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SOME ASYMPTOTIC FIXED POINT THEOREMS
BY

ROGER D. NUSSBAUM(l)

ABSTRACT.   By an asymptotic fixed point theorem we mean a theorem in func-
tional analysis in which the existence of fixed points of a map y is established
with the aid of assumptions on the iterates fn of /.   We prove below some new
theorems of this type, and we obtain as corollaries results of F. E. Browder, G.
Darbo, R. L. Frum-Ketkov, W. A. Horn and others.   We also state a number of
conjectures about fixed point theorems at the end of the paper.

Our interest in the results here is two-fold.   First, asymptotic fixed point the-

orems have proved useful in the theory of ordinary and functional differential

equations (see [17], [18], [19] and [34]), and in fact we hope to indicate in a future

paper some applications of our results to functional differential equations of neu-

tral type (see [ll] or [15]).   Second, and perhaps more relevant to our immediate

line of development, asymptotic fixed point theorems provide a framework for uni-

fying and generalizing many of the known fixed point theorems of functional anal-

ysis.

The immediate impetus for this paper comes from the following theorem, which

was claimed by R. L. Frum-Ketkov in [13]:

Theorem.   Let B be a closed ball in a real Banach space X and f: B —> B  a

continuous map.   Assume that there exist a constant ~¿ < 1   and a compact set

K C X such that for all x £ B, d(f(x), K) < kd(x, K), where d(y, K) denotes the
distance from a point y to K.   Then f has a fixed point.

As has been remarked in [25] and [27], Frum-Ketkov's proof seems to be in

error.   Specifically, one can construct a function / defined on the unit ball in Eu-

clidean 2-space which contradicts Frum-Ketkov's assertion that the numbers

c(f, T) considered in [13] stabilize  mod 2.   A correct proof of Frum-Ketkov's the-

orem for the case that the Banach space is essentially a  77j-space   (e.g., a Hubert

space or an  Lp  space,   1 < p < co ) was given in [25] and [27].   Subsequently, F.

E. Browder generalized Frum-Ketkov's theorem (see [7, Theorem 16.3]), but only

for Hubert space.   Browder's proof makes essential use of geometrical properties

of Hubert space and does not generalize directly to Banach spaces.

Presented to the Society, March 27, 1971; received by the editors September 4, 1970.
AMS 1969 subject classifications.   Primary 4785, 4780;   Secondary 5485.
Key words and phrases.   Fixed points, asymptotic fixed point theorems, fixed point

index, generalized Lefschetz number, measure of noncompactness, compact map, Tc-set-
contraction.

(1) Partially supported by NSF GP-20228.
Copyright © 1972, American Mathematical Society

349

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



350 R. D. NUSSBAUM [September

We shall obtain Frum-Ketkov's theorem from a very general result (Theorem 1

below).   One might think that if one were only interested in Frum-Ketkov's theo-

rem, an easier proof would be possible.   We know of no proof of Frum-Ketkov's

theorem, however, which does not essentially use all the ideas of Theorem 1.

1.   We begin our work by recalling a geometrical result which will be of cru-

cial importance here.   Variants of Lemma 1 play a key role in the development of

the fixed point index for ¿-set-contractions in [24], [26], [28] and also form the

basis for the geometrical approach to the classical fixed point index in [27].

Lemma 1 can be viewed as a generalization of a theorem of Dugundji [12].

Lemma 1 (Nussbaum [26]).   Let C and D be closed subsets of a Banach space

X, C 3 D.   Assume that C = U "  , C . and D = U *   , D ., where C ■ and D ■ are' 7= i    ; 7 = 1    ;' i i

closed, convex subsets of X and C A) D ■ for 1 < / < tz.   For each subset  J C [1, 2,

• • • , 72J  assume that  C.= D   g, C    is nonempty if and only if D , =11.      D .  is
nonempty.   Then there exists a retraction R of C onto D such that R(C .) C C ■ for

1 < /' < 22.

Notice that Lemma 1 implies in particular that D is a deformation retract of

C by the deformation retraction  H: C x [0, l] —► C given by H(x, t) = tR(x) +

(1 - t)x.
As an immediate corollary of Lemma 1, we have the following simple result,

which we shall need later.

Lemma 2.   Let C be a closed subset of a Banach space X and assume that

C —\J" _ ,  C-, C ■ closed and convex.   Let K be a closed convex set and assume

that for each ] C (1, 2, • > -, 22} if C . = f] .g. C    is nonempty, then  C . D K is non-
empty.   Let  C   =CUK.   Then  C   is contractible in itself to a point, i.e., there

exists a continuous map H: C' x [O, l] —> C ' such that H(x, 0) = x for all x £ C'

and H(x, 1) = xQ, where xQ is a given point in C  , independent of x.

Proof. For each subset /C ¡1, 2, • ■ • , 72I such that M . . C. is nonempty

select x jCCjD K. For 1 < j < n, let D. = cöäx.: j £], J C [1, 2, • • • , n\\ where
cö denotes the convex closure of a set.   If we define   D     , = C     , = K, it is clear

7Z +1 72 +1 '

from our construction that   C. D D . and that for any  /C{l,2,...,n+l|,  C.=

II    e, C. is nonempty if and only if  D. is nonempty.   It follows by Lemma 1 that

there exists a retraction  R: C' = C \j K —* D' = D U K such that  R(x)£C.   if

x£C., 1 </<»,   Notice also that by construction  D' = K.   Select  xQ£K and de-
fine  H: C'x [0, 1] —> C' by

H(x, t) = (1 - 2t)x + 2tR(x),      0 < t < V2,

= (2 - 2t)R(x) + (2t - l)xn,       V2<t<l.
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Thus  C' is contractible.    Q.E.D.
Our next lemma is a trivial result, but we include the proof for completeness.

Lemma 3.   Let Y be a topological space and f: Y—* Y a continuous map. As-

sume that there exists a subset   U C Y such that f(U) C U and an open subset V

of  Y, V C U, such that for each y £ Y, there exists an integer n(y) such that

fnt>y\y)£V.   Then given any compact set  K C Y, there exists an integer N such

that fn(K) C U for n>N.

Proof.  For each x£K there exists an integer n(x) such that fn^x'(x)eV.   By

continuity, there exists an open neighborhood   U    of x in K such that / (y)£V

fot y£U  .   It follows that f"(y)£ U for 72 > n(x).   By the compactness of K, there

exists a finite open covering   U    , U    , • • • , U     of K.   For n > N =
12 r

max{n(x1), n(x2), • . • , n(x )\ and x £ K we have fn(x)£ U.       Q.E.D.

Before proving our next lemma, we need to recall some algebraic generalities.

Let V be a vector space and  T: V —» V a linear endomorphism.   Let  N = {x £ V:

T"(x) = 0 for some tz > l\, a linear subspace of V.   Let  T: V/N —i V/N denote the

natural map induced by T.   If  V/N is finite dimensional, J. Leray has defined

[23] the generalized trace of T, which we shall write  tr        (T), to be the trace ofo ' gen7

T, tr(T).   Leray proves that this generalized trace agrees with the ordinary one

when V is finite dimensional.   If V and W ate vector spaces and  T: V—> W and

S: W —> V ate linear endomorphisms, Leray proves that tr        (ST) is defined iff

tr        (TS) is defined and tr        (ST) = tr       (TS).gen geaK gen x       '
A slightly different method of viewing the generalized trace (used by Browder

in [6]) is sometimes convenient.   Let V be a vector space, let  T: V—» V be a

linear endomorphism and let  N = {x £ V: Tn(x) = 0 for some 72 > 0\.   It is not hard

to prove ([26], [28]) that if  V/N is finite dimensional, there exists a finite dimen-

sional subspace E of V such that  T(E)C E and such that for each  x£V there

exists an integer 772(x) with Tm      (x)£ E.   Conversely, if such an E exists, one

can prove that  V/N is finite dimensional ([26], [28]).  Finally, one can show that

trgen(T)=tr(T|E).
Next let X   be a topological space, /: X —► X a continuous map and  7/  (X)

the pth singular homology group with coefficients in the rationals, a vector space

over the rationals.   As usual,   7.      : 7/ (X) —> H (X), the homology map induced

by /, is a linear endomorphism.   If tr  en(/7     )   is defined for all p > 0 and 0 ex-

cept for finitely many p, Leray [23] defines the generalized Lefschetz number of

/, which we shall write  A  „   (/), to be  2H .   n (- l)p tt        (L   J.   If  /: X -»  Xgen '   ' p .>  U v g e n v; *, p >

and g: X —» X are homotopic in X and A       (/) is defined, then of course  A       (g)

is defined and equal to A       (/), since / and g induce the same maps in homology.

If X and Y ate topological spaces with   Y C X and if f(X) C Y, it is not hard to
see that Agen(/) is defined iff Agen(f\Y) is defined and  A       (/)=A       (/|y),
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where  f\Y denotes / viewed as a map from y to Y.   To see this just let g: X—>   Y

denote / viewed as a map from X to y and i: Y —► X  denote the inclusion of Y into

X.   Then we have  tr        ((/ I y V    .   ) = tr       (rzt   im  .) = tr  „„ (2'   „ g± A =gen"'1       *, P genK°*,p *,p' gen^*,ps*,p
tr        (/^     ), hence the result.   If X and y are topological spaces with   y C X and

/: X —» X  is a continuous map such that f(Y) C Y and f"(X) C y for some integer

22, then it is not hard to see by applying the above observation repeatedly that

Age n (/) is defined iff Age n (/ | y) is and Age , (/ | Y) = Age n (/).
With these preliminaries we can proceed to Lemma 4.

Lemma 4.   Let A be a topological space and f: A —> A   a continuous map.

