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Some Asymptotic Problems in Fully Nonlinear Elliptic
Equations and Stochastic Control.

ROBERT JENSEN (*) - PIERRE LOUIS LIONS (**)

Introduction.

In this paper we consider various penalization problems (or singular
perturbation problems) where the penalty is on the dependence of solutions
in certain directions. (Our meaning will be clear after examining the ex-
amples below.) The effect of such a penalization on the limit problem is
to cause the limit solution to be independent of some of the original variables.
In this way we obtain various limit problems in reduced dimensions.

We shall consider a few examples of our results to clarify our meaning.
Let 0 be a bounded regular domain in Rn and let 0 be a bounded regular
domain in We denote (9 x 0 by 2, i.e. 9 « W X 0. In everything that
follows, x will denote a generic point in (9 and y a generic point in 13.

EX.AMPLE 1. us is a solution of:

(*) Research supported in part by N.S.F. grant MCS 80-01884.
(**) Research supported in part by contract 01-80Ra-50154 with U.S. D.O.E.

( Office of Electric Energy Systems).
Pervenuto alla Redazione il 14 Dicembre 1982 ed in forma definitiva il 20 Set-

tembre 1983.
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and where n denotes the unit outward normal to 81ii and Dv = ...,

We assume the coefficients y), y) and c(x, y) and the
data f {x, y) in (1) are smooth functions of (x, yl and in addition we assume
c(x, y) is nonnegative and there is a positive constant c such that

We prove that as e goes to zero u-’ converges to the unique solution, u(x),
of the Hamilton- Jacobi-Bellman equation

As a consequence of this result we may approximate problem (5) (which
is fully nonlinear in the sense that it is a second order equation in which
the nonlinearity involves the second derivatives) by a simpler problem,
namely (1)-(3), where the nonlinearity involves only the first derivatives.
In this way we build a simple approximation of the general Hamilton-Jacobi-
Bellman equation (HJB for short) ; we believe such an approximation could
have useful numerical applications.

HJB equations occur as the optimality equations in the general problem
of  optimal continuous control of stochastic differential equations and are cur-
rently used in problems of management, economy and engineering. (See
W. H. Fleming and R. Rishel [21 ] for an exposition of optimal stochastic
control and HJB equations; for the most general results concerning the
solution of (5) see L. C. Evans and P. L. Lions [19]; P. L. Lions [25], [26],
[27], [35] and [32].)

Let us also point out that the asymptotic problem (1)-(3) can itself be
interpreted in the light of optimal stochastic control and it is possible to

give a probabilistic proof of the convergence of ue to u.

EXAMPLE 2. ue is a solution of (1), (2) and

where is a smooth function independent of y which vanishes on 8W x am
and we make the same assumptions as in Example 1.
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We prove that as s goes to zero US converges to the unique solution, u, of
the obstacle problem for an HJB equation, i.e.

This result is, a priori, y a bit surprising ,since a boundary condition like
(6) becomes asymptotically the constraint condition

However in the light of optimal stochastic control this result can be easily
understood. Indeed, we can again give a probabilistic proof of this result.
((7) corresponds to a problem in stochastic control where we combine op-
timal time problems and optimal continuous control.)

We also wish to point out that it is quite easy to conjecture a false
result. Indeed, consider the following formal analysis. goes to zero

the effect of the penalization should imply us converges to a function 
Since u-,(x, y) = (x, y) E am and since n is independent of y it is

plausible to guess that = 

The above conjecture, although it appears reasonable, is false because

from (1) we deduce that

So, by letting e go to zero we conclude

This inequality is not in general satisfied if u = 1p. Therefore, in general
uE cannot converge to zp but rather becomes asymptotically as near as
possible to 1p, while taking into account the inequalities of (8). This higly
imprecise argument leads to (7).
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EXAMPLE 3 . u is the solution of:

plus boundary conditions (2) and (3) and where (9 = (0, 1). We make
the same assumptions as in Example 1 and we assume @ is a strictly incre-
asing function on R such that = 0.

We prove that as 8 goes to zero u-’ converges to the solution, u, of

If (3(t) = t this result is easily interpreted from the stochastic view-

point. Indeed, in this case (9) becomes a linear second order elliptic equa-
tion and the associated diffusion process in the y variable h a reflected
diffusion process with a drift intensity of 1 /E and directed towards y = 0.

EXAMPLE 4. 2cE is the solution of:

plus the boundary conditions (2) and (3) ; we make the same assumptions
as in Example 1.

We prove that as e goes to zero Uê converges to the unique solution, u, of
the HJB equation (5).

As before, this result can be interpreted in terms of optimal stochastic control
since (11) itself is a (particular) HJB equation corresponding to a control
problem where the intensity of the Brownian motion in the y variables is

controlled and can take ({ at each time and on each trajectory») any value
between 1 and 1 + 1 je. By (3) we impose Neumann boundary conditions
which means that the Brownian motion is reflected at the boundary and
so the asymptotic behavior of the solutions uê of (11) is related to some

ergodic phenomena.
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EXAMPLE 5. uE is the solution of:

plus the boundary conditions (2) and (3) ; where

for all t in R,

and (3(0) = 0. We also make the same assumptions as in Example 1.

We prove that as E goes to zero US converges to the unique solution, u, of the
following nonlinearly averaged equation (NLAE for short)

where y = (3-1

We study the general class of these nonlocal problems and we prove that
they are well posed under very general assumptions. When (3 is convex (14)
turns out to be the HJB equation and in addition any HJB equation can
be approximated by the NLAE appearing above. ivhen fl is linear (14)
reduces to a linear equation with averaged coefficients.

This kind of averaging phenomena appears to be similar to those known
in Homogenization Theory (for example A. Bensoussan, J. L. Lions and

G. Papanicolaou [3], A. Bensoussan [2] and E. de Giorgi and S. Spagno-
lo [14]). However, the nonlinear averaging we study is apparently new.
This averaging principle is not restricted to second-order elliptic problems
and has been used to obtain some new uniqueness results for Navier-Stokes
equations (see T. Oafllish and P. L. Lions [8] and C. Foias and P. L. Lions [22]).

