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Abstract
In the present paper, we consider the nonparametric regression model with random
design based on (Xt,Yt)t≥0 a Rd × R

q -valued strictly stationary and ergodic contin-
uous time process, where the regression function is given by m(x, ψ) = E(ψ(Y) |
X = x)), for a measurable function ψ : Rq → R. We focus on the estimation of the
location � (mode) of a unique maximum of m(·, ψ) by the location ̂�T of a maxi-
mum of the Nadaraya–Watson kernel estimator m̂T(·, ψ) for the curvem(·, ψ).Within
this context, we obtain the consistency with rate and the asymptotic normality results
for ̂�T under mild local smoothness assumptions on m(·, ψ) and the design density
f (·) ofX. Beyond ergodicity, any other assumption is imposed on the data. This paper
extends the scope of some previous results established under themixing condition. The
usefulness of our results will be illustrated in the construction of confidence regions.
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1 Introduction

Nonparametric estimation has been the subject of intense investigation for many years
and this has led to the development of a large variety of methods. Because of numer-
ous applications and their important role in mathematical statistics, the problem of
estimating the density and regression function has been the subject of considerable
interest during the last decades. One of the most commonly used classes of estimators
is that formed by the so-called kernel-type estimators. For more theoretical aspects
along with statistical applications the interested reader is referred to Tapia and Thomp-
son [71], Wertz [74], Devroye and Györfi [23], Devroye [22], Nadaraya [57], Härdle
[38], Wand and Jones [73], Eggermont and LaRiccia [30], Devroye and Lugosi [24]
and the references therein. Recently, a number of statistical problems has found an
unexpected solution being investigated by a “modal point of view”. This investiga-
tion includes classical processes such as clustering. This has led to a renewed interest
in the estimation and the inference for the mode. The estimation of the conditional
mode of an outcome variable given the regressors, is called modal regression. Modal
regression is an alternative approach to the usual regression methods for exploring
the relationship between a response variable Y and a predictor variable X. Unlike
conventional regression, which is based on the conditional mean of Y given X = x,
modal regression estimates conditional modes of Y given X = x. Modal regression
is a more reasonable modelling approach than the usual regression at least in two
scenarios. Firstly when the conditional density function is skewed or has a heavy tail.
When the conditional density function has skewness, the conditional mean may not
provide a good representation for summarising the relations between the response and
the covariate. The other scenario is when the conditional density function has multiple
local modes. This occurs when the relation ofX andY contains multiple patterns. The
conditional mean may not capture any of these patterns, so it can be a very bad sum-
mary; see Chen et al. [17] for an example. This situation has already been pointed out
in Tarter and Lock [72]. Modal regression has a wide variety of applications includ-
ing the analysis of traffic and forest fire data [31,75], econometrics [45,50,51], and
machine learning [33,68]. For example, Kemp and Santos Silva [45] argue that the
mode is the most intuitive measure of central tendency for positively skewed data
found in many econometric applications such as wages, prices, and expenditures [45,
p. 93]. For more recent reviews and further details on the subject the reader is referred
to Chen [16] and Chacón [14].
We will start by providing some notation and definitions that are needed for the forth-
coming sections. Let (Xt,Yt)t≥0 be aRd ×R

q -valued strictly stationary and ergodic1

continuous time process defined on a probability space (�,F ,P). Let g(·, ·) be the
density function of the random vector (Xt,Yt), f (·) be the density of Xt and ρ(·)
the density of Y. For a given measurable function ψ(·) and x ∈ R

d the regression
function, whenever it exists, is defined to be

m(x, ψ) = E(ψ(Y) | X = x).

1 The definition is provided in the “Appendix”.
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Some asymptotic properties of kernel regression estimators… 813

In this situation, we have the random design regression model and X is called
the design variable and Y the response variable. The random design model is very
important in clinical studies, where the design variable usually represents the age of
a particular individual receiving treatment, and Y is the quantity whose dependence
on the age of the patient is investigated. A typical example (from forensic medicine)
is given by Härdle and Marron [39], where Y stands for the liver weight of female
persons (depending on their age). Inequalities x ≤ y holds for all the components,
i.e., x j ≤ y j for all j = 1, . . . , d. The introduction of the function ψ(·) allows us to
include some important special cases:

• ψ(Y) = 1{Y ≤ y} gives the conditional distribution of Y given X = x.
• ψ(Y) = Yk gives the conditional moments of Y given X = x.

