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SOME ASPECTS OF THE STATISTICAL ANALYSIS OF THE "MIXED MODELM"¥*
by
Gary G. Koch and Pranab Kumar Sen1
University of North Carolina
Department of Biostatistics
SUMMARY

In this paper, the authors discuss the statistical analysis (both param-
etric and non-parametric) of "mixed model" experiments. The general structure
of such experiments involves n randomly chosen subjects who respond once to each
of p distinct treatments, The hypothesis of no treatment effects is considered
under several different combinations of assumptions concerning the joint distri-
bution of the observations corresponding to each of the particular subjects. For
each situation, an appropriate test procedure is discussed and its properties
studied,

The different methods considered in the paper are»illustrated in detail
in two numerical examples. These examples have been chosen to illustrate the
relative performances of the different test criteria for a situation in which the
null hypothesis is essentially true (Example 1) and for a situation in which the
null hypothesis is essentially false (Example 2).

Finally, the section on examples contains algorithms for the efficient
computation of the various test criteria. A computer program based on these

algorithms has been written and can be made available to any interested persomns.

* Work partially supported by the National Institute of Health, Public Health
Service, Grant GM-12868.

1 On leave of absence from Calcutta University, India



1. INTRODUCTION
In accordance with the familiar "mixed model" experiments (cf. Eisenhart
[1947] and Scheffé [1959]), let Yij be the response of the i-th subject to the
j-th treatment for i=1,2,...,n; j=1,2,...,p. Thus, each subject responds to .

each of p distinct treatments exactly once. The outcome of the experiment may

be represented by the observation matrix Yy = (Yi.) composed of n independent
nxp J
stochastic row vectors

g{ = (e ¥ )y 21,2, m

(1.1)

It is assumed that Xi has a continuous p-variate cumulative distribution function

(c.d.£,) Fi(z), where

Fi(z) = Gi(z-mi), m! = (mil,...,mip);

mij = bi+tj’ i=1,2,...,n; j=1,2,...,p.

Together with (1.2) and (1.3), the basic assumption throughout this paper is

A.1l. The joint distribution of any linearly independent set of con-

trasts among the observations on any particular subject is

diagonally symmetric.

Two additional assumptions which may or may not be imposed are

A.2, The "additivity" of subject effects;

A.3. The "compound symmetry" of the error vectors.

The assumptions A.1, A.2, and A.3 will be explained more fully in what follows.

In any event, four cases of interest arise; and these may be described by the

(1.2)

(1.3)
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following table
Not A.2 A.2
Not A.3 Case 1 Case III
A.3 Case II Case 1V

In each of the above cases, the hypothesis of no treatment effects, i.e.,

is considered, and appropriate test procedures are given. Various properties

of these tests are also studied,

2. THE NORMAL (PARAMETRIC) GASE
In this section, the basic assumptions are A.1, A,2, and

A4, G1 = G2 E ...=G = Gis a multinormal c.d.f.; i.e., the error
- 1)

vectors have a common p-variate normal distribution with a null

mean vector and a positive definite dispersion matrix 3.

Note that A.4 implies that the Xi’ i=1,2,...,n, are independently distributed
according to the multivariate normal distributions N(mi’§)’ i=1,2,...,n, where
the gi’s are defined by (1.2) and (1.3). To test Ho in (1.4), we may proceed

as follows. Let g,be ab(p x P) matfix of the following structure

1

p 2 jr|
c= where j' = (1,...,1) and glj_= 0.
C
~1
If we let
. 1 ©®
U= GYy, =L,2,..,n 0=2 3 U
i=1
n _ o
,§U = iil (EI'P.) (Hi'g)' ’

(1.4)

(2.1)

(2.2)

(2.3)



then the test statistic is ' .

1 = nea-1) B 55t 0 | (2.4)

Under Ho’ (n-p+1)T2/(n-1)(p—l) has the F-(variance ratio) distribution with

[(p-1), (n-p+1l)] degrees of freedom (d.f.), where it is necessary to presuppose
that n > p. The test procedure based on T? represents a parametric solution to
Case III. Since T2 is invariant under any (non-singular) linear transformation

on the Hi’ i=1,2,...,n, some computational convenience may be gained by basing

the test on the contrasts

w{k = Yik-Yil for k=2,...,p; i=1,2,...,n. (2.5) I
Now, a sufficient condition (also necessary, if the distribution is .
multinormal) for A.3 is ‘ l
= og2 -0) 62 . '