We do not yet fully understand this problem from the stochastic point
of view and we hope to come back to this point in some future study. This

phenomena seems to be a combination of Ergodic Theory and Stochastic
Control (or Stochastic Differential Games when (3 is not convex).

we shall not present any more examples although ~Te consider many
other problems and variants in this paper. The examples we have presented
should give a good general idea of the nature of the problems we shall
consider.
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The methods we employ are purely analytical and rely heavily on the
maximum principle. We do not give any detailed probabilistic proofs but
we frequently attempt to explain why the results should hold based on
probabilistic considerations (i.e. we sketch probabilistic proofs).

Finally w e wish to point out that the problems considered here are

vaguely reminiscent of some asymptotic problems arising in elasticity (see
P. G. Ciarlet and P. Destuynder [11] and [12], P. G. Ciarlet [10] and P. G.
Ciarlet and P. Rabier [13]) and to various singular perturbation problems
occuring in deterministic optimal control, e.g. the simplification of large-
scale systems, (see J. P. Chow and P. V. Kokotovic [9] and R. E. O’Mal-
ley [36]).

Acknowledgement. The main results of this study were obtained while
the authors were guests of the Numerical Analysis Laboratory of Pavia
and it is our pleasure to thank the laboratory for its hospitality.

A ) FIRST ORDER PENALIZATIONS

In this part of our paper we consider only penalizations of the first y
derivatives. These arc problems of the sort which include Examples ( 1 )-(3)
of the Introduction.

VVe first introduce some notation which we shall keep throughout this

paper (including Part B). As in the Introduction C and ~ will denote two
bounded regular connected domains in R" and Rm respectively. We let

a ij (x, y), bi(x, y), c(x, y) and f (x, y) for 1 be real valued functions

on .2 = U~ X i3 which satisfy

We also assume (4) from the Introduction (uniform ellipticity).

REMARK. In many of the results below we will not need all of the

regularity of (15) but for the sake of simplicity we will not consider such
generalizations here. Nor will we discuss generalizations to the case of

degenerate operators, i.e. when (4) does not hold.
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I. - Penalization of the length of the gradient in y.

1. boundary conditions.

In this section we consider the problem of Example 1 given by (1)-(3).
We first explain why (1)-(3) has a unique solution.

PROPOSITION 1.1. Under assuneptions (4) and (15) there exists ac unique
solution UeE C2~"( ~) for some a in (0,1 ) of (1)-(3).

PROOF. Let be two solutions of (1)-(3) and set w = u - v. Then w

satisfies the boundary conditions (2) and (3); furthermore

..

where is defined by We see that

uniqueness is, therefore, an easy consequence of standard uniqueness results
for linear second order elliptic equations.

To prove the existence of toE we start by considering the solution, u, in

G2( 9) of

plus boundary conditions (2) and (3).
Next we consider the solution, y u, of the HJB equation (5) (see P. L.

Lions [25] and L. C. Evans and P. L. Lions [19] for existence results). The
function u obviously satisfies the boundary conditions (2) and (3) when

thought of as a function of both x and y. Thus u is a supersolution and u
is a subsolution of ( ~ ) . Then by the same argument used to prove uni-

queness we see that

i) for all (x, y) in ~;

ii)  u-,(x, y)  ~W(x, y) for all (x, y) in 9.

The existence result is completed by applying a result due to H. Amann
and M. G. Crandall [1]. C1
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REMARK 1.1. Since we have proved c uE(x, y) y) this provides
an L° bound on us independent of E. However, an examination of the

proofs in P. L. Lions [25] and L. C. Evans and P. L. Lions [19] shows
that we have in fact

We now state the main result of this section.

THEOREM 1.1. Under assumptions (4) acnd (15), as 8 goes to zero uE con-
verges to the solution, u, o f the HSB equact2on (5) in .L~( ~ ) acny p  o0

and a.e.

Before proceeding to the proof we make several remarks.

REMARK 1.2. The proof we give uses the existence of u, the solution
of (5). It is actually possible to prove Theorem 1.1 in such a way that we
also construct the solution, it, of (5). In this way one avoids introducing
the penalized system used by L. C. Evans and A. Friedman [18]. The key
step in this process still remains the derivation of a priori estimates as
in [19] and [~5J and this is independent of the chosen approximation scheme.

PROOF oF THEOREM 1.1. We first note that ~’ then uE is a sub-

solution of (1) for e’. By the proof of Proposition 1.1 we conclude

Thus decreases monotonically to some function y). By Remark I.1
since are bounded independently of y and e for we deduce

from the equation

and

Therefore, there is a function E with v = 0 on 8W and such

that

Furthermore,

in the weak star topology on 

From our first inequality we conclude in 0. On the other hand

from (1) we deduce that
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for any y in ~. This implies (since v E TF~°°(~)) that

By applying the general results of [27] (see also [26], [5] or the proof of
uniqueness of solutions of the HJB equation given in [25]) we conclude
that in e. This completes the proof of Theorem 1.1. 0

REMARK [.3. We give a formal proof of Theorem I.1 which we believe
clarifies our result. Suppose converges to in C2(j). Ob-

viously v is independent of y so v(x, y) = (because otherwise the

penalization term in (1) would become unbounded). We claim that

If the equation above is true then clearly v = lim uE also satisfies this equa-B-0

tion, y i, e. v is the solution of (5).
In order to prove our claim fix xo in (9 and let yo = y(xo) be a maximum

point of us(x, y). If then Dyus(xo, yo) = 0 while if yoE a e then D’lJus(xo,
Yo) = 0 because of (3). We have therefore proved our claim and completed
our formal proof.

Let us now consider a probabilistic interpretation of Theorem I.1. We
must first describe the stochastic control problem associated with (5).

An admissible system A consists of:

i) a complete probability space (Q, P) with a normalized

n-dimensional Brownian motion Wt;

ii) an adapted process y(t, co) taking values in 0 (sometimes called
the control);

iii) a family of solutions, ~x(t) for x E U, of the stochastic differential
equations:

where is the positive definite symmetric square root of 
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We set

where is the first exit time of the process ~~(t) from (9 (or C~). One then
verifies that solution of (5) (see [26], [35] or [27]).

