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ABSTRACT

Some of the problems of wind power statistics are examined. The exact relationship between the mean
wind speed and the mean of the cube of the wind speed is discussed. The Weibull probability density func-
tion, a good model for wind speed distributions, leads to a Weibull model for the distribution of the cube of
the wind speed. This model facilitates the computation of the mean and the standard deviation of the total
wind power density, the usable wind power density, and the wind power density during the hours when an
aerogenerator is operating. The Weibull model is applied to data from three Oregon wind power sites located
in rugged terrain. It is concluded that the mean and standard deviation of the wind speed are the minimum
statistics necessary for wind power estimates, that the Weibull model for the wind power density has many
computational advantages, and that the existing wind power studies based solely on the total mean wind
power density omit much valuable information about the wind power potential of a site.

1. Introduction

In recent years increasing attention has been paid to
the development of techniques for determining the
availability of wind power resources. In the extensive
wind power climatology studies (Reed, 1975; Barber et
al., 1977) which depict annual and seasonal mean total
wind power values for the United States, the mean total
wind power was computed by cubing the wind speeds in
frequency tables obtained from the National Climatic
Center. There is an error inherent in using these data
caused by the small number of frequency classes avail-
able for many stations (Barber ef al., 1977).

Other investigators have sought simple wind speed
distributions which could be parameterized solely by
the mean wind speed. Wentink (1974) has investigated
methods of fitting a Planck distribution (with param-
eter f = 3) to his Alaskan data. The use of this distribu-
tion in meteorology originated with Dinkelacker (1949).
Court (1975, personal communication) has been ex-
perimenting with the Rayleigh distribution (a chi dis-
tribution with 2 degrees of freedom) which has also been
used in other countries (e.g., Narovlyanskii, 1968;
Baynes, 1974). Whenever such distributions can be
used, it is easy to determine the mean of the cube of the
wind speed and therefore the mean total wind power.

Crutcher and Baer (1962) showed that the bivariate
normal distribution is adequate for most wind samples;
however, the univariate distribution which is derived
from the bivariate normal distribution results in a com-
plicated expression involving the summation of the
products of Bessel functions (Smith, 1971). It is difficult
to use this distribution in wind power applications un-
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less it can be simplified to the Rayleigh under a very
restrictive set of assumptions.

The Pearson Type 111 (gamma) family has often been
used to describe wind speed distributions (Putnam,
1948; Sherlock, 1951). The Weibull distibution is a
special case of the generalized gamma distribution. For
wind speed distributions the Weibull is often a practical,
if somewhat empirical, alternative to the simpler one-
parameter distributions such as the Rayleigh. (The
Rayleigh is itself a special case of the Weibull.)

The Weibull distribution has been fit to both upper
air data (Baynes and Davenport, 1975) and surface
wind speed data (e.g., Wentink, 1976; Justus ef al.,
1976). Baynes (1974) has used the Weibull distribution
in a theoretical analysis of specific output (plant factor).
Specific output is the proportion of the time that an
aerogenerator will deliver its full rated power. Justus ef
al. (1976) have been successful in fitting the Weibull
distribution to 135 National Climatic Center wind sum-
maries and then computing mean potential output esti-
mates using numerical integration techniques. They also
interpreted their results in terms of plant factors.

The Weibull distribution is a useful tool for wind
power analysis, and it is intended that this rather ex-
emplary treatment will acquaint the reader with the
unique versatility of the Weibull distribution. There are
several important questions which are beyond the scope
of this paper. These include 1) how to draw an inde-
pendent sample from a series of wind speed observa-
tions which are often correlated at different lag times,
2) how the wind power varies with time, 3) how best to
handle wind speed distributions which are too deformed
or heterogeneous for even a two-parameter distribution
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Fic. 1. Isopleths of constant speed cubed assuming that the wind
speed distribution is not skewed (i.e., symmetrical).

to adequately fit, and 4) how to determine the variation
of wind power with height.

