
SOME ASYMPTOTIC EXPRESSIONS IN THE THEORY OF NUMBERS*

BY

T. H. GRONWALL

While formerly the research of asymptotic expressions in the theory of

numbers was largely confined to the approximate determination of the sum-

matory function (or the mean value) of a given arithmetic function, recent

progress in the theory of prime numbers has opened a new field for asymptotic

investigations, viz., the research of upper and lower limits of an arithmetic

function for large values of its argument.

The first result in this line was obtained by Landau :|

,.    . e   <p(x) _c        .. <p(x)
lim inf-= e    ,       lim sup-= 1,

log log x

where <p ( x ) is the number of relative primes to a; which are < x, and C the

Eulerian constant. For the number T(x) of divisors of x, WigertJ has

further shown that
\oaf(x)

lim inf T ( x ) = 2,       lim sup —¡-= log 2.
x=n x=<b lOg X

log log a;

In the present paper, I propose to give a similar investigation of the function

a) *.(*; = £«",
m

the sum extending over all divisors d of the integer x. For a = 0,

Sa (x) = T(x), and as we have

s-a(x) = £d- = £ d- = .£ <Ta = £ (?V = *"• £ <*a
d I x dd'=x dd'=r. dd'=x \ « / dd'=x

or

(2) S-a (X)   =  X~* Sa (X) ,

it is obviously sufficient to consider the case a > 0.   As 1 and x are divisors

* Presented to the Society (Chicago) April 5, 1912.
t E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Leipzig, 1909, pp.

217-219.   In the following, this work will be briefly quoted as "Handbuch."
X Handbuch, pp. 219-222.
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114 t. H. gronwall:   some asymptotic expressions        [January

of x, we have
Sa(x)   5   1 + 1",

the equality sign prevailing when a: is a prime number, and consequently

(3) liminf^r^l,       «>0.
x=<*>      «r

To obtain the corresponding superior limit, we express sa (x) in terms of the

prime factors of x. We denote the prime numbers, in their natural order, by

Pi(= 2), p2( = 3), p3 ( = 5), • • •, p„, • • •, and decompose x into prime

factors:

(4) *=p2-pI!.p£,
where

Xi<X2<---<X„       and       vi > 0,    v2 > 0,    •••,    vn>0.

We then obviously have

». (*)=£••• È paT1 • • • pi:- = n ( £ pr),

whence the formula*

(5) ,. (*) = nVr - *■ n —^-.
*=i    Pa* — 1 *=i     1_1_

P*

We now distinguish three cases: a > 1, a = 1 , and 0 < a < 1.

FiVii ca^e, a > 1.—This case may be treated in a quite elementary way.

From (5) it follows that

sa(x) < x«Il-r < *"II—T>
*=i.       i p ,       i

1-— p 1-
Pl P"

where the second product extends over all prime numbers,! and the well-

known relation Î

n-JT = £¿=r(«)
P   -i _   _      n=i n

_ pa

* This formula may be found in any elementary text book on the theory of numbers.

t In fact, the second product arises from the first by multiplication by all factors ■

1-1
p«

where p does not divide x , and each of these factors is obviously > 1.

t This formula may be found in any elementary text book on the theory of numbers.
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for a > 1, where f ( a ) is the Riemann Zeta function, gives

(6) Sa(x)<x*Ç(<*),

whence

(7) limsup^^rt«).

In order to show that the equality sign prevails in (7), the obvious way is to

construct a special infinite sequence of integers Xi, x2, • ■ ■ x„, ■ • ■ such that

(8) Km^-r(a).