Next we consider the stochastic representation of uE(x, y). In addition to

the Brownian motion W let Wt be a normalized m-dimensional Brownian
motion independent of Wt. For each (x, ~) in 1 we consider the stochastic
differential equations with reflections

where At is some increasing adapted continuous process with A, - 0 and

q(t) is any adapted process having values in (The last
term in the second equation in (17’) corresponds to the reflection i.e. the

Neumann condition given by (3).)
If we now let .Ç!/’ be the admissible system generated by (17’) and the

other appropriate corrections -"-e can show that

where zx,, is the first exit time of the process from C~. Indeed, (18’)
is just an application of Ito’s formula (since we know there is a smooth

solution of (1)-(3)) and related results may be found in [21].
It is now possible to understand (at least intuitively) the principle

underlying Theorem 1.1. As c goes to zero the class of admissible q(t)’s
becomes larger and larger. Eventually it becomes « dense» in some sense
in the space of all possible bounded adapted processes from Since w e

can approximate any adapted continuous process y(t) by some process
and since adapted continuous processes are enough for (18) we conclude

(Since this proves by Dini’s lemma that the convergence is ac-

tually uniform in 9.)
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REMARK 1.4. Theorem 1.1 is totally independent of the boundary condi-
tions in x, i.e. condition (2). Analogous results hold, for example, if (2)
is replaced by a Neumann condition or even nonhomogeneous boundary
conditions.

REMARK T. ~. It would be very interesting to have an estimate on the
rate of convergence of US to u (for example in C ( ~ ) ) . We have been able
to prove the following such estimate for the special case when u is very
smooth and the supremum in (5) is obtained at a unique point, y, which

depends smoothly on x. The estimate is

We hope to come back to this point in some future study.

2. Dirichlet boundary conditions.

In this section we shall consider the problem given in Example 2. Thus
for each e &#x3E; 0 we let U8 be the solution of (1), (2) and (6). We assume some
additional regularity on the function, V, appearing in (6), namely,

By arguments similar to those used in the previous section it is possible
to prove the existence of a unique solution, uE, of (1), (2) and (6). In addi-
tion we also establish the estimate (just as in the previous section)

where 4t’ and it are the respective solutions of (7) (see [35] for a solution
of this problem) and

We now have the main result of this section.

THEOREM 1.2. Under assumptions (4) and (15) on the coefficients and
under assumption (19) ue converges to the solution, ii, of the obstacle problem
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(7) for the HJB equation in f or any p  oo and a.e.

PROOF OF THEOREM 1.2. The first part of the proof of Theorem 1.1
remains valid in this context. Thus we have

If we prove that v(x)  then by use of the maximum principle we
can establish v(x) c ic(x) in 0. Thus just as before v(x) = ic(x).

In order to show v(x)  1p(x) we use the next lemma.

LEMMA Let 11 be a u.s.c. function and = v(x) a.e. in f2
where l’ E c( a) then

PROOF OF LEMMA I.J. Let x E 19 and let y E We only need to prove
that v(x) y). Indeed, v and u agree on a dense subset of -Q and so
there are sequences x i x and !ji such that v(xi) == However
v is continuous and u is u.s.c. so we conclude

This lemma in turn completes the proof of Theorem I. J . 0

REMARK 1.6. Recall the false heuristic argument given in the introduc-
tion. If y) then one would expect n to satisfy = y on t9 x am
and thus u = y. Obviously, this is not true since as we pointed out in
the Introduction V does not in general satisfy (7). This shows that there

are boundary layers near 

Again let us consider a probabilistic interpretation o f our results. We

keep the same notations as in the previous section and consider ( ~~, y, 
solutions of
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where q(t) is any adapted process taking values in * It is well known

(see [21] for example) that 2cE is given by

where and are respectively the first exit times from a and
;ZT

from ø and is the characteristic function of the non-negative
half line.

It can be shown that it is possible to approximate any process y(t) with
values in 6 by a process of the form with larger and larger drift

controls q(t) (at least if 813 for in this case l/ae,y(t) will exit from 0
instantaneously). In addition, if © is any stopping time we can use q(t)
to insure that approximates 0.

The combination of these two facts shows that if (x, y) is and y 0 a a
then In particular, from Dini’s lemma this implies that the
convergence is uniform on compact subsets X 0.

REMARK 1.7. If we replace (6) by

where 1fJ is a function on which is assumed to be of class C2~" for
some a &#x3E; 0 and y) = 0 on then Theorem 1.2 (and its proof)
is valid with replaced by inf y) in (7).

3. Variants and related problems.

Periodic boundary conditions on y. Let ~=(0~i)x...X(0,
for positive constants Z1, ..., Zm. Consider the solution, UE, of (1), (2)

plus periodicity in y. That is, we replace (3) in Example 1 by

We can again show the existence of a unique 11,e and can prove that u8 converges
to the solution, n, of (5) a. e.
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Noncylindrical domains. Let 2cRnXR- be a bounded con-
nected domain with smooth boundary. Consider the solwtion, uE, 7 of (1)
plus the boundary condition

Define t9 by

Assume additionally that 0 is a domain with a smooth boundary. Under

some natural regularity assumptions on the coefficients of the operator
in (1), on y and on 2 it is possible to prove that UB(X, y) converges to the

-solution, 4t(x), of the following equation

where t9z = {/ E y) E 21 and fv(x) = inf Wre shall not develop

these types of results any further at this time.