Let B C A   be a subspace of A which is contractible in itself and assume that

there exists an integer N such that fn(A) C B for n > N.   Then A       (/)  is defined

and equals one.

Proof.   Let   V\  = H A A) and W„ =  (F      ) N (VA.   Both   V„ and W.   are vectorP        Pv P      Kl*, p' P P P
spaces.   Our first claim is that W    is zero dimensional for p > 0 and one dimen-

sional for p = 0.   To see this we just note that  /   : A —» A   can be written as z'g,

where g denote /     viewed as a map from A to B and i: B —» A  is the inclusion.

Since B is contractible in itself to a point xQ £ B, this shows that /     (and in

fact /" for 72 > N) is homotopic to the constant map x —> xQ.   It follows that W

is zero dimensional for p > 0 and one dimensional for p = 0.

We thus see that  2p>Q(- l)tr (/^ p |Wp)= tr (/^ 0.|W„).   However,  /N+1
and /     are both homotopic to the constant map, hence homotopic, so  (/^     )    +   =

if*   o'   '    This shows that for any  v =  (/      )    u £ Wn,   (/      ) 12 = v, so

tr ('/^ 0 |VV0) = 1.      Q.E.D.
With these lemmas we can establish our first main result.   We need some fur-

ther notation, however.

If (J is a closed subset of a Banach space X, let us write   U£ A »if there ex-

ists a finite number C,, C2, • • • , C    of closed, convex subsets of X such that

u = U" ,c.
z= 1      I

Theorem 1.   Let G be a closed, convex subset of a Banach space X and

f: G —> G  be a continuous map.   Assume that there exists a compact set  M C X,

a sequence of positive real numbers \r   : 722 > ll  such that  lim r    =0 and a1 '   r m —     ' zzz-»°°    zzz
sequence of closed, nonempty sets  \U   : m > 1} such that the following hold:

(1) Um£cA0andf(Um)CUmforallm.

(2) UmCNr   (M)=\x£G:d(x,M)<rm\.
m

(3) Given any compact set   K C G and any U   , there exists an integer N (de-

pending on K and U   ) such that fN(K) C U   .

Then A  e   (/ I U   ) = 1 for all m, and f has a fixed point.

Proof.  Suppose we can prove that for each 772 there exists x     £ U     such that
1 *■ mm
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||/(x   )- x   II < 4r   .   Since  x     £ N    (M), lim    _, r    =0 and M is compact, by tak-M/        772 772"   — 772 772 7* ' 772-»00      772 r ,       j
772

ing a subsequence we can assume that x    —» x £ M C\ G.   It follows that

\\f(x) - x\\ = lim^ \\f(xj - xj = 0, so that /(*) = x.
Thus it suffices to find x     (and also prove that A        (f\U   ) = 1).   Select a772 r gen    J   '      772 '

fixed ?7z and for notational convenience let   U    = U and r    = r.   By assumption   (7 =772 772 J r

U ¿_t B-, where B- are closed, convex subsets of G.   Let y., y,.«-*" » y«' ^e

an r-net of points in M  (i.e., any point in M is at distance less than or equal to r

from some  y .) and let  V2 (y ■) denote the closed ball of radius  2r about y ■-   It is

easy to see that zVr(A4) C U ?   j V'2r(y ■).   Since   U C /Vr(M), it follows that

u = f Ú Bj n ( Ú V^j = U«,n v2r{y,)-

Since diameter  (B ■ O V2 (y ■)) < 47 and B ■ Cl  V2 (y ■) is closed and convex, we have

shown (after reindexing and relabelling) that   U=U,    j   C^, where   Ck  is closed

and convex and diameter (C, ) < 4r.

For each / C il, 2, • • • , 72! such that C, = \\ k e , Ck  is nonempty, select

x . £Cj.   Let   /< = cb{x  : } C {1, 2,- • • , tzH  and let

D. = cöUy: / e /, / C {1, 2, - - - , 72}}, l < j < „.

By Lemma 2, B = U U K is contractible in itself to a point.   Since K is compact

there exists an integer N such that f   (K) C (7, (hence f"(K) C U fot n> N) and so

if we define A = U^O f'(B)> f: ^  ~* ̂ .   If we consider /|A, Lemma 4 implies

that A       (f\A) is defined and equals one, since f"(A)  lies in the contractible

set B tot 72 > N.   However, by our previous remarks about the generalized Lefschetz

number, since fN(A) C U and f(U) C U, Agen(f\A) = A^o(f\U) = 1.
If D . is as above for  1 < / < », define D = U ■ _ , 73 •■   It is easy to check

that the hypotheses of Lemma 1 hold for   (7 = U • _ ,   C- and D =U"_j D ., so there
exists a retraction  ß: // —» D  such that  R(C.) C C • for 1 < ; < 72.   If we define a

map g: U —* U by g(%) =  (R/) (x), then / and g ate homotopic in U by the homotopy

tf(x)+ (1 - t)g(x), 0 < t < 1.   Therefore,  A  en (g) is defined and nonzero.   But D

is a finite union of compact, convex sets, and these are known to be compact met-

ric ANR's.   For such spaces  H.(D) is finite dimensional and zero except for fi-

nitely many ;', and the Lefschetz fixed point theorem holds.   Therefore, we have

Agen (g \D) = A(g \D) /= 0, where  A(g \D) is the ordinary Lefschetz number; and g

has a fixed point  x€D.   Suppose that f(x)£ C..   Then we know that   (Rf) (x) =

x£ C\, so |7 - /(x)|| < 47, since diameter (C)<4r.      Q.E.D.
Our first corollary is an easy consequence of Theorem 1.   For the case that

X is a Hubert space, Corollary 1 has been proved by F. Browder (see [7, Theorem
16.3]).

Corollary 1.   Let G be a closed, convex subset of a Banach space X and
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f: G —► G a continuous map.   Assume that there exists a compact set  M C X  and

two sequences of positive numbers {a A and \b,\ with a, > bk and a^—► 0 such

that (1) for each open neighborhood Gn of M in X and each x£G, there exists an

integer nQ  (depending on x and G A such that fn(x)£ GQ for n > 72Q and (2) f maps

N    (M)= \x£G: d(x, i\l) < a A into N,   (A0 for all k > 1.   Then f has a fixed point,
k * bk

Proof.  We take the M in Theorem 1 to be the same as the M above, and we de-

fine  a, = r, , k > 1.   It remains to construct the sets   Uk and verify the hypotheses

of Theorem 1.   Given  k > 1, let  e, = a, - b, > 0 and let x.   ,, 1 < i < n(k), be an
£,   net for M.   Define   C*.   , = \x£G: \\x — x.   ,|| < ak\, a closed, convex set and de-

fine   U, = U;- _ j  Ci   k.   Clearly we have   U, C Na  (M).   On the other hand, if
' k

y£N,   (M), there exists  x £ M such that   \\y — x|| < b,   and there exists x.   ,   such
k *

that   ||x - x, || < ek, so that   ||y - x.   ,\\ < a, and y £ Uk.   It follows that  N,   (M) C

Uk, and this implies that f(UA C Uk and U,   contains an open neighborhood of M.

By Lemma 3, given any compact set   Kc G, there exists an integer N such that

/   (K) C U,.   Thus hypothesis (3) of Theorem 1 is satisfied, and we have already

verified hypotheses (l)and (2).    Q.E.D.

Corollary 2   (see [13]).   Let G be a closed, convex subset of a Banach space

X and f: G —> G a continuous map.   Assume there exists a compact, nonempty set

M C X aW a constant c < I  such that for all x£G, d(f(x), M) < cd(x, M).   Then f
has a fixed point.

Proof.   In the notation of Corollary 1, let  a, = l/k and b, = ca,   tot integers

k > 1.   Then it is clear the hypotheses of Corollary 1 hold.     Q.E.D.
Before stating our next corollary we need to introduce some definitions.

Definitions.   Let y be a topological space, f: Y —»ya map, and zM a subset

of y.   We say that   "zM is an attractor for compact sets under /" if (1) M is com-

pact, nonempty and  f(M) C M, and (2) given any compact set A C Y and any open

neighborhood U of M, there exists an integer N  (depending on A and U) such that

fn(A) C U tot n > N.   We say that   "M is an attractor for points under /" if (1)

above holds and given any point  ye y and any open neighborhood U of M, there

exists an integer N  (depending on y and U) such that fn(y)£ U tot n > N.

One encounters attractors in analysis when one considers the map of transla-

tion along trajectories of differential equations or functional differential equations

which satisfy various assumptions of stability. For our immediate purposes, how-

ever, the reason for introducing this notion is the following simple lemma:

Lemma 5.   Let Y be a metric space and f: Y—» y ¡j continuous map.   Assume

that there exists a set  MC V which is an attractor for compact sets under f.   Then

given any open neighborhood U of M, there exists an open neighborhood V of M

such that  V C U and f(V) C V.
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Proof.   Let  V = {x £ U: f"(x)£ U fot all n > 1\.   Clearly,  M C V C U and f(V) C
V.   It remains to show V is open.   Suppose not.   Then there exists a point x£V

and a sequence  x, —» x such that x, f. V for all £.   Since  x^ £ V, there exists a

first integer 7z(¿) such that fn<-k)(xk) t U.   Since  fn(x) £ V for all  72 > 0 and since

x,—. x, it follows by the continuity of / that  lim^^, n(k) = °°.   On the other hand,

if A = {xk: k > l! u {x\, A is compact, so fn(A)C U fot all 72 > N = an integer de-
pending on A and U.   This contradicts the choice of A.    Q.E.D.

Before stating our next lemma we need to recall more notation and definitions.