To this purpose, make

/ ^v-i /« = 1, 2, 3, • • • \
*„.,= (PiPi-'-Pn)"1 (, = 2j 3)4i ...);

we then obtain from (5)

(9) ».(*„,,) = *:„n—t-
k=ll--a

Now the infinite product

TT1"^,    f («)

*1_1   *■("«)

is uniformly convergent in respect to v for v 5 2;* to any given e > 0 we may

therefore find an n ( e ) independent of v such that for n = w ( e ) and v ~ 2

uu; r("«) + 2>jfi 1_i>f(m)   2-

Furthermore
*°    1

lim {(va) = lim£—= 1;
p=w f=ao n=i n

* For the truth of this statement, it is necessary and sufficient that

2-1

be uniformly convergent in respect to v for v S 2 .   This is immediately seen to be the case, as

f or v S 2 , « > 1

1 "1
and S ^ is convergent, each term being also a term in the convergent series  2 ~¿ ■

p P n=i ri
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116 T.  H. GR0NWALL:   SOME ASYMPTOTIC EXPRESSIONS [January

we may therefore determine ai^(í) such that for v 5 v ( e )

(11) f^+^r&o^^-i-

From (9), (10) and (11) it then follows that

aS,r(f(o) + e) >Sa(xn¡y) > aS,r(f (a) - e)

f or n ^> n ( e ) and i» 5> » ( « ) ■   Now if we make v = n + 1 and

£n = xn, „+i = ( pi p2 • • ■ p„ )"

it follows that for n ^ the larger of the numbers n ( e ) and v ( t ) — 1,

f(«) + £>5-4^>r(«)-e,

that is, (8) is satisfied, and the combination of (7) and (8) then gives the

desired expression

Sa(x)        ,   .
(12) hmsup-^-;=f(a),

x=<n X

f or a > 1.

Second case, a = 1.—This case (as well as the third one) is not accessible

by the elementary method of the first case, but requires the use of some of

the simplest problems in the analytical theory of prime numbers. The two

principal arithmetic functions used in this theory are -k ( x ), denoting the

number of primes ^ x, and # ( x ), denoting the sum of the logarithms of these

primes:
(13) *0) = £i,     #(*) = £ log p.

p í x p i X

The main object of the theory in question is the derivation of asymptotic

formulae for it (x) and # (a:) when x is large, the simplest results in this

direction being

(14) lím*MÍ£ifsl>

&(x)
(15) lim —K—^ = 1 .*

ar=o»       X

Of the more accurate asymptotic expressions, we shall here need only the

following onef

♦ Handbuch, p. 193.
t Handbuch, p. 196.
Î The symbols O and o, which are very useful in asymptotic calculations, are defined in

the following manner (Handbuch, p. 59-62) :

I
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Returning to our problem, we define an integer nx by the conditions

(17) TLpk = x < Up*;

then by (13)
«H?».) < loga;< û( pn.+i),

and as it easily follows from (14) that

(18) Urn ̂ «1,

we conclude by the aid of (15) that

*=«>       Pn» x=*>    Pn. x=« pn» ¡b=*>    Pnt       z=<»      Pn,+1

= 1-1=1,

or
loga; p„,       ,

hm-= 1,       hm .—— = 1 ;
*=» Pn, *=» log a;

when ce finally, by the definition of the symbol o,

(19) p„.= loga;- (l + o(l)).

We furthermore have, C being the Eulerian constant,

nfl--) = ,—-(l + o(l)),*jTixV        VJ     logxv

The notation / ( x ) = 0{g(x)) signifies that lim sup ^-)—y- is finite, so that a positive
x=<*>    g \x)

constant A may be found such that | / (x) | < Ag ( x ) for all sufficiently large values of x.

Examples: Vx = 0 (x), x + 1 = 0 (x), 1 /x* = 0( 11x**), sinx = 0(1).
/(x)

The notation /(x) = o (#(x) ) signifies that lim *-;—-r = 0.
i=»9(x)

Examples: log x = o ( v^x ), 1/x =o(l).

These definitions immediately give the following rules for calculation:

I. If/,(x) =0(ff,(x)) and/,(x) = 0(gt (x) ), then/i (x) +/,(x) = 0(¡/,(x) +g,(x))
andif/i(x) = o(^(x)) and/s(x) = o(er2(x)), then/i(x) +/j(x) = o(gi(x) +gi(x)).