In the present paper, we focus on estimating the location � and the size m(�, ψ)

of a unique maximum (mode, peak) of the (unknown) function m(·, ψ). Our method
is indirect in the sense that the estimators of � and m(�, ψ) are based on a kernel
estimator m̂T(x, ψ)of the regression curvem(x, ψ).Wewill use theNadaraya–Watson
estimator which is defined by

m̂T(x, ψ) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

T hd
T

∫ T

0
ψ(Yt)K

(

x − Xt

hT

)

dt

1

T hd
T

∫ T

0
K

(

x − Xt

hT

)

dt

, if
1

T hd
T

∫ T

0
K

(

x − Xt

hT

)

dt �= 0,

1

T

∫ T

0
ψ(Yt)dt, if

1

T hd
T

∫ T

0
K

(

x − Xt

hT

)

dt = 0,

where K (·) is a kernel, hT is a positive sequence of real numbers such that

(i) lim
T →∞hT = 0, (i i) lim

T →∞T hd
T = +∞, or (i i i) lim

T →∞
T hd

T

log T
= +∞. (1.1)

The condition (i) is used to obtain the asymptotic unbiasedness of the kernel (density
or regression) type estimators. We need more restrictive assumption on hT for the
consistency, this is given by the condition (ii), one can refer to Parzen [61]. In general,
the strong consistency fails to hold when either (i) or (iii) is not satisfied. Now the
location � (mode) and the size m(�, ψ) are estimated by the respective functionals
̂�T and m̂T(̂�T, ψ) pertaining to m̂T(·, ψ), i.e., ̂�T is chosen through the equation

m̂T(̂�T, ψ) = sup
x∈C

m̂T(x, ψ), (1.2)

where the maximum is running over some compact set C ⊂ R
d . Note that ̂�T exists

if K (·) is continuous; however, it may not be unique. In fact, it is known that kernel
estimators tend to produce some additional and superfluous modality. In this context,
one can consider

̂�T = inf

{

t ∈ C such that m̂T(t, ψ) = sup
x∈C

m̂T(x, ψ)

}

,
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814 S. Bouzebda, S. Didi

where the infimum is taken with respect to the lexicographic order on R
d . However,

this has no bearing on asymptotic theory; our results are valid for any choice of ̂�T
satisfying (1.2). To ensure both uniqueness and measurability of ̂�T, one could use
the so-called mode functional on C(C) apparently introduced by Eddy [28] which
considers the infimum of the maximised locations and whose measurability is also
proved in a paper of Eddy [28]. Alternatively, Grund and Hall [35] have suggested to
break ties at random if necessary.Anyway, the validity of our proofswill not be affected
by potential non-measurability of ̂�T, since we can always replace probabilities by
outer probabilities when necessary with no further changes in the proofs, this issue
is discussed in Ziegler [79], and also Ziegler [77,78], Herrmann and Ziegler [41].
As it is mentioned in Ziegler [79], estimating the mode and size of a maximum of
a nonparametric curve by the corresponding functionals of a kernel estimator of the
curve is not new; it stems from the closely related problem of estimating the mode of
a density. In continuation of Parzen [61] pioneering work on density estimation and
estimation of the mode, Eddy [28,29] and Romano [66] tackled optimality questions
of the kernel density estimators of the mode. Romano [66] seems also to be the first
to consider data-dependent bandwidths in this framework. In another paper, Romano
[65] examined the limiting behaviour of bootstrap estimators of the location of the
mode, an idea used later by Grund and Hall [35] in the context of bandwidth selection
by minimising the bootstrapped L p-error for the mode estimator. It is worth noticing
that the conditional mode function estimate of the predictor is used for the first time by
Collomb et al. [18]. The kernel type estimators were studied extensively in different
setting of dependencies, we cite among many others Samanta and Thavaneswaran
[67], Ould-Saïd [59], Quintela-Del-Río and Vieu [64], Berlinet et al. [5], Ferraty
et al. [34], Ezzahrioui and Ould-Saïd [32], Benrabah et al. [3] and the references
therein. Quintela-Del-Río and Vieu [64] motivated the use of the conditional mode by
pointing out that the prediction of Y-values given the X-values is achieved through
the regression function estimation. Finally, when the process is considered to be i.i.d.,
the almost sure convergence along with the mean convergence of the conditional
density were obtained by Youndjé [76]. Ota et al. [60] proposed a new estimator of
the conditional mode that is able to avoid the curse of dimensionality and at the same
time is computationally scalable, thereby complementing the above existing methods.
Within the framework described above, our aim is to establish consistency and asymp-
totic normality results (which in turn canbe exploited for the construction of confidence
intervals) for the estimators ̂�T and m̂T(̂�T, ψ) for the location and the size of the
peak under some mild local smoothness conditions on the regression function m(·, ψ)