Definitions.  Let Y be a topological space and f: Y —» Y a map.   If G is a

subset of Y, define  C¡(/, G) = f(G), Cn(f, G) = f(G Cl Cn_y(f, G)) for 77 > 2 and
CJf, G)= H w> j Cn(f, G);  Cjf, Y)"= fl „> , fn(Y) is called the "core of /.'*
If A is a subset of Y,Un> Q fn(A) =   0(A) is called the "orbit of A under /.*'

The idea of looking at the core of a map in the context of fixed point theory

goes back at least as far as the work of J. Leray on the fixed point index ([2l],

[22]). Lemma 6 below appears to be due A. Gleason and R. S. Palais (unpublish-

ed); F. Browder also establishes this result in [6].   We give a proof only for com-

pleteness.

Lemma 6 (Gleason and Palais).  Let Y be a metric space and f: Y—► Ya

continuous map.   Assume that  C   (f, Y), the core of f, has compact closure in Y

and that the orbit of any point y £ Y has compact closure.   Finally assume that

there exists an open neighborhood V of M = cl (Coo(//, Y)) such that cl(f(V)) is com-

pact.   Then M is an attractor for compact sets under f, and the orbit of any com-

pact set under f has compact closure.

Proof.   First let us show that M is an attractor for points.   Thus let U be any

open neighborhood of M and y be a point in Y and assume that there does not ex-

ist an integer N such that fn(y)£ U foi n > TV.   By assumption A = cl (0(y)) is

compact and obviously f(A) C A.   It follows that  {f'(A) O (Y - U)\  is a decreasing

sequence of nonempty compact sets, so that  (Il    y . /'(A)) Cl (Y - U) is non-

empty  (Y - U denotes the complement of U in Y).   However, by the definition of

M, we must have I I .y . f!(A) C M C U, a contradiction, so that M must be an at-

tractor for points.

Let V he as in the statement of the lemma.   For each  x eel (f(V)) there ex-

ists a positive integer  m(x) and an open neighborhood   U(x) of x in cl (f(V)) such

that fm<-x\y)£V fot y £ U(x).   Since  cl(/(V)) is compact, we can write   cl(/(V)) =

U .    j  U(xi). We define  777 = maxj^ .,   {m(x .)\ and V =U • =0 /;(^)i and we claim

that f(V)C V.   To show f(V) C V it suffices to show that if y = fm~   (x) fot
x £f(V), then f(y)£V.   But x £ U(x.) fot some i so that

f(y) = jm-m(Xl)(fm(Xl)(x))  g fm-m(Xl)(V) C y.
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Assume now that  B C y  is a compact set.   We wish to show that  0(B) has

compact closure and to do that it suffices to show that  0(B) is contained in a

compact set.   Since M is an attractor for points, for each x£B there exists an in-

teger 72(x) such that f'(x)eV tot j> n(x).   By continuity there exists an open

neighborhood V(x) such that fny  \y) £ V tot y £ V(x).   Consequently we have /7(y) £ Vthat

for y£V(x)and j> n(x).   By the compactness of B, ß C U¿=1 V(x.), so that if

72 = max,22(x¡.)!,  /'(B) C V tot j > 72.   We thus see that
n

cl(0(B))C   \Jj'(B)xJcl(f(2/)),
7 = 0

a compact set.

It remains to show that iM is an attractor for compact sets.   To see this, let

B be a compact set and let A, = cl (0(B)).   Then if we assume M is not an attrac-

tor of compact sets (in particular, say not an attractor of B), the same argument

given in the first paragraph of the proof leads to a contradiction.     Q.E.D.

Actually the hypotheses of Lemma 6 are unnecessarily restrictive.   One can

easily check that the proof of Lemma 6 implies the following slightly more gener-

al result.

Lemma 7.   Let Y be a metric space and f: Y —> Y a continuous map.   Assume

that the orbit of any y£Y has compact closure.   Suppose that there exists a com-

pact set  MC y such that f(M) C M and such that C   (/, K) C M for any compact

set   KCy for which f(K) C K.   Finally assume that there exists an open neighbor-

hood V of M such that cl(/(V))  is compact.   Then M is an attractor for compact

sets and the orbit of any compact set has compact closure.

Our next lemma is also a result of Gleason and Palais (unpublished).   A proof

of a slightly less general version is given by Browder in [6].   Again, we give a

proof only for the sake of completeness.

Lemma 8   (Gleason and Palais).   Let hypotheses and notation be as in Lemma

7.   Then given any open neighborhood W of M, there exists an open neighborhood

U of M such that  U C W and cl (/((/)) C U.

Proof.  Let  W' be an open neighborhood of M such that  cl(W  )C W n V.   By
Lemma 5 and Lemma 7 there exists an open neighborhood   (i0  of M such that

U0 C W' and f(UQ) C U Q.   Let A = cl(f(UQ)), a compact subset of cl (U0).   Since
(by Lemma 7) M is an attractor of compact sets, there exists an integer N such

that /N(A)C UQ.   (Notice that /'(A)C cl((V0)for all j> 0, since f(cl(UQ))C
cl(U0).)   Let  UN be an open neighborhood of /N_1(A) such that UN C V Cl W and
such that cl(f(UN))C UQ (since /   (A) is a compact subset of  U Q).   Generally,

if  U. is an open neighborhood of f}~   (A) for 1 < /' < N - 1, let   U■_1  be an open
neighborhood of /7_2(A) such that U._x C V n W and cl (f(U._x))C U..   In this

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] SOME ASYMPTOTIC FIXED POINT THEOREMS 357

way we obtain open neighborhoods   U. of f!~  (A) fot 1 < j' < N such that U. C V Cl W

and cl(f(U.))C U.   ,   (with the convention that   t/n = UN   , ).   Defining   U =
U • _ g U-t  it IS not hard t o show that U satisfies the conditions of Lemma 8.

Q.E.D.
We are now in a position to obtain our next corollary of Theorem 1.   This re-

sult was essentially established by F. E. Browder in [6] and has been proved by

Browder in the full generality below in [7].   A somewhat less general theorem is

given by H. Steinlein in his dissertation [32].

Corollary 3  (Browder [6], [7]).   Let G be a closed, convex subset of a Banach

space X and f: G —> G a continuous map.   Assume that (1)   11    ^. fn(G), the core

of f, has compact closure in G.   (2) For each x £G, the orbit of x under f has com-

pact closure.   (3) There exists an open neighborhood V of cl(P)      . f"(G)) such

that cl(/(V)) is compact.   Then f has a fixed point.

Proof.    By  Lemma   8 there  exists  an  open  neighborhood   U of A =

cl(fln>1 f"(G)) such that UC V and cl (/((/)) C U.   Let  M = A U cl (f(U)\ a com-
pact subset of U.   By Lemma 8, M is an attractor for compact sets under /.   Since

M is compact, there exists a real number a > 0 such that N (M) C U.   Let {a A be

any sequence of positive numbers such that  a, < a fot all k and lim a, = 0.   If

i¿7!  is any sequence of positive numbers such that  b, < a,, we have f(N     (M)) C
k

Nb  (M); in fact we have  f(N  (M)) C M.   Thus the hypotheses of Corollary 1 are sat-
k

isfied and / has a fixed point.    Q.E.D.
An examination of the proof of Corollary 3 shows that the same proof gives

the following somewhat more general result:

Corollary 4.   Let G be a closed, convex subset of a Banach space X and f:

G —> G a continuous map.   Assume that (1) There exists a compact sel A C G

such that f(A) C A and such that Cx(f, K) C A for any compact set  K C G for which
f(K) C K.   (2) For each x£G, the orbit of x under f has compact closure.   (3)

There exists an open neighborhood V of A such that cl(/(V))  is compact.   Then f

has a fixed point.

One can obtain one of W. A. Horn's results in [l6] as a consequence of Cor-

ollary 4.

Corollary 5  (W. A. Horn [16]).   Let G be a closed, convex subset of a Banach

space X and f:  G —* G a compact map (f is continuous and takes bounded sets

into precompact sets).   Assume there exists a bounded set E such that for each

x £ G there exists an integer m(x) = 77z such that fm(x) £ E.   Then f has a fixed

point.

Proof.   Let V be a bounded open neighborhood of  cl(E) and let K = cl (f(V)),
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a compact set.   For each  x £ K, there exists a positive integer  mix) and an open

neighborhood   U(x) of x in K such that fm{x)(y)£V for y £ U(x).   Let  \U(x.): 1 <
i < r¡  be an open covering of K and let  222 = max¡772(x¿)}.   Just as in the proof of

Lemma 6 we see that if   V = Um_ n/'(V), f(V) C V.
Define A = cl (f(V)), so that A is a compact set and /(A) C A.   We wish to

show that with this A the hypotheses of Corollary 4 hold.   It suffices to show that

if K is any compact set in G, there exists an integer zV  (depending on K) such

that f"(K) C A for n > N.   For each x£ K, there exists an integer n(x) and an open

neighborhood  0(x) such that /"(x)(y)eV for y £ 0(x).   It follows that  /'(y)eA for

; > tz(x) + 1.   Since K is compact there exists a finite open covering jO(x.): 1 <

2 <s¡ of K, and if N = max{7z(x¿) + lj, f"(K)C A tot n > zV.     Q.E.D.