II. In a sum of several symbols 0 or o, only the one of the highest order need be retained.

Example: If f (x) = 0 (x) + 0 (xlogx) + 0 (x1) +0 ( 1 ) + 0 ( 1 ¡x ), then
/(x) = 0(x»).

III. When a is a positive constant, then

0(ag(x)) -0<f (*)),
o(off(x)) = o(ff(x)).

IV. From f¡ ( x ) = 0 ( ? i( x ) ) and /, ( x ) = O ( j, ( x ) ) it follows that

A(*)/i(*)-0(f»(»)f«(*)).
Example: x=0(x),sinx = 0(l), therefore x sin x =0(x- 1) = 0 (x) .

V. From / ( x ) = o ( g ( x ) it follows that /(x) = 0 ( p ( x ) ) .

VI. From /i ( x ) = O ( g\ ( x ) ) and A ( * ) = o ( ffi ( x ) ) it follows that

/i (*)/>(*) - o {gx (x)gt(x)).
* Handbuch, p. 139.
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118 T. H. gronwall:   some asymptotic expressions [January

whence, substituting pn# for x and using (19)

(20) BV1_pJ = log log x+ log (1 + 0(1)) (1 + °^)}

-i—l-(l + o(l)).*
log log a:'

For a = 1, the expression (5) gives

»   x -nVk+l * 1

(21) *i(*) - xU-*±-< zTJ-r.
*=l . J_ fc.1 1_L_

Pa. P*»

Now we obviously have n^ nx and Xi ^ Ä;, pA, 5 p*, so that

ft^-r? n^-r ^ n^-r= e^logloga: • (1 + o (1))
*=11    _L    *~11     _    *•*' i     —

Pa* P* Pk

according to (20), and (21) then shows that

(22) lim sup   f1 [X)    ^ ec.
x=»      X log log X ^

A special sequence of integers for which this upper limit is effectively reached

is obtained by making

(23) xn= (pip2---pn)V<*p*\

where [ log p„ ] is the greatest integer contained in log p».   We then find

from (4)

!_L_
si(xn) = Xnll--*-¡->a;nll( 1 ~ „[i.gp.i+i ) H-T

(24) P* P*

P*

f([logp„]+l)tx=1]

* According to the definition of o ( 1 ), we have

limlog(l+o(l)) =limlog(l+€) =0,   or   log (1 +o(l) ) = o(l)
«=OB €=0

whence
Um loglogs+log(l+o(l)) = x
x=m log log X

log log* + log (l+o (l))=loglogx- (1 + 0(1)),
and

,.    l+o(l)      ..     1 + Í     , l+o(l)     ,   ,„,.,
um i I„m ( "  "^ rir = x    or     11,1    al +o(l)»
»=«l+o(l)       jl€=ol+« 1+0(1)

whence our formula.
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From (23) we obtain

log xn = [ log p„] Ô (p„) = [ log p„] p„ ( 1 + o ( 1 ) ) = p„ log pn ( 1 + o( 1 ) ),

whence

log log xn = log p„ + log log pn + o ( 1 ),

lim   lQgP"    = j
n=.oo log log Xn '

and as
limf ([logp„]+l) = 1, (24) gives
n=oo

,. ¿1 (Xn)        =    o
lim sup —-,—-,-> e .

„=«       Xn log log Xn

This relation compared with (22) finally shows that

(25) lim sup   ,gl(,a:)    =ec.
I=„ r x log log a;

TAird case, 0 < a < 1.—We begin by developing an asymptotic expression

for log II-—, where 0 < a < 1.   As it (n) — ir(n — I) equals 1 or zero
p -x i      _L

P"
according as n is prime or composite, we find by partial summation

logII-1T=-£log(l-¿)
P = x     _ J_ pi, \ P   J

P"
(26) * / i \

= -£(7r(n)-T(n-l))log(^l-^J

= £,(n)(log(l-(-^Ty;)-log(l-¿))

-^(a-)log(l-^îje).