and the design density f (·) (mostly imposed locally in a neighbourhood of �). Those
results will be valid for a wide class of kernels not necessarily having compact sup-
port. This includes, in particular, the Gaussian kernel which is widely used in practice.
Mixing is some kind of asymptotic independence assumption which is commonly
used for seek of simplicity but which can be unrealistic in situations where there is
strong dependence between the data. Extending non-parametric functional ideas to
general dependence structure is a rather underdeveloped field. Note that the ergodic
framework avoids the widely used strong mixing condition and its variants to measure
the dependency and the involved probabilistic calculations that it implies (see, for
instance, Masry [55]). It is worth noticing that the ergodicity is implied by all mixing
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conditions, being weaker than all of them. Further motivations to consider ergodic
data are discussed in Laib and Louani [48,49], Didi and Louani [27], Bouzebda et
al. [12], Bouzebda et al. [8], Bouzebda and Didi [9–11] and Krebs [46], in some of
these references the definitions of the ergodic property of continuous time processes
are given. In the present work, we do not assume anything beyond ergodicity of the
underlying process. It is worth noticing that strong mixing implies ergodicity; see e.g.,
Remark 2.6 on page 50 in combination with Proposition 2.8 on page 51 in Bradley
[13]. Hence the present work extends the scope of applications compared to the exist-
ing works. On the other hand, we mention that there exist interesting processes which
are ergodic but not mixing according to Andrews [1] and Bradley [13]. An example
of an ergodic and non-mixing process was considered in Sect. 5.3 of Leucht and Neu-
mann [52]. Indeed, assume that the process {(Ti , λi ) : i ∈ Z} is strictly stationary with
Ti | Ti−1 ∼ Poisson(λi ), let Ti be the σ -field generated by (Ti , λi , Ti−1, λi−1, . . .).
We assume that λi = κ(λi−1, Ti−1), where κ : [0,∞) × N → (0,∞). However, this
process is not mixing in general; see Remark 3 of Neumann [58] for a counterexample.
We refer to Leucht and Neumann [52] for further details and motivations for the use
of the ergodicity assumption. One of their arguments, is that for certain classes of
processes, it can be much easier to prove ergodicity rather than mixing assumption. It
is known that any sequence {εt : t ∈ Z} of i.i.d. random variables is ergodic. Hence,
it is immediately clear that {Yt : t ∈ Z} with

Yt = ϑ((. . . , εt−1, εt), (εt+1, εt+2, . . .))

is also ergodic. Didi [25] has constructed an example of a non-mixing ergodic contin-
uous time process. It is well known that the fractional Brownian motion {W H

t : t ≥ 0}
with parameter H ∈ (0, 1) has strictly stationary increments. Otherwise, the fractional
Gaussian noise, defined for every s > 0 by

{G H
t : t ≥ 0} := {W H

t+s − W H
t : t ≥ 0},

is a strictly stationary centered long memory process when H ∈ ( 12 , 1) (see for
instance, Beran [4, p.55] and Lu [53, p.17]), hence the condition of strong mixing
is not satisfied. Let {G t : t ≥ 0} be a strictly stationary centered Gaussian process
with correlation function

R(t) = E[G0G t].