Stochastic differential games. Consider now the case of three

bounded regular domains 0, a and a in Rm and R’P respectively. We
and z to denote generic points in these domains. In place of the

problem in Example 1 given by (1)-(3) consider the problem of finding a
solution, u 8,,l 9 of: .

and where au, b i , c and f are all smooth functions on i and iq uni-

formly elliptic.
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It is easy to show existence and uniqueness of ac solution, u~~a, of (22 ) and
it can be shown that if one the iterated limit lim lim u,’6 the iterated limit0-0 8-0

exists and is a function, u(x), independent of y and z and u(x) is a solution of

From the stochastic point of view one has:

where ~’" and f16" are the appropriate admissible systems (analogous to
(17’) and (1~’)) and z is the first exit time from iO of the process 
The stochastic differential equations for and Qz y z are

where Wt, Wt and W are three normalized independent Brownian motions
on Rm and R? respectively, q(t, and r(t, are adapted processes
taking values in and respectively and At and Bt are continuous
decreasing adapted processes such that Ao = 0 and Bo = 0 and for all (x,

J~ z~ t) we have 

We have that u(z) = lim lim y, z) exists and

where d and -4 are the appropriate admissible systems (analogous to (17)
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and (18)), is the first exit time from t9 of $,,(t)

and V(t, ro) and ~(t, co) are adapted processes taking values in 0 and
respectively.

REMARK 1.8. If the matrix is replaced by a matrix z)
(i.e. with dependence on y and z) we can still prove that lim lim y, z)ðO e-0

exists but we no longer know that the limit solves (in any strong sense)
the analogue of (23) to this case.

4. The Cauchy problem.

All the problems we have so far considered have natural extensions
to time dependent problems. We shall only give one example (the time

dependent analogue of Example 1) and we assume the functions c

and f are time independent to simplify our notation.
Let ~’ _ ~ X (o, T) for some T &#x3E; 0 and let uE be the solution of:

where ~o is a given function in C( 9) satisfying:

and

Then as s goes to zero, u-(x, y, t) converges a.e. to a function, t),
in ~2~1~°°( ~’ ) which is the unique solution of:
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This problem also has an optimal stochastic control interpretation but we
shall not consider it here. Notice that we have obtained the Cauchy problem
for HJB equations but the initial data has changed and thus there is a

boundary layer near t = 0. Cauchy problems for HJB equations are con-
sidered in N. V. Krylov [23], M. V. Safonov [38] and P. L. Lions [34] and [35].

II. - Penalization of the derivative in y.

1. Neumann boundary. conditions.

We shall now specify the domain 0 but we shall allow more general
penalty functions as in Example 3. Assuine U = (0, 1) and that (4) and

(5) hold. Let uE be the solution of the differential equation (9) with bound-
ary conditions (2) and (3). To simplify our exposition we shall assume

(If @ is convex or if ( a i j ) does not depend on y then (24) is not necessary.)
We shall now show why (9), (2), (3) has a unique solution, UB. In view

of [1] it is enough to find two functions ~ and u soch that u, 1&#x26; E ~2~°°( ~),
and

~ and u satisfy the boundary conditions (2) and (3).

Finding such functions is accomplished by letting u(x, y) = be the
solution of
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and u(x, y) = u(x) is taken as the solution of

We now state the main result.

THEOREM II.1. Under assumptions (4), (15), (24) and assuming c(x,
y) &#x3E; 0, ’(0) &#x3E; 0, tfl (t) &#x3E; 0 i f t 5 0 and lim inf I = oo then as s goes to

zero the solution, uE, of (9), (2), (3) converges uniformly to u(x) the solu-
tion of the linear problem ( 10 ) .

REMARK II.1. As in the preceding sections the boundary condition in x
is of no real importance to the validity of our result and we could equally
well treat other boundary conditions on 

We shall first give an analytical proof and then sketch a probabilistic
proof for the special case when fl(t) is linear.

PROOF OF THEOREM II.1. Let be the solution of (10). Therc is a

constant Co such that

for all (x, y) E .P2 .
Because of the assumptions made on ~3 there is a constant, 01, such that

Therefore, if we define iji by y ) _ + where a &#x3E; 0

is chosen so that e(x, y) ~ a &#x3E; 0 on 9 then
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Using this inequality 2Jnd the maximum principle we deduce that

In the same way we deduce that if 1&#x26;6 is defined by 1!(x, y) = u(x) -
then

As our final conclusion we obtain

for some constant, C, independent of 8. 0

COROLLARY 11.1. Under the assumptions of Theorem 11.1 there is a con-
stant, C, independent such that

We now consider a probabilistic proof of Theorem II.1 in the special
case where = t. For this case we have

where T~ is the exit time of from e and is the solution of

and y§ is the solution of

where Wt is a one-dimensional Brownian motion independent of the n-di-
mensional Brownian motion, Wt, and A t is some continuous increasing
process such that Ao = 0.
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We claim that

for every ~8 &#x3E; 0. Indeed, observe that if we define vE( y) by

then v-, is the solution of the o.d.e.

The claim now follows by constructing an explicit solution for ve.

Now, denote by ~x(t) the solution of

It is clear that

for x E ø, where Tx is the first exit time of ~x(t) from 0.
To prove Theorem II.1 it is enough to show

for all t &#x3E; 0 and that the exit times converge. The exit times will converge
if the first statement is true since we have assumed a is nondegenerate.
So we consider - ~,~(t) 12] and we have

for some constant C. The conclusion we desire follows from an application
of Gronwall’s inequality.
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REMARK 11.2. It is possible to generalize the preceding results to some
extent. Consider the problem:

find ue in Cl(.2) r1 such that

plus boundary conditions (2) and (3).
We assume additionally that there exists a unique point yo on am such

that - n(yo) = (1, 0 .... , 0 ). This assumption is given precisely by

Under this assumption our previous results and proofs (appropriately modi-
fied) remain valid. An open problem is the case where there are many

points at (1, 0, ..., 0).

2. Periodic boundary conditions.

Let 0 = (0,1) and let (4) and (15) hold (regularity assumptions on the
coefficients and uniform ellipticity of the operator). Consider a solution,
U8, of (9) satisfying the boundary conditions (2) and

and

We assume that {3 is an increasing function such that

for all

We shall use y(t) to denote the inverse of ¡3(t), i.e. y = fl-11.
By assumption (26) there is no problem in finding solutions of (9), (2)

and (25). In order to simplify our presentation we assume y) = 

bi(x,y) = bi(x) and c(x, y) = c(x).
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THEOREM II.2. Under assumptions (4), (15) and (26) and if the coeffi-
cients aij, bi and c do not depend on y then there is a unique solution, ue, to
(9), (2) and (25). Furthermore, as e goes to zero the solutions Uë converge

weakly in H2( ~) to It E 02( Ø), the solution of

where f (x) is given by

REMARK 11.3. The same type of result holds if the coefficients aii, bi, c
do depend on y. In this case the limit as c goes to zero is the solution of

If 13 is convex then converges to a solution of (28) (but wTith re-

placed by y)). These results will be developed further in Part B) on
nonlinear averaging phenomena.