Z = po=J + (1-p)o T (2.6)

where J is the p x p matrix of 1's and I is the p x p identity matrix. Since
(2.6) implies that the variability of a subject's response is independent of the

treatment given, we shall say that there is no interaction between treatments

and subjects in this case. The test of Ho in (1.4) may now be based on the

statistic
= -1)g2 2 :
F, = (n-1)52/82 (2.7) l
where .
2 P (- v )2 2 " P 7 7 v )2
s$2=nzx (Y ,-Y )3 82= 5 1 (Y,,-¥ -v¥ +% I
t j=1 .J .o e i=1 j=1 lJ 1- .J ) o
with i
. -1 P - 12 . I '
L,,=p 2V, Y =0 2y ,Y =) 2 Iy,. ‘ :
14 i=1 i=1 j=1 *J l
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Under Ho’ Ft has the F-distribution with [(p-1), (n-1)(p-1)] d.f. , The test
based on Ft provides a parametric solution to Case IV,

One may note that the validity of (2.6) may be checked by means of a
likelihood ratio test given by Votaw [ 1948] which is a generalization of one
originally due to Wilks [1946] (for the particular case by=b,=...=b = 0).

For a further discussion of the parametric case, the reader is referred to

Wilks [1946], Scheffé [1959], Imhof [1960], and Geisser [1963].

3. A NON-PARAMETRIC TREATMENT OF CASE I
First, let us clarify the statement of the basic assumption A.1. Suppose
Ei is defined as in (2.2), and m, as in (1.2); let t! = (tl”"’tp) where the

t;'s are defined by (1.3). Finally, let © be a (p-1) X 1 vector defined by

8= "5 &
where El is defined by (2.1). Then A.1 asserts that for each i=1,2,...,n,

(gi-g) and (g-gi) have the same distribution. Under Ho’ © = 0; and hence, in
this situation, A.1 implies that Hi and - Ei have the same distribution. One
may note that this is much less restrictive than the usual assumption of multi-
normality of the Hi'

To test Ho’ we may proceed as follows.
Let

Ci=1,2
Y, L2

= : L] ’
R;; = Rank {Yij. Ypeen¥) i S

where ties are to be handled by the mid-rank method; i.e.,

The number of Y, .! Which} + (1) The number of }
27y

..? equal to ¥,
ij ij

Rij =1+ are less tharllJYij

where j'#j; also j,j'=1,2,...,p; i=1,2,...,n.

(3.1)

3.2)

(3.21)



Let .

n
L R,, for j=1,2,...,p; : (3.3)

I“['1= (Tn,l,,--o,Tn’p) . (3-4)

We next observe that if Zij = Yij-Yi-’ =1,2,...,p, then

-

= . =1,2,...,p
Rij Rank {Zij. zil""’zip} =12, .0m " (3.5) |
4 . = l
But the Zij s are contrasts; hence, under H, the vectors g;_ (Zil""’zip)

and - Zl' = (-Zil,...,-Zip) have the same distribution by assumption A.1l. This .$
|

sign-invariance generates a set of 2" conditionally equally likely realizations;
|
and as a result, the rank vectors l‘
Rt = (Rijpe. Ry ) and (pH)IT-RY = (pHL-Ryp,...,pHLR, ) G.@) [
are (conditionally) equally likely, each occurring with conditional probability '

4 for i=1,2,...,n. Thus, under this conditional probability law (say Pn)’

pon R - [eR
E{Tn,jl U)n} ) § - 2 - - P;Zl- (3.7) .]

i=1

=L . el Bl s
SV, p T, Bl =52 B Ryym Ry 50 B v gy @8 1

lii'l.\'l',:s

for all j, jt=1,2,...,p. Let us define the matrix

=(V

’Y'n n,jj* (3.9

Since the Tn j's in (3.3) satisfy the constraint .
>
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lTn: i - p(p+1)/2,

v

J

v, is essentially singular and of rank at most (p-1). However, if Gi(x) has a

"scatter" not confined to any lower dimensional space of the real p-dimensional
space (Rp)’ one may show that n yh has rank (p-1) in probability (the argument
is similar to that given in Puri and Sen [1966]). Thus, if G is defined as in

(2.1), the test statistic is

(3.10)

(3.11)

Under the permutation model Ug, Wn can have 2" (not necessarily distinct) equally

likely (conditionally) realizations; and this may be used as a basis of a per-
mutationally distribution free test of Ho' Moreover, under U;, In is the vector
of averages over n independent random variables. Hence, by routine methods,

n% In can be shown to have asymptotically (under ﬂng a multinormgl distribution

of rank (p-1). Thus, under G;, Wh has -asymptotically a chi-square distribution

with (p-1) d.£f. From the above remarks, we have the following test procedure
. . . 2 -
reject H if and only if Wo> X(l-e)(p 1)

where P{XZ(p-1) > X%l-e)(P-l)} = g, O<e<l, the desired significance level,

If we now define a kernel

P
. = 1 -
¢(ai,al,...,ap) 4 +;j§1 c(ay aj)

where c(u) is 1, %, or 0 according as u is >, =, or < 0, then it may easily be

verified that

|

It
8=
| Mo

n, § ._1¢(Yij;Yil""’Yip) for j=1l,...,p .