2.   In this section we wish to obtain some less straightforward consequences

of Theorem 1.   We begin by recalling the notion of measure of noncompactness of

a bounded metric space.   This is a very useful idea which was first introduced by

C. Kuratowski [19].
Definition.   Let  (y, p) be a bounded metric space.   The measure of noncom-

pactness of   y, y(Y), equals inf[zi> 0: there exists a finite number of sets  Sx,

S9  • . .    S    such that y = U .   , S and diameter  (S ) < d\.2' »     zz z = lz v   z' —

Of course if y is a bounded complete metric space,  y(y) = 0 if and only if y

is compact—hence  the name measure of noncompactness.   Kuratowski establishes

a number of properties of the measure of noncompactness; of these results the

following proposition will prove most useful for our purposes:

Proposition 1  (Kuratowski [19]).   Let  (Y, p) be a complete metric space and

let   y, D Y2 0. • O y    D- . •   be a decreasing sequence of closed, bounded, non-

empty subsets of Y (which inherit their metrics from Y).   Assume that

lim y(y  ) = 0.   Then   Y    = II   .. , y     is a nonempty compact set, and if ¡J is
n -» 001 ^    nJ 00 ncA     n . 1

any open neighborhood of Y   , there exists an integer N (depending on U) such

that   Y   C U for n> N.n ' —

If   y, and y2  are metric spaces and /: y, —>  y.,   is a continuous map, Kura-

towski also introduces a class of maps which we shall call "/s-set-contractions."

Specifically, / is called a /e-set-contraction if for every bounded subset A of y.,

/(A) is bounded and y2(/(A))< kyx(A).   In the work below   yj  will always be a
subset of a Banach space   Y2 , from which yj   inherits its metric.   If U is a subset

of a Banach space X, g: U —► X  is a Lipschitz map with constant k, and C: (J —»

X  is a compact map, then / = g + C is a ¿-set-contraction.   This is perhaps the

simplest nontrivial example of a zi-set-contraction.   More general examples are

given in [26] and [28].   For instance, it is shown in [26] that the radial retraction

onto a closed ball in an infinite dimensional Banach space X is a 1-set-contrac-

tion, even though DeFigureido and Karlovitz have shown (Bull. Amer. Math. Soc.
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73 (1967), 364—368) that it is a Lipschitz map with constant one if and only if X
is a Hubert space.   Also one can take compositions and use partition of unity ar-

guments with ¿-set-contractions.

If X is a Banach space G. Darbo has shown that the measure of noncompact-

ness satisfies other properties related to the linear structure of X.   Specifically,

if A and B ate subsets of X, define  A + B = {a + b: a£ A, b £ B\, co (A) = the con-
vex hull of A  (the smallest convex set containing A) and  cö(A) = the closed con-

vex hull of A.

Proposition 2  (Darbo [8]).   Let A and B be bounded subsets of a Banach space

X.   Then y(A + B) < y(A) + y(B) and yÇcb A) = y(A).

Using Proposition 2, Darbo establishes the following fixed point theorem,

which is the starting point for the results of this section.

Proposition 3  (Darbo [8]).   Let G be a closed, bounded convex set and let f:

G —► G be a k-set-contraction, k < 1.   Then f has a fixed point.

The goal here is to generalize Proposition 3, but further mathematical appa-

ratus is needed.   We need to recall the notion of the fixed point index and some

of its basic properties.   Thus let A be a compact metric ANR.   If A is a compact

subset of a Banach space and A =\J ._, C., where the  C ■ ate compact, convex

subsets of X, A is a compact metric ANR.   This is the most important example

for our purposes.   Let G be an open subset of A and let f: G —• A  be a continuous

map such that S = {x £G: f(x) = x\  is compact (possibly empty).   Then there is an

integer defined,  *7(/, G), called the fixed point index of / on G.   Roughly speak-

ing, iA(f, G) is the number of fixed points of f in G counted algebraically.   If

7(/, G) ,= 0, then / has a fixed point in G; and ix U is any open neighborhood of

S, U C G, then i. (f, U) = iAf, G).   If B is a compact metric ANR contained in A
and if /(G) C B, then the fixed point index respects this relation and  7(/, G) =

iB(f, G Cl B).   Finally, the fixed point index agrees with the Lefschetz number

when both are defined, i.e., if  G = A,  iAf, A) = A(f), the Lefschetz number of /.
The fixed point index satisfies other properties, e.g. the homotopy property, and

in fact the index can be axiomatically defined by four properties; but the results

given here will suffice for our purposes.   We refer the reader to [3l, [l0], [21],

[30] or [33] for more details.
The fixed point index described briefly above can be defined for ¿-set-con-

tractions, k < 1, defined on open subsets of "nice" metric (noncompact) ANR's-

and in fact for more general maps.   All the properties of the classical fixed point

index have direct generalizations in this context; and in fact one can give four

properties which again determine this generalized fixed point index axiomatically.

We refer the reader to [24] for a summary and to [26] or [28] for details.
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All we shall need below is the definition of the generalized fixed point index,

though we should remark that its usefulness stems from the properties it satisfies.

To begin the definition, if V is a subset of a Banach space B and  /: V —> B  is a

map, define   K, = KAf, V) = cö f(V), where cö denotes convex closure.   Generally,

for 72 > 1, define Kn = Kjf, V) = cTo f(V n Kn_ x )and define K^ = KJf, V) = f|„> , *„•
It is easy to see that f(V d K^) C K^.   Now suppose that V is bounded and / is a

¿-set-contraction, k < 1.   By using previously mentioned properties, one can prove

that y(K ) —> 0 (in fact y(K  ) < kny(V)), so that by Proposition 1, K^ is compact

and  K^  is empty if and only if  K    is empty for some 72.

Next suppose that A is a closed subset of a Banach space X.   We shall write

A£A and say that A has a locally finite cover by closed, convex sets if there ex-

ists a family of closed, convex subsets of X, {C.: £ £ I\, such that A = \J   e ,C ■

and given any x£A   there exists an open neighborhood  U    of x such that U   C\ C ■

is empty except for finitely many z.   One can show that if A£J, A is a metric ANR.

With these definitions, assume that A £ A, V is a bounded open subset of A

and /: V —»A is a ¿-set-contraction with k < 1. Assume that S = \x £ V: f(x) =

x\ is compact (possibly empty) and write K = K (f, V) f~! A, so that K is a fi-

nite union of compact, convex sets.   We define  i.(f, V), the generalized fixed

point index of / on V, to be   z'K* (/, V O K^). One can prove that this definition is
00

consistent with the classical fixed point index: if A above is compact, so that the
*

classical fixed point index is already defined,   iA(f, V) = iK* (/, V D K^).   Just as
00

for the ordinary fixed point index, if  z   (/, V) / 0, f has a fixed point, and if W is

any open neighborhood  (in A) of S, W C V, then z'^i/, V) = iA(f, W).
Now we can begin work on further consequences of Theorem 1.   Our next lem-

ma is another point set topology result.

Lemma 9.   Ler  (Y, d) be a complete metric space and f: Y—»  Ya continuous

map.   Assume that there exists a compact set M C Y which is an attractor for com-

pact sets under f.   Suppose also that there exists a bounded, open neighborhood V

of M, such that  lim.^^ y(/'(V)) = 0.   Then given any open neighborhood W of M,

there exists an open neighborhood ¡J of M, (JC IP, such that cl (/(!/)) C ¡7.   Further-

more, if U is any open neighborhood of M such that  U C V and f(U) C U and 0 is an

open neighborhood of M, there exists an integer N  (depending on O and U) such

that cl (/"(!/)) C 0/0772 > N.

Proof.  Begin with the second assertion, so suppose that U is an open neigh-

borhood of M contained in V and f(U) C U.   If we  let   A    = cl (/"(!/)), then by the
assumptions  A     is a decreasing sequence of closed, nonempty sets such that

y(A   ) —► 0, so by Proposition 1, A^ = f|   .     A     is nonempty and compact.   We

claim that f(Ax) = \f(y): y ¿A^] = A^.   For suppose not.   Then there exists  f > 0

and ytA^ suchthat y fÊ N^(f(Aoc)) = \x £ Y: d(x, f(Aoo)) < t \.   By continuity and
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compactness, there exists  <3 > 0 such that  f(N$(A   ))C Ne(f(A   )).   By Proposition

1 again,  ^C /VS(AJ for n > 720, so that An+ j C cl (/(AJK N e(f(Aj) fot n> nQ.
But this implies  A^ C Ne(f(A   )) a contradiction.   It follows that f(A   ) = AB, so
/   (Aj = A^ for all positive integers N.   But /M is an attractor so for some integer

N, f   (A   ) = A     CO.   Since A      is compact, there exists a positive number r such

that  N (A   ) C 0.   By Proposition 1  A    C N (A   ) for 77 > TZj, which proves the sec-

ond assertion.

Now let W he any open neighborhood of M.   By Lemma 5, there exists an open

neighborhood   UQ of M   such that   f(U0) C UQ and such that  cl(UQ)C V Cl W.   By
the above remarks there exists an integer N such that  cl(/"((/Q))C UQ fot n > N.

Let   CN_l   he an open neighborhood of cl(f        (UQ)) in F Cl W such that
cl (fWN_ j)) C (70 and proceed inductively, defining UN = UQ:  If sets   Í7. have been
constructed for  r < j < N — I such that 17. is an open neighborhood of cl (/7(FQ))

in V Cl W and cl(f(U.)) C 17.   . for r < /' < zV - 1, define [7     j  to be an open neighbor-
hood of cl(fr~l(UQ))in V n W suchthat cl (/((/"_ ,)) C (J..    In this way we obtain
an open neighborhood   (7 = (J .=~0 17. of M such that cl (/((/)) C U and [/CVCff.

Q.E.D.
With the aid of Lemma 9 we can obtain our next corollary of Theorem 1.   Cor-

ollary 6 is closely related to the results in [6], [25], but it does not seem directly

comparable.   The proof given below is in two parts:  the first part shows the exis-

tence of a fixed point, and the second part shows that an appropriate fixed point

index equals one.