REMARK 11.4. Because of (26) we see that y = also satisfies the

same assumption. This implies the existence for each x c 6 of t = t(x)
such that

By the implicit function theorem t is a C’ function of x and we have

This shows that there is a unique function, f, of (27) and that f is C 1 on 0.
I
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Thus, there is a uniqqte solution, u(x), of the linear problem given in The-
orem II.2.

PROOF OF THEOREM 11.2. We first show that is bounded in JT~(~).
Multiply (9) by and using (25) we obtain

In view of (26) this implies

and using the periodicity condition, (25) again, we conclude

Using well-known regularity results for linear equations gives us

As we have seen before (in the preceding section) it is easy to obtain L-

estimates for ue and so this proves our claim.

We may now extract a subsequence, still denoted by uE, which converges
weakly in H2( 9) and strongly in H1( ~) to some function u which will depend
only on x since D flue 17 0. In addition u satisfies u = 0 on 8W so we only
need to show (in view of Remark 11.7) that
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for some 99 in L2(9) such that

Since is bounded in L2 we have

and because of (25)

Since @ is a maximal monotone operator we will be done (by some
general results due to H. Brezis [6]) if we show

where

Using (25) we find

and since in H’ while weakly in L2 we conclude

REMARK II.5. The proof above shows that we actually have:
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In conclusion we state the following result.

PROPOSITION II,I. Under the assumptions of Theoi-em 11.2, let ut be the

unique solution of

together with boundary conditions (2) and (25). Then, as 8 goes to zero, us
converges weakly in .g2( ~) to a which is the solution of

The proof of Proposition II.1 is very similar to the proof of Theorem 11.2
and we will only sketch it. One first obtains the H2 bounds on the solu-

tions in the same way as in the proof of Theorem 11.2. If we set

we have

where the last term on the right is bounded by

where y(t) is bounded, y(t) 2013~ 0 as t ~ 0 and thus this term converges to
zero in 

From here the conclusion of the proof is straightforward. 0
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III. - One-sided penalization of the derivative in y.

1. Neumann boundary conditions.

Let ø = (Oy 1) and let (4) and (15) hold (regularity assumptions on the
coefficients and uniform ellipticity ) . We again consider a solution, ue, of

( 9 ), (2) and (3). However, we now make the following assumption on f3.
We assume

A typical example is ¡3(t) = t+.
Our first result is on the solvability of (9), ( 2 ) and (3 ) under the assump-

tion (29) on fl and gives an a priori bound on the solution, it-,.

PROPOSITION III.L. Under assuniptioYes (4), (15) and (29) there exists a

unique o f (9), (2) and (3). Furthermore

In partictttlar

PROPOSITION 111.2. Since the uniqueness of a solution to (9), (2) and (3)
-is a straightforward consequence of the maximum principle we shall prove only
the existence of a solution. In order to prove the existence of a solution

we apply the results of [28] (and its proof) from which we conclude that
we need only to exhibit a siibsolution it satisfying
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If we denote by u(z) the solution of the HJB equation

then it is clear that u is just the subsolution we need since (3(0) = 0.
We proceed to the a priori estimate on the solution. Since # is convex

we may apply the arguments in [25] and [19] from which we obtain

In particular this implies that

Let (xo, yo) be a point at which ôueloy attains its maximum. If 

yo) c0 then # = 0 in f2 so

On the other hand, if yo) &#x3E; 0 then (xo, yo) and since

yo) = 0 this implies

and in all cases

This concludes our proof. 0

We now state our main result for this section.

THEOREM III.I. Under assumptions (4), ( 15 ) and (29) the UE

of (9), (2) acnd (3) cogiverges weakly in W2,p(ae) as e goes to zero to the maximum
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solution, it, of the HJB equaction

In addition, U E W2,p(ae) f or p .c oo, E and 

REMARK III.I. If the boundary condition (3) is replaced by some Di-
richlet condition, like

then we do not know what the limit of US is. We conjecture that uE con-
verges to u where it is a solution of (31) but with boundary conditions
replaced by

There would be a boundary layer near e X {01.
We proceed to the proof of Theorem III.1.

PROOF oF THEOREM 111.1. First we show that if a subsequence ~cEn

converges in C1 and weakly in W2~p( ~) (for p  oo) to a function it then III
is a solution of (31). Indeed, because of the penalization term we have

Next, if WtX = ~(x, y) E «C 01 then for any a &#x3E; 0 there is an na
such that when 

-

Therefore we have on ay
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and thus, in the limit

Since we obviously have

these facts imply that u is a solution of (31).
We now prove that any such limit, u, is a maximal solution of (31).

This of course proves that the sequence u-, itself converges to the maximal

solution of (31). Indeed, let v be any solution of (31). Then v is a subsolu-

tion of (9), (2) and (3) since = 0 if It follows that for any
e &#x3E; 0 and this proves our claim.

It is also possible to give a probabilistic proof of the preceding result
because all of the differential equations have an interpretation in terms of
optimal stochastic control. To simplify the presentation we shall present
briefly and formally the optimal stochastic control problem associated

with (31).
Denote by 8 the following (n + 1) X (n + 1)-matrix

and let b(x, y) denote the vector in Rn X R

Let ey be the vector in Rn X R:

Consider the solution, ~x,y(t), of the controlled stochastic process,
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where A t is some continuous nondecreasing process such that Ao = 0 and
where a)), the control, is any progressively measurable process taking
values in [0, 1]. Then

where 7:ae,’II is the first exit time from ø of the process ,(t) where 
denotes the projection of onto Rn.