2. Estimation of mean wind power density

In theory, the instantaneous power density (W m™2)
available in a flow of air through a unit cross-sectional
area normal to the flow is simply

P=jo?, M

where V is the instantaneous wind speed (m s™) and
p the density of air (~1.23 g m™ at sea level). The ex-
pectation of P (i.e., the mean power density per unit

area) is then
@

Wind power estimates have been based on the assump-
tion that the density is not correlated with the wind
speed.? In this case, Eq. (2) becomes

E(P)=3E(p)E(V?). ©)

The mean air density is then estimated from the U. S.
Standard Atmosphere, and the problem of determining
the mean wind power density at a given location is re-
duced to determining the mean of the speed cubed.

The mean of the speed cubed can be determined ex-
actly, once it is recognized as just the expectation of
the third moment of the wind speed about zero, i.e.,

E(V=a[VB1+3u/o+(u/o)¥], 4)

where u, ¢ and \/E are the mean, standard deviation
and skewness of the wind speed distribution, respec-
tively.

E(P)=3E(pV?).

2 The error introduced by this assumption on a constant pressure
surface is probably less than 5%, (Barber, 1976, personal communi-
cation).
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If the skewness is negligible (i.e., if the distribution is
nearly symmetrical) Eq. (4) reduces to

E(V?) =3uc*+u? (5)

For this case, isopleths of constant mean speed cubed in
the u, ¢ plane are depicted in Fig. 1. The diagonal line
is for ¢ =p. Since we expect @ prior:i that the coefficient
of variation ¢/u for the wind speed will be less than
unity, it is the lower right half of this figure that is use-
ful for wind power estimates. The standard deviation
and skewness are not generally functions of the mean
only. Fig. 1 indicates that although the mean speed
cubed and therefore the mean wind power density in-
crease with the mean wind speed, the standard devia-
tion is necessary in order to compare the wind power
potential of various sites. Reed (1974) estimated that
the error was at least 409, without some specification of
the standard deviation of the wind speed distribution,
but the precise way the higher moments entered the
problem has not been clearly understood.

Actual wind speed data are positively skewed, and
the mean speed cubed estimates of Fig. 1 should have,
according to Eq. (4), the following correction term
added:

C(o,VB1) =*VB1. (6)
Fig. 2 shows the correction term C (a,\/ B1) as a function
of the standard deviation over a typical range of skew-
ness associated with wind speed distributions. The
skewness can be conveniently estimated if certain as-
sumptions can be made about the wind speed frequency
distribution. This is one of the advantages of the Wei-
bull model.

3. The Weibull model

“The Weibull distribution is a unimodal, two-param-
eter family of distribution functions which has been
successfully fitted to wind speed distributions (i.e.,
Justus ef al., 1976; Wentink, 1976). This probability
density function has the form

fx(x)=acx* "t exp(—ax®); a>0,¢>0,2>0, (7)

where ¢ is called the shape parameter and a7'/* is a scale
parameter. If c=2, Eq. (7) reduces to the Rayleigh dis-
tribution. The Weibull distribution has its mean and
variance in terms of gamma functions

= (1/a)VT(1+1/c), 8

o*= (1/a)*’[T (1+2/c) —T*(1+1/c) ], )

while the expectation of its third noncentral moment is
E(X?)=a%T(143/c). (10)

The standard form of Weibull distribution is found
by setting a=1. The effect of variation in the shape
parameter is the shown in Fig. 3. For 0<¢<1, this dis-
tribution has its mode at zero and is a decreasing func-
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F16. 2. The correction term as a function of the standard deviation of the wind
speed over a typical range of skewness values for wind speed distributions.

tion of x. For ¢=1, the distribution is exponential. At
¢=3.5, the distribution is approximately normal.

The Weibull parameters can be estimated by the
method of maximum likelihood or by fitting the Wei-
bull curve to a cumulative distribution function (Justus
et al., 1976); but, if both the sample mean and standard
deviation are known, the shape parameter can be most
conveniently estimated by the nomogram of Kotel’nikov
(Johnson and Kotz, 1970), part of which is shown as
Fig. 4.

The parameter a can then be calculated from the
equation for the mean [Eq. (8)]. The Gamma function
tables found in most standard references are sufficient
for this purpose.

The skewness of a Weibull distribution is a function
only of the shape parameter ¢. Johnson and Kotz (1970)
provide the values given in Table 1.