Relaying on the work of Maslowski and Pospíšil [54], Lemma 4.2, it follows that the
process {G t : t ≥ 0} is ergodic whenever

lim
t→∞ R(t) = 0,

which is the case for the process {G H
t : t ≥ 0}. The ergodicity hypothesis seems to be

the most naturally adapted and provides a better framework to study data series, for
example, generated by noisy chaos.
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To the best of our knowledge, the results presented here, respond to a problem that
has not been studied systematically until recently, and it gives the main motivation
to this paper. Indeed, we establish the exact rate of strong uniform consistency of the
estimators ̂�T and we characterise the limiting law. To prove our results, we base our
methodology upon the martingale approximation which allows to provide a unified
nonparametric time series analysis framework enabling one to study systematically
dependent data. This methodology is a quite different approach, in the i.i.d. context,
compared to the existing ones.
The layout of the article is as follows. The assumptions and asymptotic properties
of the estimators are given in Sect. 2, which includes the optimal convergence rates
and the asymptotic normality of the estimators ̂�T. Some concluding remarks and
possible future developments are mentioned in Sect. 3. To avoid interrupting the flow
of the presentation, all mathematical proofs are presented in Sect. 4.

2 Main results

Let us introduce some notation and definitions. Let α = (α1, . . . , αd) be a multi-index
of the nonnegative integers αi , set |α| =∑d

i=1 αi , and let

Dα = ∂|α|
(∂x1)

α1 · · · (∂xd)αd

denote the partial differential operator of order α. For α = 0 set Dα = id, for identity.
For continuous real-valued functions ζ1(·) and ζ2(·) that are s-times continuously
differentiable on R

d ,

Dα(ζ1ζ2) =
∑

{β :β≤α}

α!
(α − β)!β!

(

α

β

)

(Dβζ2)(Dα−βζ2).

We will use the notation

Diζ1 = ζ
(i)
1 for i = 1, . . . , s.

Let us define the partial derivatives of order one of the regression estimator by

m̂(1)
T (x, ψ) =

(

MT(x, ψ)

fT(x)

)(1)

= M (1)
T (x, ψ) fT(x) − f (1)

T (x)MT(x, ψ)

f 2T (x)
.

The derivatives of order α = 1, 2 of the estimators fT(x) and MT(x, ψ) are defined
as follows

f (α)
T (x) = 1

T hd+α
T

∫ T

0
K (α)

(

x − Xt

hT

)

dt,
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and

M (α)
T (x, ψ) = 1

T hd+α
T

∫ T

0
ψ(Yt)K (α)

(

x − Xt

hT

)

dt .

We denote by m(1)(·, ψ) the gradient of the function m(·, ψ) : Rd → R, that is,
m(1)(·, ψ) is the d × 1-vector of the partial derivatives of m(·, ψ)

m(1)(·, ψ) =
(

∂

∂x1
m(·, ψ), . . . ,

∂

∂xd
m(·, ψ)

)

.

Using the definition of the conditional mode function, i.e. the mode of m(·, ψ), we
have

m(1)(�, ψ) =
(

∂

∂x1
m(�, ψ), . . . ,

∂

∂xd
m(�, ψ)

)

= 0. (2.1)

Similarly, it follows from the statement (2.1) that

m̂(1)
T (̂�T, ψ) =

(

∂

∂x1
m̂T(̂�T, ψ), . . . ,

∂

∂xd
m̂T(̂�T, ψ)

)

= 0.

We denote by m(2)(·, ψ) the Hessian of the function m(·, ψ), that is, m(2)(·, ψ) is the
d × d-matrix of the second partial derivatives of m(·, ψ) . Furthermore, assumption
(A.7) implies that

m(2)(�, ψ) < 0, and m̂(2)
T (̂�T, ψ) < 0.

By the definition of ̂�T, we have m̂(1)
T (̂�T, ψ) = 0 so that

m̂(1)
T (̂�T, ψ) − m̂(1)

T (�, ψ) = −m̂(1)
T (�, ψ). (2.2)

For each i ∈ {1, . . . , d}, Taylor’s expansion applied to the real-valued application
∂

∂xi
m̂(1)

T (·, ψ) implies the existence of ��
T(i) = (��

T,1(i), . . . ,�
�
T,d(i))


⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂

∂xi
m̂T(̂�T, ψ) − ∂

∂xi
m̂T(�, ψ) =

d
∑

j=1

∂2

∂xi∂x j
m̂T(��

T(i), ψ)(̂�T, j − � j ),

∣

∣

∣��
T,1(i) − � j

∣

∣

∣ ≤ |̂�T, j − � j |, j ∈ {1, . . . , d}.
(2.3)

Define the d × d matrix HT = (HT,i, j )1 ≤ i, j ≤ d by setting

HT,i, j = ∂2

∂xi∂xi
m̂T(��

T(i), ψ).