(3.12)

(3.13)

(3.14)



Using the well-known results on U-statistics (cf. Hoeffding [1948], Fraser [1947]) .

and following some essentially simple steps, one may show that the test in (3.12)
is consistent against any heterogeneity of Eyree .,tp. Thus, for any fixed

t .,tp (not all equal), the power of the test will be asymptotically equal to

1’..
one. Therefore, to study the asymptotic power of the test, we shall consider a
sequence of alternatives for which the power lies in the open interval (0,1).

This is specified by

-1 P
t,=n2n, ¥#,2,...,p;5Z A, =0 (3.15) g
] J 1.3 i
where ?\1,...,7\p are all real and finite. Here, let us also assume l
G1 = G2 g ., B Gn 2 G and G absolutely continuous . (3.16) '

Let the marginal c.d.f.'s of G be denoted by Gy, (x), j=1,2,...,p; and the joint
[J] > > <

marginal c.d.f.ts (of order 2), by G ,](x,y), jfj'=1,2,...,p. If the elements

(3,3
of the matrixy = (y,.,) are defined by
~ i l
o0 [e0}
sse = 2G; , -1j[2G; , -11dG, , .17
vig =3 1 1126 g(0-1026; 5,y -104G; 4y ym) CRUNN |
then it may be shown that n Yn converges in probability to y and Wn has asympto- l

tically a non-central X-distribution with (p-1) d.f. and non-centrality param-

eter ' '

= A'gi[gﬁlg']-l ¢A (3.18) l

when (3.15) holds - again the reader is referred to Puri and Sen [1966], Theorem 4.2, l
Finally, one may note that given the permutation covariance matrix Vn’

{ t = = i l

in such a way that G¥.8] =2, diagonal (dn, 1""’dn, (p-l))' ’

1
®

In such a case, Wn reduces to : l

we may always select C
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p-1
= 2
" k—il wn’k/dn’k _ (3.19)
where the W are the elements of the vector G. T .
n, k 1=

4, A NON-PARAMETRIC TREATMENT OF CASE II
As has been explained in section 2, A.3 really means no interaction

between treatments and subjects. Under this condition, Xi is composed of p
interchangeable random variables (under H in (1.4) ) for all i=1,...,n; and
hence, the distribution of Xi remains invariant under any permutation of its
coordinates, for i=1l,...,n. This leads to a set of (enN" equally likely
(conditionally) permutations and the associated permutational model is denoted
by 3;. In this case, we shall also work with the statistic En in (3.3) and

(3.4), but under @L. Thus, we have

BT, ;| 8) = (»+1)/2 (4.1)

-~ (3, 4p-1) -
cov(Tn,j’Tn,j'l 6%3 = o-Dn ORs jyir=l,...,p (4.2)

where
n p
- 1 Bl
2 = = - 2

R mp 2, jil(Rij 2 “-2)

Rij's being defined as in (3.2) or (3.21) and aij is the usual Kronecker delta.

Hence, we may use the test statistic

~ - P
= aGe-/p 5 2

- 2
(T, g - @/ (4.4)

L ~
The asymptotic distribution of n2(Tn " (p+1)/2), 3=1,...,p, (under @;) can
>
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easily be shown to be multinormal (with the aid of Berry-Essen theorem [cf. .
Loeve (1962, p. 288)]), and hence, ﬁh will have asymptotically a chi square
distribution with (p-1) d.f. For small values of n, the exact permutation
distribution of Wh can be traced with the aid of (p!)n edually likely intra-

block rank permutations (under 3;), and the exact permutation test can be based

on ﬁn (using the right hand tail as the critical region); while for large n,

we may proceed as in (3.12). In the particular case, when ties are ignored,

°R

test statistic. 1In this case, the permutation distribution and the unconditional

reduces to (p®-1)/12, and our test statistic reduces to Friedman's [1937]

~n

null distribution of Wﬁ agree with each other, and a tabulation of the exact
~
null distribution of Wh for certain specific small values of n and p is con-

tained in Owen [1962]. Moreover, for the sequence of alternatives in (3.15),

it follows precisely by the same technique as in Elteren and Noether [ 1959]

that ﬁn has asymptotically a non-central XZ distribution with (p-1) d.f. and
the non-centrality parameter
P o0
Ty = [120/ (D12 A( [ g2(x)dx)? (4.4)
FL1
where g(x) is the density function of Zij’ defined just after (3.4). The
efficiency of this test with respect to the classical analysis of variance

test (which is incidentally valid for Case IV when normality and homoscedasticity

hold) is therefore

e i GO L (4.5)

where p is the common correlation between zij and Zij" for jfj'=1,...,p.