Therefore, if the mean and the standard deviation of
the wind speed are known, then all the parameters
needed to compute the mean of the cube of the wind
speed using Eq. (4) can be specified. The experience of
Wentink (1976) and Justus et al. (1976) indicates that
the parameter ¢ will vary from 1.1 to 2.6 with an aver-
age value of about 2.0.

For the Weibull distribution, the standard deviation
is a linear function of the mean, and the slope is deter-
mined solely by the shape parameter (Fig. 5). There-
fore, in situations in which this model is applicable, the

2.0
1.5 c=4
c=0.4
c=3
=
wx 1.0
he c=2
0.5} ¢=!
1 o~ 1 ———————
| 2 3 4

Frc. 3. The standard form of the Weibull distribution.
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region of interest in Fig. 1 will above the line ¢ =0.4u
(c=2.7).

4. The probability density function for the total
wind power density

For cases where the Weibull model adequately de-
scribes the wind speed distribution, it is possible to de-
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termine the frequency distribution of the speed cubed.
With the transformation ¥=X? Eq. (7) becomes

fr() =alc/3)yd1 exp(—ay®). (11)

Eq. (11) is recognizable as a Weibull function with
parameters ¢ and ¢/3; the mean and variance are there-
fore known to be

E(Y)=a"3T(1+3/c), (12)
var(V)=a % [T(14+6/c)—T2(1+3/c)].  (13)

Using Eq. (8), these equations simplify to
E(V)=pP(1+1/0Tr(1+3/),  (12)

var(¥) =uf[I'(141/¢) [T (146/c)—TI*(143/c) ].
(13a)

Eq. (12) is the mean of the probability density function
for the speed cubed. Note that it is the same as (10).
Eq. (13) is the variance of the speed cubed and, there-
fore, proportional to the variance of the total power
density in the wind. Eqgs. (12a) and (13a) state that the
mean speed cubed and its standard deviation are both
equal to the cube of the mean multiplied by a function
of both the mean and the standard deviation -of the
wind speed. To this author’s knowledge, no one has ex-
amined any models for the frequency distribution of the
total wind power density or attempted to estimate its
dispersion about its mean value.

The effect of increases in the mean wind speed on the
mean of the speed cubed and the standard deviation of
the speed cubed is shown in Fig. 6. As with any Weibull
function, the coefficient of variation depends only on
the shape parameter, in this case the shape parameter
for the speed cubed distribution (¢/3). Table 2 shows
that the standard deviation of the cube of the speed can

I 1 1 | |

| 2 3 4

J
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Fi1c. 5. The standard deviation of a Weibull distribution as a function of its mean
for different values of the shape parameter c. '
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TasLE 1. Skewness of Weibull distributions.

c V81
1.2 . 1.52
14 1.20
1.6 0.96
1.8 0.78
2.0 0.63
22 0.51
24 0.40
2.6 0.32
2.8 . 0.24

be expected to be larger than its mean but by an amount
that rapidly decreases with increasing values of the
shape parameter of the wind speed distribution.

Fig. 7 shows the frequency distribution for the speed
cubed for a range of shape parameters assuming the
mean wind speed is 5 (any units). Fig. 8 illustrates the
effect of changes in the mean wind speed for a constant
shape parameter (¢=2). Each figure is divided into
three sections. Section I has low values of the cube of the
wind speed (<3.6%). Section II has the intermediate
levels between 3.6% and 8.0% and Section III is the tail
of the distribution.

Variations in both the shape parameter ¢ and the
mean speed affect the percentage of the speed cubed
(and therefore power density) represented by these
three sections. Section I is relatively insensitive to
changes in the value of ¢; however, increasing mean
speeds substantially reduce the percentage of the speed
cubed in this section. In Section IT the area is increased
by increases in the value of ¢, and its centroid is shifted
toward higher values of speed cubed by increases in the
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TaBLE 2. The coefficient of variation for the speed cubed for differ-
ent values of the shape parameter for the wind speed distribution.

¢ o/u
1.1 3.65
2.0 1.55
2.6 1.53

mean wind speed. Finally, in the tail of the distribution
(Section III) the area is decreased by increasing the
shape parameter and decreasing the mean wind speed.