Equation (2.2) can then be rewritten as

HT(̂�T − �) = −m̂(1)
T (�, ψ). (2.4)

123
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The last relation will play an important role in our proofs, in particular for the asymp-
totic normality. To formulate our assumptions, some additional notation is required,
for some constant δ > 0 small enough, let n ∈ N be such that T = δn, and Tj = jδ,
for j = 1, . . . , n. Let Ft be the σ−field defined by

Ft := σ {(Xs,Ys) : 0 ≤ s < t}.

Set F j to be the σ -field defined by

F j := σ {(Xs,Ys) : 0 ≤ s ≤ Tj }.

Let St,δ be the σ -field defined by

St,δ := σ {(Xs,Ys), (Xr ) : 0 ≤ s < t; t ≤ r ≤ t + δ}.

Let Gt := σ {(Xs,Ys) : 0 ≤ s ≤ t}, and for δ > 0 small enough, let gGt−δ (·) and
ρGt−δ (·) be the conditional densities of (X,Y) and Y respectively, given the σ−field
Gt−δ . Finally, if ζ(·) is a real-valued random function which satisfies ζ(u)/u → 0 a.s.
as u → 0, we write ζ(u) = oa.s. (u). In the same way, we say that ζ(u) is Oa.s. (u) if
ζ(u)/u is a.s. bounded as u → 0.

2.1 Assumptions

In our analysis, the following assumptions are needed.

(A.1) The kernel K (·), is a probability density function compactly supported,

(i) Kernel K is assumed to be Lipschitz with ratio CK < ∞ and order γ , i.e.,

|K (x) − K (x
′
)| ≤ CK ‖x − x

′ ‖γ , (x, x
′
) ∈ R

2d ;

(ii)
∫

Rd ‖x‖K (x)dx < ∞;
(A.2) There exists � < ∞, such that, for all x ∈ C,

sup
x∈C

|m(x, ψ)| < �;

(A.3) (i) Recall that C is a compact set of Rd . Assume, for all x ∈ C, that there exists
λ > 0 and finite constant 0 < η such that

λ ≤ f (x) ≤ η;

(ii) the density f (·) is an element of C2(Rd);
(A.4) For every t ∈ R+, for every x ∈ R

d ,

(i) The conditional density f Ft−δ

Xt
(·) of Xt given the σ -field Ft−δ exists a.s. and

is an element of C2(Rd);
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(ii) For any δ > 0 small enough

lim
T →∞

1

T

∫ T

0
f Ft−δ

Xt
(x)dt = f (x), a.s.;

(A.5) For every t ∈ R+, for every x ∈ R
d ,

lim
T →∞ sup

x∈Rd

∣

∣

∣

∣

1

T

∫ T

0
f Ft−δ

Xt
(x)dt − f (x)

∣

∣

∣

∣

= 0, a.s.,

for any δ > 0 small enough;
(A.6) For any t and r such that t ∈ [0, T ] and t ≤ r ≤ t + δ we have

(i)

E(|ψ(Yr )||St,δ) = E(|ψ(Yr )||Xr ) = m(Xr );

(ii) there exist constants Cψ > 0 and β > 0 such that, for any couple (x, x′) ∈
R
2d ,

∣

∣m(x, ψ) − m(x′, ψ)
∣

∣ ≤ Cψ

∥

∥x − x′∥
∥

β ;

(iii) For any k ≥ 2 and any δ > 0,

E

(∣

∣

∣ψ
k(Yr )

∣

∣

∣ |St,δ

)

= E

(∣

∣

∣ψ
k(Yr )

∣

∣

∣ |Xr

)

,

and the function �k(x, ψ) = E
(∣

∣ψk(Y)
∣

∣ |X = x
)

is continuous in the neigh-
bourhood of x;

(A.7) For any fixed x ∈ R
d ,

(i) m(x, ψ) is twice differentiable on Rd , the matrix m(2)(x, ψ) is continuous in
a neighbourhood of �, and m(2)(�, ψ) is nonsingular;

(ii) m(2)(�, ψ) is bounded on Rd .