If G(x) is a multinormal c.d.f., (4.5) reduces to
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(3/m) (;+1’—1> (4.6)

which is the same as in the case of uncorrelated errors considered by Elteren

and Noether [1959] and Hodges and Lehmann [ 1962].

5. A NON-PARAMETRIC TREATMENT OF CASE III

We define a set of random variables U, by

i3

= - j’j'=1’2)'°"p
13990 T Yi3Vige Tif1,2,...,n (5.1)

where one should note that U"jj is identically 0. Under H_ in (1.4), each
3

Ui;jj' (j#j') is distributed symmetrically about O and (Ui;12""’Ui;1p""’

Ui;pl""’Ui;(p-l)p) is diagonally symmetric about O (although the distribu-

tion is singular and of rank (p-1)). Let

where (5.2)

si;jj' = {Sign(Ui;jj,)}{Rank[IUi;jj',:'Ulzjj'],...,lUn:jj'l]}

for j#j'=1,2,...,p. In the above definition, ties are handled by the mid-rank
method and zero is assigned to zero values. Thus, wjj' is the Wilcoxon [1949]

signed-rank statistic; also, W - W,. for all jfj'=1,2,...,p. Finally,

iti T Tige

either by convention or the definition in (5.2), we write Wjj = 0 for j=1,2,...,p.

Now let
P
T* = W, . =1,2,... .3
1, j J'il it =iy 4, »P (5.3)
_']'_zrlt= (I*h,l""’T*n,p) (5.4)
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From the definition of the wjj" it follows that

P

LT , =0 5.5)
j=1 n, J (

and hence at most (p-1) of the Tﬁ j are linearly independent. If we define
4

the scores Sij by

P
i=1,2 n
.= S, .. 22 5.6
13 =g 13330 FLZ,..00p (5.6
then T§ i may be alternatively written as
2
1 B
. == Z S.. . (5'7)
n,J on oo i)

Under the permutation model U;of diagonal symmetry, we have when HO holds

E{Tg’jl EL} =0 j=1,2,...,p (5.8)
1 n
T* = == . .S, . E .
S 0l B T St = s (-9

If Xﬁ = (vg;ir) and 91 is as defined in (2.1), a test of H0 may be based on

[C.VC:] ~ ¢ T* (5.10)

Given the permutational model, the ranks are invariant; only the signs are
equally likely and jointly symmetrically distributed. Hence, it can be easily
shown that permutationally W§ has sensibly a XZ-distribution with (p-1) degrees
of freedom. For small values of n, the exact permutation distribution of W:

can be computed by reference to the 2" conditionally equally likely realizations. ‘

me M e TS T

i o ™Mb =y
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Again, let us denote the marginal c.d.f. of Ui'jj'
2

bivariate c.d.f. of Ui;jj" Ui;ﬂﬂ' by ijj"zg,](x;y). Then, proceeding in’

by ijj'](x); the

a way similar to that followed in Case I, we define elements of a matrix

% o= *
v ("jz) by

. P P
ij - jlil g.zlvjj';ﬂﬂ' (5.11)
ivti 8
Vijege = 3 _i _ofo [chjj,](x)—l][chfm,](y)-l]dquj,’m,](x,y) . (5.12)

It can be shown that under (3.15), Wﬁ has asymptotically a non-central X€-distri-

bution with (p-1) d.£f. and non-centrality parameter

-1
arorley el g8 (5.13)
where &' = (81,...,8P); and
P oo o
5, = by =N, T . d .
§7 2058 s (5.14)

it
bei h bability d ity functi di to the c.d.f, AP
gfjj'] eing the probability density function corresponding to the ¢ GrJJ']

6. A NON-PARAMETRIC TREATMENT OF CASE IV

Here we assume that A.1, A.2, and A.3 hold. Let

i
ceerZ )

L...,n
11° np =1 ? (6.1)

,ooo,p

R¥. = Rank{Z, ,:Z
ij ij

as in the previous sections, ties are to be handled by the mid-rank method.

If we then define
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T* = L ; R¥%, =12, s P
n,j 0 ]
and
G2(RY) = —— ; ; (R#, - + § R¥,)Z
n(P'l) i=1 j=1 1] P j=1 1] ?

then it follows from the results of Sen [1966] that a test of Ho can be based

on
Womn oz (B e
n =1 n, j 2 '

For small values of n, the permufation distribution of ﬁg'can be traced by
reference to the (p.')n conditionally equally likely intra-subject rank per-
mutations. For large n, ﬁh has sensibly a X®-distribution with (p-1) d.f.
Asymptotic power properties of this test also follow from the results of Sen

[1966].