Although evaluation of a wind power site will be af-
fected by the percentage of power density represented
by each section, generally the sites with the lower values
of the shape parameter and higher mean wind speeds
will have the highest total mean power density.

The cumulative distribution function for the speed
cubed has a particularly neat form

Fy(y)=1—exp (—ay*®). (14)

The power duration curve which is routinely used in
wind power studies is just the function 1 —Fy(y) plotted
with the ordinate and the abscissa reversed (Fig. 9).

5. Usable power density

The total power in the wind cannot be extracted by
an aerogenerator. For example, the NASA 100 kW
Plumbrook unit (Justus et al., 1976) begins generating
electricity at its cut-in speed of Vo=3.6 ms™. It has a
rated speed of V;=8.0m s at which the maximum pos-
sible power (100 kW) is generated. The unit must be
furled (shut down) at wind speeds greater than V
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F16. 6. The relationship between the mean wind speed and the mean (solid)
and standard deviation (dashed) of the speed cubed for various values of the shape

parameter.
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F1e. 7. The probability density functions for the cube of the wind speed when the
wind speed itself follows a Weibull distribution with a mean of 5 (any units). The
shape parameter ¢ is 1.1 (solid), 2.0 (dashed) and 2.6 (dotted).

=26.8 m s, so winds greater than this speed generate
no power.

Statistics on what can be called usable power are im-
portant in engineering studies; however, they are more
difficult to compute than total power density statistics.
Justus et al. (1976) were the first to include the effects
of the cut-in, rated and furling speeds in an extensive
study. They computed mean potential output power
density values based on the complete generator power
output function for both NASA’s 100 kW aerogenerator
and a hypothetical 1 MW aerogenerator. Usable power
density which takes into account only the cut-in, rated
and furling speeds common to broad classes of aero-
generators is the least upper bound for potential output.

With the Weibull model for the cube of the wind
speed, usable power density estimates involve finding

0.0t
[ ly=(36°
o.009t
0.008}=
0.007

0.006§

(y)

> 0.005H

f

0004}
0003
0.002

0.001

the mean of a Weibull distribution doubly truncated be-
tween the cube of the cut-in speed (Vo) and the cube
of the rated speed (Vy), L.e.,

(ac/3)(y') 'O~ exp[ —a(y')"*]

exp[—a(Vo)*]—exp[—a (V)]
Vi<y' S Vo

fr()=
(15)

Numerical integration techniques must be used to find
the expectation of ¥’ for this probability density func-
tion. The standard deviation of the usable power density
can also be computed. Again, this involves numerical
integration to compute the expectation of the second
moment of Eq. (15) about the value of the mean usable
speed cubed.

y=18.0)3

1
200

1
100

T
300 400

y (speed cubed - any units)

F1. 8. The probability density functions for the cube of the wind speed when the
wind speed itself follows a Weibull distribution with shape parameter equal to 2.0.
The mean wind speed (any units) is 3.0 (solid), 5.0 (dashed) and 7.0 (dotted).
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F1G. 9. Annual theoretical (Weibull) power duration curves for the Communica-
tions Station (solid) and Cannery Mountain (dashed). The hatched area is pro-
portional to the difference in the power output for a 100 kW aerogenerator at each

location.

Usable power should not be computed from the stan-
dard wind speed frequency tables not only because of the
small number of frequency classes but also because the
cut-in, rated and furling speeds can be expceted to fall
within the available frequency classes. However, it is
possible to compare the usable power at different sites
using power duration curves (Golding, 1955). This
technique is shown in Fig. 9.

6. The mean power density during generating hours

When an operating aerogenerator is connected to an
electrical power grid, the average amount of power pro-
duced and its variability may be of some interest. For
this purpose it is possible to define yet another type of
power density, the power density during generating
hours. The mean power density during generating hours
is simply the mean of the usable power density condi-
tioned on there being some usable power generated.
Both the mean and the standard deviation for this type
of power density can be computed by excluding the
hours with zero contribution to the usable power density
and then using the techniques described in Section 5.

The mean speed cubed during generating hours is also
an indication of the amount of time that the aerogenera-
tor will be operating since the ratio of the mean usable
speed cubed to the mean speed cubed during generating
hours is just the percentage of time the aerogenerator is
operating.