Now we have, by Taylor's theorem,

íog(i-(^.)-iog(i-¿)=^^-r(rilf)í((«+i)r-i)

( where n < £ < n +1 )

= n^+0{^) + °(w)

= nT* + 0\n^i)'
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108 (' - (ÏTÏ7- ) = " (¿Tí? + ° ( UTW )

--h+°{^)+0((^w)--t-+0(^)-
and using (16) we obtain

'(»'(k«(1-OÍTÍT-)-l0l!(1-¿))

= (¿¡+0(.^))(^+í,(^))

= nMogn + Ío7^0Ví^/ + í^0fe^J+0\h^^j°V^^j

= n* log n+ ° U1+° log n J + ° \na log2 nj + ° \n1+" logW

nalognT    VnMog'n/'

- <*> "«O - TiTT?) - (i^+0fe))(-?+ "(¿O)
=-£+°(£)+o(¡^)+oGS)

__£1+0(£LY
loga; Vlog^/

Introducing these approximations in (26), we find

1O^7fl=^Ç^+0(Sn^)+l^+0(io^)-

The function —.-decreasing monotonously when « increases, we have

r+1   du      _i_     r   du

J„     u" log u    n" log n    J„_, w* log u '

r+1   du      ^_i_     r   du

J2     u log u    n=2 n" log n     Ji ua log u
or

Sn"ldgn = J, n'logn + 0(1)'
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* 1
and in the same way we obtain an approximation for £   „,   ,   , whence

iogn-J-r=ar-^+o(i)+o(r-^-)+^+o(1-ç)
%¥*!       1       J*  « log m        Wl     \J,  u'lOffuJ    loga;        Vlog2*/p = * 1_Z—

P*

Integrating by parts, we find

C*    du_a^— _ 21-* 1      Çx     du

J,  w'log«- (1 — a) loga;     (1 — a) log 2     1 — a J,  wMog'n'

we also have

r*   du       r&    r*   _i_ r&du       i     r du

J, «'log2«-!  +J4;<iog22ji  w+iogviJs-y

-o<^)+o(i$ï)-°(i$^)'

and introducing in the expression above, we find

+ 0(i$LJ+£+0(iSi)'
>-?

or finally

(27) iogn^ = ri-r-+0(ï^) = rJ-r1-(1 + 0(1))pi^_1^     1 — a log a;        \log2 a; /     1 — a log x

p'
(0 <a<l).

On account of n < nx and pAt > p*, equation (5) gives

(28) *. ( * x -** n —^r ̂  *■ n -^r*=i ,i    *=i,   ii _ _   —* i _ _pi «
Substituting p„m for a; in (27), we obtain by the aid of (19), manipulating

the symbol o ( 1 ) in the same way as when deriving (20) from the formula

preceding it,

Pi
whence, by (28)

, 8g(x)
l0g   IT   _ 1

(30) lim sup -Y—rrza < ,-•
*=«, r (loga;)1    ^ 1 — a

log log x
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To obtain a special sequence of integers for which this upper limit is effectively

attained, make
Xn =  Pi P2  ■ ■ •  Pn ■

We then obtain from (5)

(3D *.(*,) = acñ-T'

Pk
and we have

= - log log log Xn + 0 ( 1 ) for a - i (by (20)),

= 0(l)fori<a<l (infinite product convergent),

so that in all three cases

*=i\       p  )      log log x„

Equations (31) and (29) then give

,    Sg(xn)      _1_(loga-n)1-" ,,,,.. v

lo^^r = r^"ioiio^:(1 + 0(1))
or

,     J. (arn)
l0g^^~ 1

(32) lim
«=«, (loga;n)1-a     1 - a

log log Xn

and we finally obtain, by combining (30) and (32)

,     *. (x)
log

X 1
lim sup 7i-rvzi — ;- ( 0 < a < 1 ).

*=„ ^(loga:)1 —      1 - a

log log X
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