7. EXAMPLES
In this section, we shall consider the statistical analysis of two
numerical examples. The data are from experiments undertaken at the Depart-

ment of Pathology, Duke University Medical Center, Durham, North Carolina.

EXample 1: Sixteen animals were randomly placed into one of two groups - an
experimental group receiving ethionine in their diets and a pair-fed control
group, The data for each animal consisted of a measurement of the amount of
radioactive iron among various sub-cellular fractions from liver cells., The
cell fractions used were nuclei (N), mitochondria (Mit), microsomes (Mic), and
supernatant (S). One question of interest to the experimenters was whether

the ratio of the measurements for the experimental group to those for the

~
(o))
N
~

(6.3)
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control group was the same for all cell fractionms.

If matched pairs of animals

are regarded as subjects and cell fractions are regarded as treatments, then

the above question may be attacked by the methods previously considered in

this paper.

The data are as follows:

Pair N Mit Mic S Mean

1 1,73 1,08 2.60 1.67 1,77

2 2.50 2.55 2,51 1.80 2.34

3 1.17 1.47 1.49 1.47 1.40

4 1.54 1.75 1.55 1.72 1.64

5 1.53 2.71 2,51 2,25 2.25

6 2,61 1,37 1.15 1.67 1.70

7 1.86 2,13 2,47 2.50 | 2.24

8 2,21 1.06 0.95 0.98 1.30

' Mean 1.89 1.77 1.90 1.76 1,83

First,

in which the error vector may be assumed to be normally distributed.

putations leading to the Hotelling T® statistic are listed below.

(n-1)(p-1)

T2 = (5/21)(1.16) = 0.28;

Pair | N - Mit N - Mic N - 8
1 0.65  -0.87  0.06
2 -0.05  -0.01  0.70
3 -0.30  -0.32  -0.30
4 -0.21  -0.01 -0.18
5 -1.18 -0.98 -0.72
6 1.24 1.46  0.94
7 -0.27  -0.61 -0.64
8 1.15 1.26  1.23
Mean 0.13 -0.01 0.14

12 = 8 [0.13 -0.01 0.14] 5

: -0

-4

‘ (n-p+l)

.82
.15

.34 -0.82
4.56
-4,02

let us obtain the test statistics appropriate for the situations

The com-
. [0.68 0.59 0.51
(n-1)""g = 10.59 0.84 0.58
0.51 0.58 0.54
.y [ 534 -0.82 -4.15
(a-1)§," = |-0.82  4.56 -4.02
| -4.15 -4.02 10.08
ur= [0.13 -0.01 0.14]

0.13] =

-4.15
-4,02}1 1-0.01
10.08 0.14

d.f.

(3,5) .

1.16



Since 0.28 < Fy 75
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(3,5), we may conclude that this test indicates the data

to be consistent with Ho (the hypothesis that the ratio is the same for all

cell fractioms).

The estimated covariance matrix of the cell fractions is

0.26
-0.01
-0.06

(a-1)7'§ =
-0.03

-0.01
0.41
0.27
0.22

-0. 06
0.27
0.47
0.23

-0.03
0.22
0.23
0.21

Since the structure of this matrix does not greatly contradict the assumption

that the error vector is symmetrically distributed, the analysis of variance

test of Ho is of interest,

Source of Variation d.f
Cell Fractions 3
Pairs 7

Error 21

Total 31

Noting that 0.21 < F0.75

consistent with Ho'

Let us now turn to the analysis of the data in terms of the non-parametric
statistics associated with each of the Cases I - IV,

pute the within block ranks corresponding to each of the observations where ties

are handled by the mid-rank method.

Sum of Squares

0.15
4.51
4.95

9.61.

Mean Square Var. Ratio
0.05 0.21
0.64 2,67

0.24

(3,21), we may again conclude that the data tend to be

These are as follows

Pair N Mit Mic S
1 3 1 4 2
2 2 4 3 1
3 1 2.5 4 2.5
4 1 4 2 3
5 1 4 3 2
6 4 2 1 3
7 1 2 3 4
8 4 3 1 2

Total |17 22.5 21 19.5

For Case I, we first com-

Y S S S R B

N - » A -. 5,- ]
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The statistic Wh is obtained by carrying out three steps
i. Select (p-1) = 3 linearly independent contrasts among the cell

fractions; then, within each block, transform the ranks into these
contrasts, Eg., we have used N - Mit, N - Mic, and N - S,

ii. Compute the sums and sums of products of deviations associated with
the contrasts defined in (i).

iii. Compute the matrix product of the row vector of sums, the matrix of
sums of products of deviations, and the column vector of sums, all
of which were obtained in (ii). This is Wh.