Corollary 6.   Let G be a closed, convex subset of q Banach space X and f:

G —* G a continuous map.   Assume that there exists a compact set  M C G which

is an attractor for compact sets under f and suppose that there is an open neigh-

borhood V of M such that f\V  is a k-set-contraction, k < 1.   Then f has a fixed

point and i¡Af, V) = 1.

Proof.   By Lemma 5 there exists a bounded open neighborhood W of M, W C V,

such that f(W) C W.   Since y(f'(W)) < k'y(W), the conditions of Lemma 9 apply and
there exists an open neighborhood U of M, U C W, such that cl((f(U))C U.   Let K   =

Kn(f, U) for 72 > 1 and Kx = Kx(f,  U) and notice that since y(Kn) < k"y(U), K^ is
compact and   K    approaches KM  in the Hausdorff metric.   Because  cl(f(KBO O U))

is compact and contained in U, there exists  8 > 0 such that N,°(f(K    O U)) C U.

Take c > 0 such that f(N¿K^ O U)) C N^K^ D U)) (Ns indicates the closed S
neighborhood) and by Proposition 1 let 720 be an integer such that   K   Cl U C

NAKoc n U) for n > "o-   Ic then follows that  N2S(f(U n Kn)) C\ KnC U D Kn.   Since
y(K„) —► 0, there exists an integer 72 j   such that y(/((7 Cl K )) < 2S for 72 > n,.   For

72 > max,720, 77j| = 772, let f(U n Kn) = UJL"7   „, where diameter  (^.   n) < 28.   If
we define   U.      = 5o"(S-     ) and   fj   =LJm_i^-     , it is clear from our construction
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that f(U n K ) C Un C U n Kn, so that /((/n) C l'n and of course Un c ?0.   If we de-
fine  M, = M U cl (KM U (/), /Mj  is attractor for compact sets under / and it is easy

to check that the hypotheses of Theorem 1   hold with  zMj and {U  \.   Therefore /

has a fixed point.

It remains to show that  iQ(f, V) = 1.   By Theorem 1 we know that Agetl(f\U„) =

1.   By construction we have fn+1(U)C U , so the properties of the generalized

Lefschetz number imply that A       (f\U)=A       (f\U  )= 1.   Just as we showedr  j genM ' genJI7z J

above, there   exist compact, convex sets   T., T2, • • • , T     such that  c!(/((/ O KM))

C (J ■ = i T ■ C I/O K^.   It is not hard to see that there exists  r > 0 such that if

zV (T-) = \xeG:d(x, T.) C r \, N (T ) C U fot 1 < i < m and fl.    ,N (T,) = 0 if and
only if M . g . T • = 0 for every subset / C {1, 2, • • • , mi.   Since (J ¿ = , NJTJ con-

tains an open neighborhood of A^ =\J •     , T-, the usual argument shows that there

exists an integer  72n such that

m

f(U nKjC   (J (Vr(r.)     for  72 > 720.
z=l

If we define A .      = N (T ■) O K   and A   = U •     1 A .     , it is not hard to see that,Z,   72 rv     l' n 72        *^z = 1       Z,   7Z' '

for 7z > nn,f(U n K )C A   C (7 n K , so that f(A   ) C A   .   Also, since by our con-—     0"v n' 22 72' ' v    n' n ' J

struction fl. e , A .      = 0 if and only if fl ■ e , T ■ = 0 for every / C i 1, 2, • • ■ , ztz¡,
by Lemma 1 there exists a retraction  R   : A   —»A     such that R  (A .      ) C A .       for7 77 7Z 00 72v      Z,    72 Z,   7Z

1  <  Z <  722.

We are now almost done.   Since fn+l(U)CA   , A      (/!(/)= A      (f\A   )=1.z v „>      geny !     ' genMI72/

But because R f and / are homotopic in A    and (R f) (A   ) C AM,

A      (/| a ) = A      (R/|A) = A      (R /|A   ) = A(/|A   ).gen     1     n gen      tz'  '     n gen      z2J  '     00' v'  I     00'

However, we know that /(!/ n K   ) C A    , so by one of the basic properties of the

fixed point index, A (f\Aix) = iK   (/, U O K^) = iQ(f, U).   Thus we see that
z'G(/, U) = A     n(/|t/) = 1, so that by one of the properties of the generalized fixed

point index,  z'G(/, V) = iG(f, (7)= 1.    Q.E.D.
The same proof used above actually establishes a slightly more general result.

Colollary 6   below is of interest in that its hypotheses are independent of equiva-

lent norms on the overlying Banach space X, and this is not true of Corollary 6

itself.

Corollary 6.   Let G be a closed, convex subset of a Banach space X and f:

G —* G a continuous map.   Assume that there exists a compact set M which is an

attractor for compact sets under f and an open neighborhood V of M such that

lim7z^c»y(K„(/. V)) = 0.   Then if Ktc  = K^f,  V),  iK^ (/, V O Kj = 1 and f has a
fixed point.

A number of results follow in a straightforward way from Corollary 6.   The
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following is a typical consequence.

Corollary 7.   Let G be a closed, convex subset of a Banach space X and f:

G —* G a k-set-contraction, k < 1.   Assume that there exists a bounded set E C G

such that f(E) C E  and such that given any compact set A C G, there exists an

integer N (depending on A) such that f   (A) C E.   Then f has a fixed point, and if

V is any bounded open neighborhood of the (compact) fixed point set of f,

ic(f, 10-1.
Proof.   Let M = f|„ > , cl (/"(E)).   Then since y(cl (fn(E))) < k ny(E), it is

easy to check (using Proposition 1) that M is attractor for compact sets under /.

Corollary 7 now follows from Corollary 6.     Q.E.D.

Corollary 8. (See [24] or [25].) Let G be a closed, convex subset of a Banach

space X and f: G —> G a k-set-contraction, k < 1. Assume that there exists an in-

teger N such that f   (G) is bounded.   Then f has a fixed point.

Proof.   Let  EQ = fN(G) and E . = /y(EQ) for 1 < ; < N - 1.   Then if we define
E = (J .     QE., E is a bounded set,  /(E) C E, and the other hypothesis of Corollary
7 holds.    Q.E.D.

Corollary 8 is a direct generalization of Darbo's theorem (Proposition 3).

However, the condition that /   (G) be bounded for an unbounded G is usually too strong

to be of use in applications.

At this point we would like to recall a long-standing conjecture in fixed point

theory.
Conjecture.   Let G be a closed, bounded convex set in a Banach space and

/: G —»G a continuous map.   Assume that there exists an integer  N > 1 such that

/      is compact.   Then / has a fixed point (?).

We should remark that A. and V. Istratescu have claimed this result in [35],

but their proof appears incomplete.

We wish to prove the above conjecture (as a special case) with the additional

unaesthetic assumption that /restricted to an appropriate open set is continuously

Frechet differentiable.   This suggests that the conjecture is true, but our line of

argument breaks down in the general case.

The spirit of our proof will be as follows:  If / in the conjecture is a linear

map, then /respects convexity properties and one can easily show that   ^(f, G)

is compact and ¡(K^f, G)) C K^d, G), so that / has a fixed point.   If / is nonlin-

ear, but continuously Fréchet differentiable, locally / is almost linear.   We shall

show below that by careful exploitation of this local linearity we can still show

that / has a fixed point in the general case, though the argument is necessarily

more involved.

Before stating our result we shall need a number of lemmas. Lemma 10 below

was first proved in [28]; a proof is also given in [29, p. 191].
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Lemma 10 ([28], [29]).   Let V be an open subset of a Banach space X and g:

V—> X a k-set-contraction.   Assume that g is Fréchet differentiable at x£V.

Then dg  , the Fréchet derivative of g at x, is a k-set-contraction.

Lemma 11.   Let M be a compact subset of a Banach space X, U an open neigh-

borhood of M, and f: U —► X  a continuously  Fréchet differentiable  map.   Then

given c > 0 and a positive integer n, there exists 8 > 0 such that

\\dfxdfx        ...df    -df   df ...if    || <e
72        *7Z-1 1 yZZ        yZZ-l ^1

for all points x., x~, • • • , x    and y., y-, • • • , y    £ M such that \\x ■ - y .|| < <5 fornil n ii

1 < I < 72.

Proof.   The map  (*,, #_,••• , x  ) —> dfx  dfx   ■ • ■ df      is a continuous map
n I 2 . n

from n_ j zM = Y = a  compact set to   L(X, X).   Since  y is compact, the map is un-

iformly continuous.     Q.E.D.

Before proceeding further we need to establish some temporary notation.   Let

Cx, C2, • • • , C    be closed, convex subsets of a Banach space X and f: C =

U   _ , C ■ —» X  a map.   For any subset A of X define   h .(A) = co f(A O C.), define

A, = (J¿= i hM) and generally define  Am+, =(J^= , ¿¿(AJ.   For each /, Í< j <
p, define

/(/) = \i: 1 < i < p, cTb~ f(C.) n C. / 0S.

If  / = (z'j, z'    • • • , i   ) is an 222-tuple of integers   1 < i. < p, such that  i.   , £l(i.)

for  2 < /' < 772, we shall say that J is a "permissible zrz-tuple of integers"; and if

z'j = z, we shall say that / is a "permissible zrz-tuple whose first entry is i."   This

notation provides a slightly more precise description of the set A2  corresponding

to a set  A C C, namely

a2= ¡j b U,)= ¿ *   /   y    è UrV.
z2=i z2 = i     y^nq)       J

Of course all of the notation given here depends on the particular covering  \C .\

and the map /, but in the following these should be obvious from the context so we

will not mention them explicitly.