7. Calculations

In the previous uses of the Weibull distribution on
surface wind speed data, the data were generally ob-
tained from airport locations or population centers .
where the terrain is relatively flat and homogeneous.
Good wind power sites will often be in rugged terrain
(Davidson et al., 1964) where the wind distribution may
be more heterogeneous.

Several wind-measuring stations have been main-
tained along the Oregon coast and near the Columbia
Gorge. This program has been described by Hewson
(1975). Data from three such stations in very different
types of rough terrain are used in this study. Two of
them, the Yaquina Head Communications Station and
the Cannery Mountain Station, are near the coast.

TasLE 3. Comparison of the mean of the speed cubed with estimates of its value using just the
skewness from the Weibull model. :

Standard N
Mean deviation E(X?) E(X?) Error
Station (ms™) (ms™) (m?® 573) Z B (m® 57%) (%)
Cannery Mountain 4.36 2.6 188.7 1.8 0.78 188.8 +0.05
Communication Station 6.68 4.58 842.8 1.5 1.08 822.2 —-2.5
KCI1v 6.47 3.2 488.3 2.2 0.51 486.3 —0.05
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Fic. 10. Weibull model wind speed distributions at XCIV (solid), Cannery Moun-
tain (dashed), and the Communications Station (dotted).

Yaquina Head juts out into the Pacific Ocean 5 km
north of Newport, Ore., and the Communications Sta-
tion is at an elevation of 114 m on the highest point of
the head. The Cannery Mountain Station was located
in the coastal mountains about 8 km from the coast
just south of the Siletz River, at an elevation of 325 m.
The third site, an inland site, is the KCIV radio station
at 989 m MSL on the Columbia Hills about 11 km north
of The Dalles, Ore.

The period of record was November 1971 to October
1973 at the Cannery Mountain site, January 1973 to
May 1975 at the Communications Station and June
1974 to May 1975 at KCIV. The wind data were re-
corded on strip charts and reduced by hand to 1 h aver-
ages. Rather than utilizing all the available data as is
usually done in wind power studies, this data base was
reduced to sample sizes that could be handled in the
statistical interactive programing system (SIPS) at
Oregon State University by taking the hourly observa-
tion for every day at the Cannery Mountain site,® every
seventh day at the Communications Station and every
other day at KCIV. This resulted in 6094, 2818 and
6584 hourly observations, respectively. From these
data sets, the gross statistics and frequency tables were
computed for both the wind speed and the cube of the
wind speed. These samples resulted in total mean power
density estimates for the Communications Station and
KCIV which were very close to those previously ob-
tained by cubing all the wind speed observations.

In Table 3 the mean and standard deviations are the
sample mean and standard deviations for each station.
The estimate ¢ of the shape parameter comes from Fig.

4, the estimate of the skewness VG is from Table 1 and
the estimate of the speed cubed is computed using Eq.

3 The record at Cannery Mountain is broken in several places.

(4). The error in the wind speed cubed estimates for
these three examples is 2.5%, or less. If it is assumed that
¢=2.0 (VB1=0.63) as suggested by Court (1975, per-
sonal communication), then the percentage errors is
—7.69% at the Communication Station, —3.39, at
Cannery Mountain but less than £9, at KCIV.

The Weibull distributions for these three sites are
shown in Figs. 10 and 11. A 100 kW aerogenerator with
a cut-in speed of 3.6 m s™* and a furling speed of 26.8
m s~ will not be operated if the wind speed is in either
Sections I or IV in these figures. If the wind speed is in
Section II, the power generated will depend on the
wind speed; however, in Section III, the generated
power level will be constant. A site such as the Com-
munications Station with its high mean wind speed and
low shape parameter has a large amount of wasted
power density at the extremes.

It is also possible to compute the mean and the stan-
dard deviation using Eqs. (12) and (13); the results are
in Table 4. The percentage error is larger but at least it
is possible to estimate the dispersion about the mean.
The Weibull model’s lack of fit at these stations is prob-
ably at the extreme high wind speed end of the distribu-
tion. If it is again assumed that ¢=2.0 as suggested by
Court (1975, personal communication), the errors in
the estimates of these means are 33, 16 and —6%, at the
Communication Station, Cannery Mountain and KCIV,
respectively.