Applying the above procedure to the data, we obtain

Pair | N - Mit N - Mic N - § [30.47 21,75 16.53
T 5 5 T n2y = |21.75 36.00 20.25
£
5 - 1 1 16,53  20.25 22.47
; ey 2 5.1 [o.064 -0.024 -0.024
s 3 o 1 ~ ooy = 1-0.024  0.066 -0.041
’ - -
0 5 3 1 -0.024 -0.041  0.100
7 -1 -2 -3 _
5 ) 3 5 oL = [-5.5 -4.0 -2.5]
Total | -5.5 4.0 -2.5

W o=[-5.5 -4.0 -2.5] [ 0.064 -0.024 -0.024][-5.5] = 1.01; 4d.£. = 3.
n -0.024 0.066 -0.0411]-4.0
: : -0.024 -0.041 - 0.100f] -2.5

Since 1.01 S‘XS 75(3), we again conclude the data to be consistent with Ho'

The statistic appropriate to Case II is most simply obtained by performing
a type of analysis of variance on the set of within-block ranks. If these are
" denoted by Rij’ we proceed as follows.
P n

. - 2
i. Compute Si = (1/n) jil Qilkij - np(pt+l)=/4
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n p Il
. 2 = 2y = 2 2 2 = a2 _
ii. Compute Se (npcR) Iz Rij np(p+1)#/4 and 2 Se/n(p 1).
i=1 j=1 '
T = q2/.2
iii. Compute W St/se l
The results for this method are
Si = 202.06 - 200,00 = 2.06 - l
Si = 239,50 - 200.00 = 39.50 '1
2 = =
52 = (39.50)/(24) = 1.65
W= (2.06)/(1.65) = 1.25;  d.f. = 3, '

We note that 1.25 < X‘g 75(3) and draw the same conclusions as before.

SRR

Case III requires the most extensive computations. However, these may

be performed efficiently by proceeding as follows.

i, Within each block compute the (g) differences associated with each

possible pair of treatments where the treatment to the right is

subtracted from the one to the left. Eg., N - Mit, N -~ Mic, N - S,

e

Mit - Mic, Mit - S, Mic - S

Pair | N - Mit N - Mic N - S Mit - Mic Mit - 8 Mic - §
1 0.65 -0.87 0.06 -1.52 -0.59 0.93
2 -0.05  -0.01  0.70  0.04 0.75 0.71 l
3 -0.30  -0.32  -0.30 -0.02 0.00 0. 02 g
4 -0.21  -0.01 -0.18  0.20 0.03  -0.17 ;
5 -1.18  -0,98 -0.72  0.20 0.46 0.26 |
6 1.24 1.46  0.94 0,22 -0.30  -0.52 |
7 -0.27  -0.61 -0.64 -0.34 -0.37  -0.03
8 1.15 1.26  1.23  0.11 0.08  -0.03

ii. Each of these new variables has a particular value within each block.
Let signed ranks be associated with each of the values associated

with a given variable (where ties are handled by the mid-rank method

By

and zero is assigned to zero values).
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Pair N -Mit N -Mic N - S Mit - Mic Mit - S Mic - S
1 5 5 1 -8 =7 8
2 -1 -1.5 5 2 8 7
3 -4 -3 -3 -1 0 1
4 -2 -1.5 -2 4.5 2 -4
5 -7 -6 -6 4.5 6 5
6 8 8 7 6 -4 -6
7 -3 A -4 -7 -5 2.5
8 6 7 8 3 3 2.5

ii. Within

adding

each block, scores are obtained for each cell fraction by

the sum of the signed ranks associated with variables in

which it is the minuend to the negative of the sum of the signed

ranks associated with variables in which it is the subtrahend.

iv. To the scores obtained in (iii),

procedure given for Case I.

Pair |N - Mit N - Mic N - S
1 21 =20 3
2 -8.5 =4 22.5
3 -13 -15 ~12
4 -14 1.5 -9.5
5 -36.5 -25.5 -14
6 29 43 20
7 -2 -19.5 ~22.5
8 21 33.5 29.5
Total -3 -6 17

apply the steps of

Pair N Mit Mic S
1 1 =20 21 -2
2 2.5 11 6.5 =20
3 -10 3 5 2
4 -5.5 8.5 -7 4
5 -19 17.5 6.5 =5
6 23 -6 =20 3
7 -11 -9 8.5 11.5
8 21 0 -12.5 -8.5

Total 2 5 8 -15

[3495 27
2706 46
1923 26

[ 5.55 -
-2.22
| -1.76 -

40 267

06 1923
2
6

72 268

2.22 -1.76
5.94 -4.32

4.32

17 ]

9.28

the computational



Finally, let us consider Case IV.