Lemma 12.   Let M be a compact subset of a Banach space X, U an open neigh-

borhood of M and f: U —» X a continuously Fréchet differentiable map such that

f(M) C M.   Let e > 0 be a given positive number and n a positive integer.   Then

there exists a number r > 0 such that if \V (x.): 1 < i < p, x. £ M\  is any finite

closed covering of M by balls of radius s < r and if J = (i., i7, ■ • • , i  ) any per-

missible n-tuple of integers (with respect to this covering), then

\\(dfx    dfx ■■■dfx    )-d(f")x    \\<c.
It. z. I.

Z2 Z2— 11 1
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Proof.  Given c > 0 and 72, let <5 > 0 be as in Lemma 11.   By a compactness

and continuity argument, we can assume that   \\df \\ < K fot x £ U y, U,   an open

neighborhood of M contained in U.   Take  r > 0 such that if p = (K + l)"r, p < 8
and  N  (M) = {x: d(x, M) < p\ C U y   Let  {V^xJ: 1 < z < p\  be a closed covering of
M by balls of radius  s, s <r, and let  / = (z'j, z'2, • • • , i  ) be a permissible 72-tuple

with respect to this covering.   For notational convenience define  z. = x.    and

z. = f,~1(z1) fot 2 < j < n.   It follows from the chain rule that d(fn)x ■   =J z,

dlz  dfz        ' ' ' dfz  •   Thus, using Lemma 11, it suffices to show that  ||x¿   - z.|| <
72 72 — 1 1 j

(K + 1)77 for 1 < 7 < n.   This is obviously true for / = 1.   Assume we have proved

for some  7 > 1 that \\x.   - z .\\ < (K + l);r.   By our assumptions, the ball of radius
i       '

(K+ l)'r about z. is contained in U1 and / is Lipschitz with constant K on this ball.

.-.||/(*   ) - f(z)\\ = u/7   ) - 7 + 1|| < K(K + l)'r.

By the definition of permissible m-tuple  cô f(V (x. ))DV  (x.      )/=(/>, and since
_^    lj !7+l

f\Vs(xi ) is a Lipschitz map with constant K, co f(Vs(x{ )) C VKs(f(x¿ ))■   It fol-
7 j j

lows that   \\x.       - f(x. )\\ < (K + 1>.   Therefore we have that  ||x.       - z ., , || <
7+1      .     'j ... !7+l        ;+1    ~

(K+ IV +/<(/<+ l)'r< (K+ iy+17.    Q.E.D.

Lemma 13.   Let M be a compact subset of a Banach space X, U an open neigh-

borhood of M a72í7 f: U—> X  a continuously Fréchet differentiable map such that

f(M) C M.   Assarae that for some fixed integer n, fn  (which is defined on an open

neighborhood of M) is a k-set-contraction.   Then if c > k, there exists a number

7 > 0 such that if {V (x.): 1 < i < p, x . £ M\ is any finite closed covering of M by

balls of radius s < r and if J = (z., /., • • • , i  ) any permissible n-tuple of integers,

then (dfx    dfx • .. df      ) is a l/2(k + c)-set-contraction.
»'« ¿7Z-1 A

Proof.   In the notation of Lemma 12, take  e = xA(c - k) and let r he the number

guaranteed by Lemma 12,   Then

\\(dfx   dfx ...dfx   )-d(f")x    \\<%(c-k).
ln        ln-l A A

But by Lemma 10 d(fn)        is a ze-set-contraction.    Q.E.D.
X.l.

We are now in a position to establish our main lemma.

Lemma 14.   Let M be a compact subset of a Banach space X, U an open neigh-

borhood of M, and f: U —> X a continuously Fréchet differentiable map such that

f(M) C M.   Assume that for some fixed integer n, fn  {which is defined on an open

neighborhood of M) is a k-set-contraction, k < 1.   Select c such that  k < c < 1.

Then there exists r > 0 such that if {V  (x.): 1 < i < p, x. £ M\  is any closed cover-

ing of M by balls of radius s, s < r, and if A is any subset of V = U ._ , Vs(x.),
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y(A   )< cy(A), where A .  is taken with respect to \Vs(x.)\.

Proof.   Given x in the domain of /, let  df    denote the Fréchet derivative of /

at x and  R    the remainder at x, so if y is near x, f(y) = f(x) + dfx(y -   x) + Rx(y),

where  R  (y) = o(\\y - x\\).   By a continuity and compactness argument we can as-

sume that  \\df || < K tot x £ Ul = an open neighborhood of M.   Select  r} > 0 such

that if p = (K+ l)nrx,  N AM) C Üy   Let e > 0 be a number such that n c K" <
y2(c - k).   By another compactness and continuity argument there exists   r2 > 0

such that for any x £ M, R   \V    (x) is a Lipschitz map with Lipschitz constant

less than e.   Let r, > 0 be the number whose existence is guaranteed by Lemma

13.   Let r= min{2-j, r2, r,\ and let \V  (x ■): 1 < i < p, x. £ M\ be a closed covering

of tM by balls of radius s, s < r.
For notational convenience we define   V.= VAx.), L.= df   ,  R.= R     and T ■

z z
by  T .(y) = f(x.) + L .(y - xf).   If  / = (»',, z'2, • ■ • , i   ) is any 272-tuple of integers with
1 < i. < p, we define L .= L.  L.       ■ • ■ L.    and T , - T ■   T ■        • - < T ■ .   By Lemma—7— 7 zz, z, / zz, z, 7' ' Z7Z        ZZ7-1 1 ZZZ ZZZ- 1 1

13, L.   is a  l/2(k + c)-set-contraction if / is a permissible 72-tuple of integers with

respect to ÍVs(x¿)J; and consequently   T,  (which is just a translate of  L.) is also

a   l/2(k + c)-set-contraction.

Now let A be any subset of  V = \\J . _ x V (x.).   We can assume that A D V ■

is convex for  1 < i < p.   Otherwise simply replace A by A' = \J co (V . O A) and

note that y(A ) = y(A). As a first step in estimating y(A ) tot I < m < n, notice

that f\Vi is a Lipschitz map of constant K, so that f\V is a K-set-contraction.
It follows easily that y(A   )< Km y(A).

Our strategy from here on is to use finite induction to "approximate" the sets

A       1 < 222 < 72.   First, observe that
ZZZ T — — *

h .(A) = co (T . + R )(A n V .) C co [r (A n V.) + R .(A n V:)]
Z 11 l lili.

c 7\(/1 n V.) + co [ U R.(A n V;)J = T.(A n Vz) + 6»j(A),

where dx(A) = co (\JP=X R .(A n V ■)).   We see that y(6»j(A)) < e y(A).   Generally,
suppose for some 222, 1 < 722 < 22, we have shown that for  1 < i < p, h .(A    _ A C

coÍT,(A O Vi  ): ] varies over all permissible 222-tuples whose first entry is   z'j   and

whose 222th entry is  i\ +8   (A), where  9   (A) denotes a convex set such that

y(0    (A))< m t Km~ly(A).   (In this induction  A Q is defined tobe A.)   We then
have that

bMJ"hi( u ^„.i ccotY u wmiA +co(Ù *m~ n v,n ■
y«Ki) / \/««o /        v=i /
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Using the inductive  hypothesis on the form of h .(A       .) and the fact  T ■ re-

spects  convex structure  (for any set S, T .(coS) = co T .(S)),  it follows that

co T^iJ. eI,i)hj(Am_l))C co{Tj'(A n Vi  ): /'ranges over all permissible

(?7z + l)-tuples whose  first entry  is   z'j   and whose   (772 -+- 1 )th entry is   i\ +

co ( (Jy= 1 Ty(0m(A))).   Thus, if we define

6m+l^ ' co ( U *Mm n VM   + c° ( U TjiejA))] ,

to check the inductive step it suffices to show that y(6   ,,(A))<

(m + l)cKm+1y(A).   But by inductive hypothesis,  y(8   (A)) < me Kmy(A), so using

the properties of the measure of noncompactness we find that

y (co ( U T^eJA^) ) < M0mto)) < mir^yU).

On the other hand,  R . \ V ■ is an e-set-contraction and y(A    n V ■) < Kmy(A), so

yícoí U R.(Am nV.)\\ <eKmy(A).

Putting these facts together we see that y(6  +1(A))< (m + l)eKm+1y(A)  (assum-

ing, as we can, that  K > 1).

This completes the inductive step, and since  A    =[J ■_ , h .(A   _,), it follows

easily that

An C co(T.(A): / a permissible 72-tuple! + ^(A),

where y(9 (A)) <ne Kny(A) < ]/2(c - k)y(A).   However, by our selection of r and

by Lemma 13, y(T.(A)) < ]4(c + k)y(A), fot any permissible 72-tuple /.   Putting
these facts together we find that

y(Aj < max{y(Tj(A)):J a permissible «-tuple 1 + yid(.A)) < cy(A).       Q.E.D.

Corollary 9.   Let G be a closed, convex subset of a Banach space X and f:
o

G —* G a continuous map.   Assume that G, the interior of G, is nonempty and that

there exists a set  M C G which is an attractor for compact sets under f.   Finally,

assume that there exists an open neighborhood V of M and an integer 72 > 1   such

that f"\V is a k-set-contraction, k < 1, and f\V is continuously Fréchet differen-

tiable.   Then f has a fixed point.