There is a very great difference between the concepts
of total mean power density, mean usable power density
and mean power density during generating hours as is
shown in Table 5. Judged on the basis of their total
mean power density lévels, the Yaquina Head Com-
munication Station has 43 times more power than the
Cannery Mountain site; yet, in terms of the mean usable
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F1c. 11. As in Fig. 10 except for Weibull model wind speed cubed distributions.

power density for a 100 kW aerogenerator, the Com-
munications Station has only twice the power. Then
again, KCIV has a moderate speed cubed value, but its
mean usable power density is greater than even that of
the Communications Station. This is because its an-
nual mean wind speed is about the same as the Com-
munication Stations’ but its shape parameter is much
larger. The errors in this calculation of the mean and
standard deviation of the usable speed cubed were each
less than 29,. Had it been assumed that the shape
parameter was identically 2.0 (i.e., the distribution is
Rayleigh) as was recommended by Baynes (1974), then
the errors in the mean usable speed cubed would have
ranged from about 99, at the Communication Station
to about —3.59, at KCIV.

The errors mentioned in the above analysis are not
exact because the Weibull parameters have been esti-
‘mated; furthermore, the difference between the mean
usable power estimates for the Weibull model and the
Rayleigh model may prove to be only academic. How-
ever, these examples illustrate why the Weibull model
promises to be a tool which is useful even for wind
power sites in rugged terrain and which provides wind

power analysts with more information than they have
had before.

8. Conclusions

As wind power develops into a viable alternative
source of energy, the basic wind power climatology
studies of Reed (1975) and Barber ef al. (1977) will be
expanded to include more than just total mean wind
power density estimates. The most accurate method for
computing the total mean wind power density, aside
from using the wind observations themselves, is to use
the general relationship between the expectation of the
third noncentral moment and the mean, standard de-
viation and skewness.

A more complete evaluation of wind power sites will
require some specification of the variance of the total
wind power density and estimates of usable power den-
sities for the different classes of aerogenerators which
may be installed at a site. The mean and standard de-
viation of the wind speed are the minimum statistics
necessary for this purpose.

The Weibull model is a very useful tool for wind
power analysis with the following advantages:

1) It allows satisfactory estimates of the skewness
of the wind speed distribution.

2) If the Weibull model for the wind speed dis-
tribution has a shape parameter ¢ then the distribu-

TaBLE 4. Estimates of the mean and the standard deviation of the speed cubed assuming
the Weibull model is applicable.

Estimated

s . Standard standard
E(X3) E(X3) Error deviation deviation Error
Station (m? s7%) (m®s7%) (%) (m?s™) (m® s7%) (%)
Cannery Mountain 188.7 177.3 —6.0 317 312 —17
Communication Station 842.8 810.3 -39 2018 1812 —10
KCIV 488.3 473.1 -3.1 771 656 —15
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TasLE 5. Comparison of the means and standard deviations for the total speed cubed, the usable speed cubed
and the speed cubed during generating hours.

Speed cubed during

Total speed cubed Usable speed cubed generating hours
Standard Standard Standard
Mean deviation Mean deviation Mean deviation
Station (m? s73) (m® s73) (m?s73) (m3 s73) (m3 s73) (m?s73)
Cannery Mountain 189 312 128 168 227 145
Communication Station 843 1812 246 218 347 173
488 656 264 203 326 167

KCIv

tion of the speed cubed also follows a Weibull dis-
tribution. If it has a shape parameter of ¢/3, the
second parameter is unchanged.

3) The Weibull model for the wind speed frequency
distribution makes it possible to simply estimate both
the total mean wind power density and the standard
deviation of the total wind power density.

4) The wind power sites with the greatest total
power density will have the highest mean wind speed
and the lowest values of the Weibull shape parameter
for the wind speed distribution.

5) In general, the standard deviation of the total
power density generated from the wind will be larger
than its mean, and the Weibull model makes it easy
to estimate the coefficient of variation. High values
of the shape parameter of the wind speed distribution
result in the lowest coefficient of variation for the
total power density.

6) The Weibull model facilitates the computation
of the mean and standard deviation of the usable
power and the wind power density during hours when
the aerogenerator is operating.
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