This control problem corresponds to the situation where at each time
and on each trajectory one may choose between the diffusion process (gov-
erned by the linear second order differential operator) and the pure deter-
ministic process in the positive y-direction. This is a control problem with a

degenerate diffusion process. 0

2. Periodic boundary conditions.

We continue to assume that ø = (0,1) and that (4) and (15) hold. We
still consider the solution, us, of (9) and (2) but we replace (3) by (25) and
we still assume @ satisfies (29).

In the same way as in Proposition III.1 ure prove the existence and

uniqueness of a solution, UB, of (9), (2) and (25). It is again possible to

prove the following a priori estimates:

and

The next theorem is our main result for this section.

THEOREM Under assumptions (4), ( 15 ) and (29) the solution, u~, 9

of (9), (2) and (25) converges weakly in W2~~( ~Z) (for p  oo) as 8 goes to
zero to the solution, u, of the HJB equation
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REMARK III.2. It would be very interesting to have estimates on the
rate of convergence of uE to u. We were able to obtain such estimates only
in very special cases (similar to those described in Remark 1.5).

REMARK Ill.3. It is possible to give multidimensional variants of the
above problem. For this case we take 0 = (0, L1) X ... X (0, 7 L.) and use
periodic boundary conditions in y i ( 1 c i c m ) and we replace the penaliza-

m

tion term @ by (for example).
;=i

PROOF OF THEOREM III.2, We need only prove that if UB converges
to 7t in the sup norm on C’ and weakly in -W2,P p  oo, where u

is the proposed limit for ~E.
If converges to u then since ~3 is non-negative it is. clear that

In view of the penalization term it is also clear that i~(x, y) = and

thus u E W2,OO(Ø) and ft = 0 on Therefore

and using the maximum principle as in [25] we conclude that u c in 0. 0

This asymptotic problem can also be understood in terms of optimal
stochastic control since (9), (2) and (25) is an HJB equation where only
the drift in the y-direction is controlled. Using this interpretation it is

easy to obtain the limit result; we shall not give more details.
We conclude this section with a comment on the problem (9), (2) and

(25). This problem appears to be some kind of regularized, continuous
version of the approximation shceme introduced in [18]. In [18] the problem,
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is approximated by a system written as follows

If we consider i as giving a discretization of (0, 1) the continuous version
of the problem above is

This is nearly the problem (9), (2) and (25); the only difference is that in

(9) we have an additional smoothing term, the (viscosity term » 
which in some sense smoothes the problem. The probabilistic interpreta-
tion of the problem above is given in A. Bensoussan and P. L. Lions [4].

B) SECOND ORDER PENALIZATIONS

In this part of our paper we consider penalizations involving the second
derivatives in y. The notations are the same as in Part A) and we assume
that the regularity assumption (5) and the ellipticity condition (4) hold.

By d ~ we mean the Laplacian in y, i.e. a21ay2
In Section I we show that the problem ~

with boundary conditions (2) and (3) is well posed. In Section II we con-

sider the asymptotic problem, i.e. s goes to zero. We assume that # es-
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sentially satisfies (29) in this section. In Section III we again consider the

asymptotic problem but in this case we assume that # satisfies (26). This

case gives what we call nonlinear averaged equations (NLAE); we study
these problems in Section IV.

REMARK. A reference to a theorem from the previous part of this paper
will be denoted by « Theorem A ... ». For example Theorem 11.2 of Part A)
would be written as (Theorem A.II.2 ».

I. - Some fully nonlinear elliptic equations.

We consider the following problem: find u a solution of

plus the boundary conditions (2) and (3). We assume that @ is an increas-
ing continuous function such that

where a and c are positive constants.
This problem is clearly highly nonlinear and very few existence results

are known for such problems (an exception is the class of HJB equations)
(see [15], [16] and [20]).

THEOREM 1.1. Assume (4), (15) and (33). Then

i) there exists a solution, u, of (32’), (2) and (3) in H2(2) n L°°( !2).

ii) I f in addition we assume

(34) there exist constants Co, C &#x3E; 0 and 1,B(t) - Ootl c C for all t in R

then there exists ac unique solution, u, of (32’), (2) and (3) in TV2,V(.2)

iii) If we assume that fl is convex then there exists ac unique solution, u,
of (32’), (2) (3) in W2,P(!2) (for p C oo) which also satisfies

iv) If au, bi and c do not depend on y then there exists ac unique solu-
tion u of (32’), (2) and (3) in I2( ) n 
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REMARK I.1. If fl is convex it is possible to prove that U E W§j§°(9)
and if in addition # is smooth and the coefficients are smooth it is possible
to prove that u is smooth by a result due to L. C. Evans [17].

The existence in H2( 9) only requires that biELOO(ae), 
and f E L2( ae). Indeed, one only needs to adapt the proof below using the
results and methods of P. L. Lions [33]. Using a method somewhat similar
to the one used in H. Brezis and L. C. Evans [7] it is possible to show that
if aij, bi, c E W1~°°( ~) and f E H1(ae) then there is a solution of (32’), (2)
and (3) in ·

REMARK 1.2. We do not know if the H2 solutions of (32’), (2) and (3)
are unique.

Before proceeding to the proof of Theorem 1.1 we point out that ii) is

an obvious adaptation of a result of L. C. Evans [15] and we do not give a
proof. In the case where ~8 is convex, iii), (32’) is an HJB equation and an
easy modification of the arguments in [19] and [25] yield the results claimed.
Therefore, we actually only present proofs for i) and iv) of Theorem I.1.

PROOF oF THEOREM 1.1. To simplify our presentation we assume that
01(R). As recalled above ii) is essentially contained in [15] and we use

ii) to prove i). Indeed, there is clearly a sequence f3k of penalty terms
satisfying (34) and which converge uniformly on compact sets to ~3. We
can assume w.l.o.g. that satisfy (33) uniformly in k.

Therefore there exists a sequence of unique solutions, uk, of (32’), (2)
and (3) with @ replaced by (Jk; the solutions are in W2~p( ~) (for p  00).