Proof.  Select c such that  k < c < 1 and let r be as in Lemma 14.   We can also

assume that zVr(M) C V.   Let {x.: 1 < i < p\ be a ]4 r-net of points in M and let S =

(J. _ j V (x.), so that S contains an open neighborhood of M.   By Lemma 5 there ex-

ists a bounded open neighborhood W of M, VI C V, such that f(W) C W.   Since f'(W)
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is a decreasing sequence of sets and since y(fin(W)) < kJy(W), lim.       y(/'(W)) =

0.   By Lemma 9 there exists a bounded open neighborhood U of M such that   U C

interior (S) and cl f(U) C U.
We now define a decreasing sequence of sets  [B.j by

s, = U "/(^ n v.)

and

z = l

B. = I J cö"/(t/ n B.   . n V.)    for /> 1, V. = V (*.).;        w J 7—1 z ' z r     z

It is easy to see that  B . 3 B .    j for / > 1 and that f(U O B .) C B .    , for /' > 1.   It
follows that if we set  Bœ = ("j   >x B , Bœ  is also a union of p closed, convex sets

and f(U n Bœ) C Bœ or (since cl f(U) C U) cl f(U D Bœ) C U Ci Bœ.   If we define

P
Ax =   [JcofivA

z = l

and
i>

A.=   (J co/(V. n A_j)    for;>l,
z = l

it is easy to see that  A . D B ■ tot /' > 1.   Also, it follows by Lemma 14 (since the

measure of noncompactness is not affected by taking closures) that y(A .  ) <

c'y(S), and this implies that lim.       y(B ) = 0.   By Proposition 1, B     is compact

and nonempty and  B . approaches  BM  in the Hausdorff metric.

The rest of our proof simply mimics that of Corollary 6.   Just as before there

exists  8 > 0 and an integer  j2  such that  N2S(f(U nB.))r\B.CUDB. and
y(/(¡7 n B )) < 28 tot j > j2.   For / > j2 let f(U n B .) = UT= 1 5z, j» where diameter
(S,   ,.)<2z3.   If we define   U.    . = co S .    . n B, for ; > z'   and U. = M "^,,) U.     , it isz,  7 z,  7 _      l?  J J ¿ J       ^* î~ A       ïj   J

cleat from the construction that  U.AAQ and that/(i7?.) C U- (since  /([/ O B .) C (J. C

(7 O B .).   If we define  Mx = M u cl(/3M n Í7), then Mx   is an attractor for compact
sets under /, and it is easy to check that the hypotheses of Theorem 1 hold with

Mj,   and \U.\.   Therefore / has a fixed point.    Q.E.D.
We could obtain more general consequences of Corollary 9, but we would like

to restrict ourselves to the following simple result:

Corollary 10.   Let G be a closed, bounded convex set with nonempty interior

G and f: G —* G a continuous map.   Assume that there exists an integer n such

that fn  is a k-set-contraction, k < 1, (this will be true if fn  is compact) and sup-
r\ o

pose that  M = | |y >i cl (/'(G)) C G.   Assume that there exists an open neighborhood

V of M such that f | V is continuously Fréchet differentiable.   Then f has a fixed

point.
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Proof.   By Corollary 9 it suffices to show that M is an attractor for compact

sets under /.   However, since  y(cl (fn,(G))) < k1y(G), it follows that

lim.^    y(/'(G))= 0.   Therefore, by Proposition 1, cl(/7(G)) approaches M in the

Hausdorff metric, so zVI is certainly an attractor for compact sets.    Q.E.D.

Unfortunately the aforementioned conjecture in its stated generality remains

as untractable as ever.

3.  Our goal in this section is to show that some of our previous results actu-

ally hold for spaces more general than closed convex subsets of a Banach space.

Our main interest is in obtaining fixed point theorems for functions defined on open

subsets of closed convex sets, but with essentially the same amount of work we

can obtain more general theorems.   We then specialize to the cases of interest.   We

begin by extracting a part of the proof of Theorem 1 and isolating it as a lemma:

Lemma 15.   Suppose that in a Banach space X there exists a sequence of

closed, nonempty sets {U : n > 1[, a sequence of positive real numbers {r  : n > 1},
71 oo "

a compact set M, and a continuous function f defined on U   _ , Í7    such that the

following hold:   (1) U £ A Q ¡or n> I   (i.e., each  U     is a finite union of closed,

convex sets) and f(U  )CU   for n>l. (2) A(f\U  ), the Lefschetz number of f\U  ,

is nonzero for n > 1   (it follows from Lemma 1 that each  U     has the same homo-

logy as a compact, metric ANR, so the ordinary Lefschetz number is defined).

(3) lim r   = 0 and U   C N   (M).   Then f has a fixed point,n —»oo   72 72 r ' sc
72

As we have remarked, Lemma 15 is essentially contained in the proof of The-

orem 1.
Our strategy for obtaining fixed point theorems from here on will be to use

Lemma 15 to replace Theorem 1 and to make further assumptions to guarantee that

A(f\U ) / 0, a fact which previously followed automatically.   We need one more

lemma.

Lemma 16.  Suppose that G is a closed subset of a Banach space X and that
G e?  (i.e., G has a locally finite cover by closed, convex sets).   Suppose that K

is a compact subset of G, KeJ"0 and K is contractible in itself to a point.   Then

given any t > 0 there exists a set  K(e) C G such that K(e)£JQ, K(e) C Ne(K) =

{x £G: d(x, K) < e¡, K(c) contains an open neighborhood in G of K and K(e) is con-

tractible in itself to a point.

Proof.  Suppose that  G = [J ■ e ¡G -, where  {G \ is a locally finite covering of

G by closed, convex sets.   Since K is compact, there exists an open neighborhood

U of K in G and a finite set of indices   EC/ such that   U Cl G. = 0 for if- F.   Since
K£ An, K =i i .    , C -, where the  C. are closed and convex.   If we define   K.    .=o»        \s ]= i    j> j i, j
G¿ O C. for i £ F and 1 < j <n we see that K = (J(¿   .. K.   ..

Now suppose that  c > 0.   Take cQ, 0 < eQ < e, so small that N€  (K) C U.   Given

8 > 0, define   K.    (8)= {x e G ■: d(x, K.    .) < 8}.   It is easy to see that there exists ,
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tj, 0< ex < i 0, such that for any / C {(z, ;'): i£F, 1 < / < 22!, Ç\ (¿   j)e j K{   y(ex)
¿ 0 if and only if  f| ,.   .» t . K¿   . ¡¿ 0.   Take  c2 = min{e0, f, S and define   K(e) =
M/.    )K.    (e2).   Obviously  K(e) is contained in U, and by Lemma 1 K (which is

contractible in  itself to a point) is a deformation retraction of  K(c), so K(c) is

contractible in itself to a point.

It remains to show that   K(e) contains an open neighborhood in G of K.   Sup-

pose not, so there exists a sequence of points  x   £G such that d(x  , K)—»0 but

x   £ K(e).   By taking a subsequence we can assume that ix   \ C G■ for some fixed

2, and by taking a further subsequence we can assume that x   —» x£K.    . fot some

j, t < 7 < ».   It follows that x   £ Ki    Ae2) tot n large enough, contradicting the

original assumption.    Q.E.D.

We now want to generalize Frum-Ketkov's theorem.   Basically the proof par-

allels that of  Corollary 1.

Theorem 2.  Suppose that  G£ A, U is an open subset of G and f: U —t(J  is a

continuous map.   Assume that:   (1) There exists a compact set M C U which is an

attractor for compact sets under f.   (2) There exists a compact set  K£JQ such

that M C K C U and such that K is contractible in itself to a point.   (This followed

automatically before.)   (3)  There exists a real-valued function p: [O, a] —> [O, a]

(a > 0) such that p is continuous from the right,  p(r) < r for 0 < r < a, and f(N (M))

C N  ,.(M) for 0 < r < a.   Then f has a fixed point.

Proof.   Let \a, j  be a sequence of positive numbers approaching 0 and let

b, = p(a,) foi k > 1.   (We can assume that a,< a and that if ÍC: i£l\  is the lo-

cally finite covering of G by closed, convex sets, N AM) O G ■ is empty except

for finitely many i.)   Just as in Corollary 1, if we let ix¿   , : 1 < i < n(k)\ be a

l/2(ak - bk)-net of points on M, Vi   k = \x£G: ||x - x¿   ^|| < aji and Uk =

\J ._ j V •   ,  then U, £ AQ and f(U,) C U,.   Thus to prove that / has a fixed point,
it suffices by Lemma 15 to show that A(/|l/,)= 1 for all k.

Since M is an attractor for compact sets, there exists an integer ?z0  such that
o

f"o(K) C N,   (M) C Í7, .   If K(e ) is as in Lemma 16, there exists c so small that

f"°(K(c)) C Uk.   If we define  Vk=UkU. U"=0fÁK(-e^ k is clear that W k) C Vk
and in fact fn°(Vk) C (7fe.   It follows by the properties of the generalized Lefschetz

number that Agen(/|Vfe)=A  en(/| Uk), so it suffices to show A eB(f\Vk)=l.   The
properties of p imply that lim^^ p"(ak) = 0, so hypothesis (3) of the theorem im-

plies that given any open neighborhood W of M, there exists an integer  22.   such

that fn(U¡A C W for n > 72j.   But by Lemma 16, K(e) contains an open neighborhood

(in G) of M, so there exists an integer nx with fnWk) C K(e) fot n > 72x and hence

fiV/t) c K(f) f°r « > "1 + n0.   By Lemma 4 (since  K(e) is contractible in itself to

a point), \ea(f\Vk)=l.    Q.E.D.
Remark. Notice that it was not necessary to know that M be an attractor for
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all compact sets, only that it be an attractor for K.

We can obtain a number of consequences of Theorem 2.   A more or less typi-

cal result is the following corollary, which has similarities to Theorem 6 of Horn's

article [16].

Corollary 11.   Let G be a closed, convex subset of a Banach space, Çl an open

subset of G, Gç. an open, convex subset of Çl and f: Çl —> G a continuous map.

