) and s(",). The results of 10 such simulations are
shown in Figure 3(d) and (e). There is little change in the transformations, and this was
confirmed with a larger number of simulations.

This suggests the following method for finding data-independent transformations that
wil produce approximate ortogonalization. Generate 9

,... 

from the prior n. For
each simulate observations from f( Y , e

). 

Compute the Bayesian-orthogonalizing
transformations each time, and average them. This transformation may be fitted to a
curve from a conveni nt class of functions (for example, polynomials). The resulting
transformation is then used as an approximate , data-independent ortogonalizing trans-
formation. We have not investigated this technque here, but see Slate (1991) for a recent
discussion.
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(a) likelihood contours: original paamters (b) likelihood contours: beta=psi'phi

(c) likelihood contours: likelihood orthogonal paramters

FIGUR 2: Likelihood contours for the gamma example.

(d) likelihood contours: approximate ortogonal parameters

6. DISCUSSION

The use of numerical technques and the need for interpretabilty make reparametrza-
tions of statistical models useful. We have made the notion of orthogonalizing transforma-
tions precise in both the Bayesian and non-Bayesian cases. Furter, we have emphasized
the fact that orthogonalization with respect to the likelihood function is different from
ortogonalization with respect to the posterior. 

Some interesting questions that stil need to be addressed are:

(1) What are the samplmg properties of data-dependent ortogonalizing transforma-
tions? Ths is important for understanding the relationship between data-dependent and
data-independent transformations.

(2) What is the theoretical significance of the prior that links the likelihood- and
Bayesian-ortogonalizingtransformations? Since ths function is constant if and only if
the observed likelihood is Gaussian, might ths be used as a diagnostic to evaluate the
nonnormalty of the likelihood function? See Hils and Smith (1992, 1993) and Kass and
Slate (1992, 1993) for discussion on this point.
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FIGURE 3: Plots for the gamma example.
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(3) What are efficient methods to car out ortogonalization in high dimensions?
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