We claim that there exists v &#x3E; 0 and for every e &#x3E; 0 a constant Cg such
that for all ~c E H2 ( ~ ) which satisfy (2) and (3) we have

Assume (35) for the moment and note that this gives

Using (32’ ) this implies that

It is standard to show by appropriate supersolutions that  const.
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Therefore we conclude

These are clearly the types of estimates that we desire.
We shall now prove (35). It is enough to prove (35) for smooth func-

tions satisfying (2) and (3); we really need only to prove

Recall that a i j are Lipschitz continuous. Thus

and this is enough to prove our claim.
By our previous arguments u,, are uniformly bounded in H2(9) r1 

and we may extract a subsequence (which for simplicity we also write as
Uk) such that Uk converges weakly in .H2( ~) and strongly in Hi(9) and
whose limit, u, is in .H 2 ( ~ ) r1 L°° ( ~ ) and satisfies (2) and (3).

We shall now show that u satisfies the appropriate equation. To do

this it is sufficient to show that

where

(Sinceflk converges to fJ in the sense of graphs we may apply H. Brezis [6]
and using the inequality above the desired result is obtained.)
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Now we know

and since we may assume strongly in Hi(9) the inequality that we
need to prove is

However, as we have seen in an earlier calculation

and the last two terms on the right of the equals sign converge to the same
terms but with u, replaced by u. Since the first term on the right of the

equals sign is convex in D2Uk the weak convergence of to u in H2(.2)
implies that in the limit the first term on the right of the equals sign may
be replaced by the same term with u in place of 2ck if the equals sign is

changed to the inequality «  ». This proves part i) of our theorem.

We now consider part iv) of Theorem 1.1. We note that there is a

Ao &#x3E; 0 such that: for some v &#x3E; 0

Indeed, the same argument as presented earlier in this proof shows that
the quantity on the left of the equals sign is larger than 

.

By choosing v = and Âo sufficiently large we obtain the desired inequality.
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We claim that the inequality just established guarantees that the solu-
tion, u, already constructed is unique for any if c(x) ~ Åo.

Indeed, by writing c(x) as co(x) + Åo we may apply our previous ine-
quality to obtain v) = 0, where it and v are solutions. Thus (u - v)
depends only on x and by setting w - u - v we find that

By uniqueness for linear problems we conclude w -= 0 in (9 and this estab-
lishes our claim.

Next we prove that if u and v are two solutions with different inhomo-

geneous terms f and g respectively then

where 

It is clearly sufficient to prove this for the approximating solutions ~n
and Vn. In fact we prove

where w is the solution of

This claim is an easy consequence of the maximum principle (use the ver-
sion in [5]). By the strong maximum principle for linear equations we have

Denoting IlwIILCO(.,P) we have the desired result.

We now can finish our proof of the uniqueness of solutions of (32’), (2)
and (3) when the coefficients do not depend on y. Indeed, if u and v are
two solutions in H2( ~) n then they are also solutions of
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(and similarly for v). By our previous work we find

and since we conclude u - v in . D

II. - One-sided penalization.

In this section we consider the following equation with bounda.ry condi-
tion (2) and (3). Consider the solution, U8, of

plus boundary conditions (2) and (3) and where we still assume (4) and (15)
and ~3 satisfies

/3 is convex and Lipschitz on R.

In view of Theorem 1.1 we know that there is a unique solution, u6,
of (36), (2) and (3); U6E W2,p(ae) for p  oo. In addition, by the methods
of estimation employed in [19] and [25] we have

c constant (independent of s) for )a) 2 .

This implies (from (36)) that

and hence

THEOREM 11.1. Under assumptions (4), (15) and (36) the solution, ~c~,
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of (36), (2) and (3) sactis f ies

In particuZar, u-* is uniformly bounded in 
As e goes to zero, US converges weakly in W2,P( ae) to the solution, n, of the

HSB equation, (5).

We shall now give our analytic proof of Theorem 11.1; then we give the
optimal stochastic control interpretation (note that since @ is convex (36)
is an RJB equation ) .

PROOF OF THEOREM II.1-. Let US converge weakly in W2,p(ae) to some
function u(x, y) satisfying (2) and (3) and

By (38) we also know in 9 ; by integrating this inequality
over ae we get

The inequality is strict 0 a.e. in 9 and then by (3) and
uniqueness for linear equations we conclude that u is independent of y.

Since fl is non-negative we find that u satisfies

and this implies u  ft in e where u is the solution of the IIJB equation (5)
with boundary condition (2). On the other hand since u is a subsolution

of (36), (2) and (3) we deduce (by the maximum principle of Bony, [5])
that

Thus u = ~. 0

We conclude this section with an optimal stochastic control interpreta-
tion of this result. To simplify matters we assume = t+.

For any progressively measurable process q(t, cv) taking values between 0
and 118 we consider (~, 77) == (~x,v? solutions of the stochastic differential



168

equations

where A t is some continuous adapted increasing process such that Ao = 0
and (Wt, Wt) is some normalized Brownian motion.

It is possible to prove that uE is given by

where, as before, is the exit time from ø of (t). Our result shows that
as 8 goes to zero, all possible processes q(t) given above « approximate» &#x3E;&#x3E; (in
some sense) all possible progressively measurable processes taking values in 0.

It is worth noting that the result above gives a method to approximate
any (continuous time) stochastic control problem where essentially only the
intensity of the Brownian motion is controlled.

III. - Nonlinear averaging principle.

We now turn our attention to the problem (32), (2) and (3) where we
still assume (4) and (15) hold and where we assume that 13 satisfies (26).

We denote yl by y; in view of Theorem 1.1 we know there is a solu-
tion u8 of (32), (2) and (3) in H2(.2) r1 LOO(!2). In addition, we know that
this solution is unique if any of the following conditions are satisfied:

I) fl is convex;

ii) (34);

iii) the coefficients b i , c do not depend on y.

Our main result of this section is:

THEOREM III.1. Assume (4), (15) and (26) hold. If the coefficients (au)
do not depend on y then any solution, us, of (32), (2) and (3) is bounded in

H2( 9) (independent of e). Furthermore, as e goes to zero Uê converges 
in H2(9) to the solution, u, of (14) and (2).