Assume that  cl(fi(G0))CÇlforl<j<2n-l   and that cl(f'(G0))CG0forn<j<
2n - 1.   Suppose that there exists a set  M C GQ which is an attractor for compact

subsets of Gr. (i.e. M is compact, f(M) C M, and given any compact set A C G0 a72t^

a?zy ope72 neighborhood W of M, f'(A) C W for j large enough).   Finally assume that

for 0 < r < a, a > 0, f(Nr(M)) C N„, -,(zM), where p is a function as in Theorem 2.

Then f has a fixed point.

Proof.  Suppose we can prove there exists an open subset U of Q such that

G0 C U, f(U) C U and f2n~l (IJ) C GQ.   It would then follow that zVl is an attractor
for compact subsets of U under /, and if (in the notation of Theorem 2) we defined

K = co(M), / would have a fixed point (by Theorem 2).

It remains to construct U.   Let A . = cl(/7(G0)) for 1 < / < 2zz - 1.   Since

A2   _j  is a closed subset of  Gg, there exists an open neighborhood  G.   _, of

^2t2-1   such that  cl(G2   _j)CGq.   Since  cl/(A2   _2)CG2   _ j, there exists an
open neighborhood  G2n_2 of A_,n_2 such that cl (/(G2   _2))CG2   _ j and
cl(G2      2) C Gq if 2t2 — 2 > 72.   Continuing in this way we obtain open neighbor-

hoods  Gj of A. for 1 < 7 < 2w - 1 such that cl(f(G ■)) C G + j for 1 < / < 2n - 1
{   2n  is defined to be  G0) and such that cl (G) C GQ for n < j <2n - I.   If we de-
fine" U = U21~0! G'. ic is not hard to show that  cl (f(U)) C U and cl (/ 2n~ 1 (I/)) C
G0.    Q.E.D.

We want to show next that Corollary 6 also has a generalization for spaces

more general than closed, convex sets.   Aside from some technical changes, the

proof closely parallels that of Corollary 6, so we shall be sketchy in the presen-

tation.

Theorem 3.  Suppose that G £J , W  is an open subset of G and f: W—* W  is a

continuous map.   Assume that there exists a compact set  M C V which is an at-

tractor for compact subsets of W under f.   Suppose that there exists an open neigh-

borhood V of M such that f\V is a k-set-contraction, k < 1.   Finally, suppose that

there exists a compact set  Kej. such that M C K C W and K is contractible in it-

self to a point.   Then  ic(f, V) = 1 and f has a fixed point.

Proof.   Just as in Corollary 6 there exists a bounded, open neighborhood U in

G of M such that  cl (f(U)) C U.   If {G.: i £ I\ is a locally finite cover of G by
closed, convex sets we can also assume that  G.O Í7 is empty except for  i£F, a

finite subset of /.   If we define /<*=/<„(/, U) CI G and K^= KM(/, U) Cl G, then
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again as in Corollary 6 there exists an integer  722   such that  zV ,(/(!/ H K )) n

K*C(JnK* and y(f(U Cl K*)) < 2z3 for 22 > 22,.   For 22 > 72,, let f(U D K) =zz    .   . 72 'Vv n" —     2 —     2' ' K n

U, S ■     , where diameter S ■       < 8, set U .      = cö (S ■     ) D G and define 1/    =7 = 1    7, n' j, zz        > ;, zz A1' n
U.U.     .   It is clear from the construction that   U   £ A n  (since each  U.       is a1     1, n n 0 ;, zz
finite union of closed, convex sets) and that f(U  ) C U  .I / J v      zz' Z2

To show that / has a fixed point it suffices by Lemma 15 to show that

A(f\U  )= 1.   Since M is an attractor for compact sets there exists an integer N

such that /'(K) C U tot j > N.   In the notation of Lemma 12 take e so small that

fN(K(e)) C U.   Since />'((/) C l/*w for / > « + 1, it follows that /'(K(e)) C Un tot j >
N + n+l.   Thus if we define   Vn = t^Ul/?^1 f'W*)), f(V„) C Vn and /'(UJ C
1/    for 2 > zV + 72 + 1.   As previously this implies that  A       (f\V  )= A       (f\U  ).n ' — r 7 r gen11 '    zz' genv '    zz'
However, K(e) contains an open neighborhood of M, so by Lemma 9 there exists

an integer Nx such that /'((/) C K(t) for 7 > Nx. It follows that for j > N + Nx,

f'(V  )C K(e), so Lemma 4 implies that A       (/|V  )= 1, and /has a fixed point.
The proof that  z'   (/, V) = 1   closely parallels the proof of the same fact in

Corollary 6, and we leave it to the reader.   We only note that some slight modifi-

cations are necessary since G is now a locally finite union of closed, convex sets

instead of a closed, convex set.    Q.E.D.

Theorem 3 is closely related to Theorem 1 of [24] or [25], but it does not seem

directly comparable.

As an easy consequence of Theorem 3 we obtain the following result, which

could also be derived from Theorem 1 in [25]:

Corollary 12.   Let G be a closed, convex subset of a Banach space, Q, an open

subset of G, G q a bounded open convex subset of ÇI and f: il —»G a k-set-con-

traction, k < 1.   Assume that cl (GQ) C Í2 and that cl (/7(GQ)) C Q, for 1 < j < 2n - 1
(72 so22ze fixed integer) and cl(f'(G0)) C GQ for n < j < 2n - 1.   Then  iG(f, GQ) is
defined,  iAf, GQ) = 1, zztzzÍ / has a fixed point.

Proof.   If 5 is the set of fixed points of / in  cl (Gn), S = f"(S) C cl (fn(GQ)) C
G0, so S is a closed subset of  GQ.   Also since  f(S) = S, y(S) = y(f(S)) < ky(S), and
we must have  y(S) = 0, so S is compact.   Thus   iG(f, GQ) is defined.

By the same argument as in Corollary 11, there exists a bounded open subset

W of ÎÎ such that  G0C W, cl (f(W)) C W and cl (f2r2~ l (WO) C GQ.   Let A. = cl(/7(W))
and Aœ = M = I I ■>, A ..   Then by Proposition 1, M is an attractor for compact sets

under /, and by construction,   M C GQ.   If we define   K = co(M), the corollary now

follows from Theorem 3.     Q.E.D.
Corollary 10 of V2 also admits some generalizations.   We mention one of

these, but we omit the proof, since it involves no new ideas:

Corollary 13.   Let il be a bounded open subset of a Banach space X, GQ a

bounded open convex subset of Q, and j: 0—► X a continuous map.   Assume that
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for some integer n, cl (/7(G0)) C Çl for 0 < / < 2n - 1 and cl(/;(GQ)) C G0 for n <
j < 2t2 — 1.   Assume that /|GQ  ¿S continuously Fréchet differentiable and that for

some integer m, fm |GQ  is a k-set-contraction, k < 1.   Then f has a fixed point.

4.   The results of the previous sections are not meant to be definitive, and we

would like to mention some open questions   and conjectures which   are suggested

by our previous theorems.   Our first conjecture was suggested to the author by F.

E. Browder several years ago.

Conjecture.   Let G be a closed, convex subset of a Banach space X and /:

G —► G a continuous map.   Assume that there exists a set M C G which is an at-

tractor for compact sets under / (see Vl for the definition).   Then / has a fixed

point (?).

If this conjecture were true, it would easily imply all the results of §§1 and

2—including the long-standing question raised in §2.   We suspect the conjecture as

stated is false, but we cannot give a counterexample.   None of the well-known

counterexamples of fixed point theory satisfy the above hypotheses.   As a means

of establishing the bounds of the theory, it would be very interesting to find a

counterexample to the conjecture—and  it would be even more interesting to prove it

(if it is true).

The theorems of §3 raise a natural question: Since   G£J  implies that G is a

metric ANR, do the theorems of §3 (or analogous results) hold for metric ANR's?

It is not hard to show that the condition that  G£J can at least be somewhat weak-

ened.   To get results like Theorems 2 and 3, it suffices that G be a complete met-

ric space and that for each c > 1    there exist an isometric   imbedding /   of G into

G  £ A and a retraction r    of some open neighborhood   U    of / (G) onto / (G) such

that r    is a c-set-contraction.   The unit sphere in a Banach space can be shown

to satisfy this condition.   However, we can see no reason why a general complete-

ly metrizable ANR should possess a family of imbeddings as above.   As a final

conjecture we raise the following question:

Conjecture.   Let G be a closed, bounded convex subset of a Banach space X

and /: G —* X a continuous map such that f(dG) C G.   Assume that there exists a

compact set  zM C X and a constant  c < 1  such that d(f(x), M) < cd(x. M) fot all

x£G.   Then / has a fixed point (?).
The above conjecture (for G a ball) is actually the theorem which Frum-Ketkov

claimed to prove in [l3l.   If X is essentially a  Ilj -space and G is a ball the re-

sult is proved in [25], and a slight improvement of the method used there estab-

lishes it for general closed, bounded, convex sets (with nonempty interior) in a

Il j -space.   This conjecture is the sort of result one usually proves with the aid of

degree theory, and in fact one can define a degree theory for maps of the form  / —

/, where / satisfies a "Frum-Ketkov condition."   The trouble is that the class of

such maps is not at all nice.   For instance, suppose G is a closed, bounded, convex
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subset of a Banach space X.   Assume that  f.(i = 0, 1): G —» X and suppose there

exists a constant  c < 1  and a compact set  M. such that d(f .(x), M.) < cd(x, M.) for

all x £ G.   If for 0 </< 1 we define f((x) = (1 - t)fQ + tf(x), it is by no means clear

that there exists a compact set  M   such that d(f (x), M) < cd(x, M A fot all x £ G.
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