-20-

most simply by performing the following steps.

i, For each observation in a given block, subtract the block mean.
ii. Rank the (np) "residuals" obtained in (i) where ties are handled by

*
the mid-rank method. Let these be denoted by Rij'

*2
iii. Compute St

*2
iv. Compute Se

*2
s
e

e %2 %2
V. Wh = St /se

The results associated with this test procedure are given below

P n
(I/n)z (Z R
=1 i=1

a(p-1)o2(R) = %

The test statistic may be computed

*
ij}z - np(npt+l)3/4
n P -
= R;: - (1/p)
i=1 j=1 *J

= 572 /n(p-1).

n P .
z {=z Ri.}z,
i=1 j=1 I

Pair N -~ Mean Mit-Mean Mic-Mean S - Mean
1 -0. 04 -0.69 - 0.83 -0.10
2 0.16 0.21 0.17 -0.54
3 -0.23 0.07 0.09 0.07
4 -0.10 0.11 -0.09 0.08
5 -0, 72 0.46 0.26 0.00
6 0.91 -0.33 -0.55 -0.03
7 -0.38 -0.11 - 0.23 0.26
8 0.91 -0.24 -0.35 -0.32

Pair N Mit Mic - S
1 15 2 30 12.5
2 23 25 24 4
3 10 18.5 21 18.5
4 12.5 22 14 20
5 1 29 27.5 17
6 31.5 7 3 16
7 5 11 26 27.5
8 31.5 9 6 8

Mean 16.19 15.44 18.94 15.44
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*2
S, = 66.38
*D *2
S 7 = 2615.62 s ~ = 108.98
e e
ik
W = 0.61; d.£f. = 3.
n

From the previous remarks, one can see that all the test procedures lead us
to conclude that the data are consistent with Ho' Also, the values of the

computed test statistics tend to be more or less similar to one another.

Example 2: Sixteen animals were randomly placed into one of two groups - an
experimental group receiving ethionine in their diets and a pair-fed control
group. The liver of each animal was split into two parts one of which was
treated with radioactive iron and oxygen and the other, with radioactive iron
and nitrogen. The data consist of the amounts of iron absorbed by the variously
treated liver halves. If matched pairs of animals are regarded as subjects and
the combinations ethionine-oxygen (EO), ethionine-nitrogen (EN), control-oxygen
(CO), and control-nitrogen (CN) are regarded as treatments, then the hypothesis
that neither diet nor gas has any effect may be tested by the methods discussed

in this paper.¥®

Pair EO EN co CN Mean
1 38.43 31.47 36.09 32.53 34.63
2 36.09 29.89 34.01 27.73 31.93
3 34.49 34,50 36.54 - 29.51 33.76
4 37.44 38.86 39.87 33.03 37.30
5 35.53 32.69 33.38 29.88 32.87
6 32,35 32.69 36.07 29.29 32.60
7 31.54 31,89 35.88 31.53 32,71
8 33.37 33.26 34,17 30.16 32.74

Mean | 34.90 33.16 35.75 30.46 33.57

* Note that the structure of the data allows other tests to be considered; eg.,
.equality of diet effects, equality of gas effects, etc. However, we are
interested here only in the hypothesis of equality of all treatment effects,
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After computations similar to those given in Example 1, we find

nc-

1
ﬁ% T2 = 4.08.

T2 = 17.14 and

Since 4.08 < FO 95(3,5), the test does not\reject Ho' However, T? is large

enough to recommend additional experimental results to study the differences

among the treatment effects.

The estimated covariance matrix for the treatment vector is

5.86 1.31 1.29 1.47

(a-1)"L g = 1.31 7.13 4.35 2.60
~ 11.29 4.35 4,14 2.40

1.47 2.60 2.40 3.17

Again, the analysis of variance test of HO is of interest,

Source of Variation d.f. Sum of Squares Mean Square Var. Ratio
Treatments 3 131.19 43,73 15.40
Pairs 7 82.38 11.77 4.14
Error 21 59.70 2.84
Total 231 273.27

Since 15.40 > F (3,21), we reject H and conclude that there are significant

0.99

differences among the treatment effects.