REMARK III.1. If fl is convex the solution of (14) and (2) is in TV2,00(o).
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REMARK III.2 . If (3(t) = C,t then (34) is clearly satisfied and our result
yields the particular case (well known when 0 = 0):

where

and similarly for bi(x), c(x) and f (x).
When fl is not linear then (14) is a nonlinearly averaged equation. There

are a number of examples for higher order problems which indicate that the
nonlinear averaging phenomena is not a property of just second order
operators nor just elliptic operators (see [8] and [22] for related results in
the context of Navier-Stokes equations).

REMARK 111.3. From the stochastic point of view the case when f3 is

linear is a straightforward ergodic problem. ivhen fl is nonlinear, say
for example f is convex, then Theorem III.1 is a combination of optimal
stochastic control and ergodic theory.

We shall only prove the a priori estimates and establish the weak con-
vergence of a subsequence of solutions, u6, of (32), (2) and (3) to a solu-

tion, u, of (14) and (2). In the next section we prove uniqueness results
for solutions of (14) and (2) and in conjunction with the results we are about
to establish this will yield a complete proof of Theorem III.I.

PROOF OF THEOREM 

i) Proof of a priori estimates. We shall first prove that u-’
is uniformly bounded in L°°( ~) ; in view of the proof of existence of solu-
tions for (32), (2) and (3) it will be sufficient to prove that there exist sub-
and supersolutions independent of fl and in L°°( ).

Let li (resp. u) be the solution u(x, y) == where ~ is the solution of
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(resp.

It is clear that ~ is a supersolution and u is a subsolution and both are in-

dependent of fl. From the proof of Theorem 1.1 it follows that 

in !2.
If aij does not depend on g we proceed as follows. Multiply (32) by

and integrate to obtain

where C denotes various constants independent of c and uE.
Integrating by parts twice, as in the proof of Theorem I.1, y we deduce:

there is v &#x3E; 0 (independent of E ) such that

In particular this shows that

and

Using these inequalities and equation (32) we deduce

In particular

and we conclude as we did before.



171

ii) Proof of convergence. As we have seen, 
is uniformly bounded in c. We shall now show that if us converges weakly
to some function y) E H2(_Q) then u(x, y) = u(x) and u satisfies (14)
and (2). Indeed, u clearly satisfies (2) and (3) and 0 in !2. There-

fore ~(x, y) ~ and satisfies (2).

To prove (14) holds for u we need to prove that if (- I converges
in L2(9) to 99 in L2(!2) then

where

However

and since uS converges strongly in Hl(-9) to u we need only to prove

By a calculation similar to the one in the proof of Theorem 1.1 we have

and since us converges strongly in Hi(9) we obtain

Since it-, satisfies (3) we have = 0 a.e. in 0; thus
6

This finishes our proof. 0
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REMARK 111.4. If @ is convex or satisfies (34) it is still possible to prove
some a priori estimates (independent of e) and pass to the limit in order to
obtain (14). However, y the arguments used in passing to the limit involve
some messy technical modifications and so we do not present them.

REMARK 111.5. If in (32) one replaces ~( ( 1 jE) (- by L1yuê)
then under the same assumptions as in Theorem III.1 uE converges to it,
the solution of the linear averaged equation with coefficients aij, bi, c and f
as given in Remark 111.2. The proof is similar to the proof of Proposi-
tion A.II.1.

IV. - Study of NLAE equations.

In this section we briefly study the equation (14) with boundary condi-
tion (2). We continue to assume (4) and (15) and assume that y satisfies
(26). We could consider different boundary conditions but we shall restrict
ourselves here to Dirichlet conditions.

THEOREM IV.1. Assume (4), (15) and (26) hold.

i) If y is convex then there is a uniquc of (14) and (2) in
W2~°°((~). In addition, if y E Coo, bi, cj e C°° then u E C°°(C~).

ii) If y satisfies (34 ) then there is a unique solzction it of (14) and (2)
in W2~~’(C~) for p  00.

iii) If aij do not depend on y then is a unique soZution u of (14) and (2)
in H2(Ø). In addition if y c C°°, au, b i , c, f E C°° then u E C°°.

iv) There is at most one solution of (14) and (2) in W2,n( Ø).

PROOF OF THEOREM IV. 1.

P r o o f o f i v ) . Denote the symmetric matrices by S n and define
the following function on 

Thus (14) is equivalent to
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We have and &#x3E; 0. Part iv) is then just a
consequence of [37].

Proof of i). With the preceding definition .F is convex and (14’) is

an HJB equation. We now apply the results of [25] and [19]. Regularity
is a consequence of [17].

Proof if i i ) . If y satisfies (34) then clearly

where bi, c are as defined previously and 0 is uniformly bounded (be-
cause of (34)). Then ii) follows from the results of [15].

Proof of i i i ). If aii do not depend on y we know by the preceding
section that there exists a solution u of (14) in .H~2 ( 0) . Let us now prove
the uniqueness of this solution.

Let u and v be two solutions of (14) or equivalently (14’). From (14’)
we find

and

By (26) and the assumption on the coefficients b and c we find that aflapi i
and aflat are both uniformly bounded and by bootstrapping u - v E W2,P(Ø)
for p  oo and uniqueness follows from [5].

We turn our attention to the regularity problem now. It will be sufficient
to prove regularity assuming that everything is smooth. We first

remark that there are coefficients and such that
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where I E L°°(U). Thus u E for p  00. Then

is in for 0  cx  1. Denote this function by h(x, y). We have

but if t(x) is the unique value such that

then

and t(x) E so by the Schauder estimates U E 02,x. 0

REMARK Part ii) of Theorem IV.1 only needs f E 
(4) and (33). For part iv) if we only have 

(4) and

(26’) is strictly increasing on Rand y(R) == R.

Then the existence and uniqueness results in H2( Ø) still hold; in addi-
tion U E for p  oo. If y is C’ and y’ is bounded away from zero

then the regularity statement is still true.

REMARK IV.2. The existence of any solution, u, of and (2) under

assumptions (4), (15) and (26) is an open question.
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