-y

The non-parametric statistics for Case I and Case II are based on the

intra-block rank matrix

i

[»-BEN e R W, BN SUR (S RS
WiwrvooDNDSNO
=
2
Q

(@]

Ol = e = s DO

Pair

Case I: W = 600.00

Ol W W WS

VIV WLWPWWRN -

N
ey
N

Total
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In Case III, the score matrix for the treatments is

Pair EO EN GO CN

1 20 -18 5 -7

2 18 -11 9 -16

3 2 4 14 =20 "

4 -7 10 16 -19 Case III: W = 64.27 d.f. =3
5 16 -3 -2 -1l "o

6 -8 4 18 -14

7 ~11 -1 18 -6

8 4 1 6 -11
Total 34 -14 84 ~104

Finally, for Case IV, the matrix of intra-inter-block ranks of residuals is

Pair EO EN co

CN
1 31 5 23 8
2 32 9 25 3
3 20 21 28 2 s
4 16 24 26 1 Case IV: W = 16.02 a.f. = 3
5 27 14 17 6 n ’
6 13 15 30 4
7 11 12 29 10
8 19 18 22 7
‘Total | 169 118 200 41

Since the test statistics obtained above all exceed the 99th percentile point
of the chi-square distribution with three degrees of freedom, we reject Ho for
each of the Cases I-I1IV.

One may note that the statistic Wh is considerably larger than the others.
One reason for this is that with Wh the particular arrangement of the ranks
within the blocks not only affects the mean scores associated with a treatment
but also the estimated variance-covariance matrix. As a result, for data
configurations in which the intra-block ranks show consistent treatment dif-
ferences, the statistic Wh is likely to be very large. For example, suppose for
the case n = 8 p= 4, we observed a rank matrix in which the arrangement
(4 3 2 1) occurred four times and the arrangement (3 4 2 1) occurred four

times} the contrast obtained by subtracting the score assigned to the fourth
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treatment from that assigned to the third treatment has a mean value of one but
an estimated variance of zero. Strictly speaking, Wh cannot be computed, but we
can argue that its value is infinite.
~ o

On the other hand, when we compute Wn and Wﬁ, the estimated variability
of the treatment mean scores depends only on the values of the ranks assigned
to a block and not on the particular arrangement of them within the blocks.

For reasons similar to those given previously for Wﬁ, the statistic W:
may also be noticeably larger than ﬁh and ﬁ:. Since this extreme-type behavior
of Wh and Wz does not cause us to wrongly accept false hypotheses, we can argue

that there is nothing to worry about, On the other hand, when such large values

occur, the chi-square distribution may not provide an idea of the exact significance

level at which the hypothesis would be rejected. If this were of interest, then

one should perform the associated permutation test.

|

T

][ |

1

i



-25-

BIBLIOGRAPHY

Eisenhart, C. [1947]). "The assumptions underlying the analysis of variance,"
Biometrics, 3, pp. 1-21.

Elteren, Ph. Van, and Noether, G. E. [1959]. "The asymptotic efficiency of
the XZ-test for a balanced incomplete block design". Biometrika, 46,
pp. 475-77. . : .

Fraser, D. A, 8. [1957]. Nonparametric Methods in Statistics. John Wiley and
Sons, Inc., New York.

Friedman, M. [1937]. "The use of ranks to avoid the assumption of normality
' implicit in the analysis of variance". Jour. Amer. Statist. Asso., 32,
pp. 675-699.
Geisser, S. [1963]. ™Multivariate analysis of variance for a special covariance

case". Jour. Amer. Statist. Asso., 58, pp. 660-670.

Hodges, J. L., Jr., and Lehmann, E. L. [1962]. "Rank methods for the combination
of independent experiments in analysis of variance". Ann, Math. Statist.,

33, pp. 482-497.

Hoeffding, W. [1948]. "On a class of statistics with asymptotically normal
distributions"”. Ann. Math. Statist., 19, pp. 293-325.

Imhof, J. P, [1960]. "A mixed model for the complete three-way layout with two
random effects factors". Ann. Math, Statist., 31, pp. 906-928.

Loeve, M. [1962]. Probability Theory. D. Von Nostrand Co., Princeton, N. J.

Owen, D. B. [1962]. Handbook of Statistical Tables. Addison-Wesley Publishing
Company, Inc., Reading, Mass.

Puri, M. L., and Sen, P. K. [1966]. "On a class of multivariate multisample
rank order tests'. Submitted to Sankhya.

Scheffé, H. [1959]. The Analysis of Variance. John Wiley and Sons, Inc., New York.

Sen, P. K, [1966]. "On some non-parametric generalizations of Wilks' tests
for HM’ HVC’ and HMVC"' University of North Carolina Mimeo Series 468.

Votaw, D. F., Jr. [1948]. "Testing compound symmetry in a normal multivariate
distribution". Ann, Math., Statist., 19, pp. 447-473,

Wilcoxon, F. [1949]. Some Rapid Approximate Statistical Procedures. American
Cynamid Co., Stanford, Conmecticut. -

Wilks, S. S. [1946]. "Sample criteria for testing equality of means, equality
of variances, and equality of covariances in a normal multivariate dis-
tribution". Ann. Math, Statist., 17, pp. 257-281.