Comments on hypotheses

Conditions (A.1) are very common in the nonparametric function estimation literature.
Notice that the condition (A.1) is classical in the nonparametric estimation procedures.
In particular, by imposing the condition (A.1)(i), the kernel function exploits the
smoothness of the density function or the regression function. If we loose the condition
that the kernel function K (·) must be a density, the convergence rate could be faster.
Indeed, the convergence rate can be made arbitrarily close to the parametric n−1 as
the order increases. In fact, Chacón et al. [15] showed that the parametric rate n−1

can be attained by the use of super-kernels, and that super-kernel density estimators
automatically adapt to the unknown degree of smoothness of the density. The main
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drawback of higher-order kernels in this situation is the negative impact of the kernel
may make the estimated density not a density itself. The interested reader is referred
to, e.g., Jones et al. [44], Jones and Signorini [43] and Jones [42]. They set some kind
of regularity upon the kernels used in our estimates. Notice that the transform of the
stationary ergodic process (Xt,Yt)t≥0 into the process (ψ2(Yt))t≥0 is a measurable
function. Therefore,making use of Proposition 4.3 ofKrengel [47] and then the ergodic
Theorem, we obtain

lim
T →∞

1

T

∫ T

0
ψ2(Yt)dt = E

[

ψ2(Y0)
]

a.s., (2.5)

Condition (A.3)(ii), is a technical condition that simplifies our proofs, precisely, we
assume that the density function f (·) is bounded away from zero and infinity on the
compact set C in a similar way as in Ziegler [79], Stute [70], Harel and Puri [40],
Debbarh [20]. For any set B ⊂ R

d and ε > 0, denote by Bε the set of all x ∈ R
d such

that there exists y ∈ B with ‖x − y‖ < ε. One can use that f (·) is continuous and
strictly positive onCε , but this will addmuch extra complexity to the proofs. Condition
(A.4) involves the ergodic nature of the data as given, for instance, in Györfi et al.
[36]. Assuming that ρGt−δ (·) and gGt−δ (·) belong to the spaceC0, at least, of continuous
functions, which is a separable Banach space. Moreover, approximating the integral
∫ T

0
ρGt−δ (y)dt and

∫ T

0
gGt−δ (x, y)dt by their Riemann’s sums, it follows that

T −1
∫ T

0
ρGt−δ (y)dt � n−1

n
∑

i=1

ρGti −δ (y)

= n−1
n
∑

j=1

ρG( j−1)δ (y),

and

T −1
∫ T

0
gGt−δ (x, y)dt � n−1

n
∑

i=1

gGti −δ (x, y)

= n−1
n
∑

j=1

gG( j−1)δ (x, y).

Since the processes (XT j ,YT j ) j≥1 and (YT j ) j≥1 are stationary and ergodic (seePropo-
sition 4.3 of Krengel [47]) following Delecroix [21] (see, Lemma 4 and Corollary 1
along with with their proofs), one may prove that the sequences (ρG( j−1)δ (y)) j≥1 and
(gG( j−1)δ (x, y)) j≥1 of conditional densities are stationary and ergodic.Moreover, mak-
ing use of Beck [2]’s theorem (see, for instance, Györfi et al. [36], Theorem 2.1.1), it
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follows that

lim
T→∞ sup

y∈R

∣

∣

∣

∣

1

T

∫ T

0
ρGt−δ (y)dt − E(ρG−δ (y))

∣

∣

∣

∣

= lim
T→∞ sup

y∈R

∣

∣

∣

∣

1

T

∫ T

0
ρGt−δ (y)dt − ρ(y)

∣

∣

∣

∣

= 0, a.s.

and

lim
T→∞ sup

x∈Rd

∣

∣

∣

∣

1

T

∫ T

0
gGt−δ (x, y)dt − E(gG−δ (x, y))

∣

∣

∣

∣

= lim
T→∞ sup

x∈Rd

∣

∣

∣

∣

1

T

∫ T

0
gGt−δ (x, y)dt − g(x, y)

∣

∣

∣

∣

= 0, a.s.

It is then clear that both the conditions (A.4) and (A.5) are satisfied. Condition
(A.6)(i) is usual in the literature dealing with the study of ergodic processes. The
hypothesis (A.6)(ii) is a regularity condition upon the regression function. For the
condition (A.6)(iii), we can refer to the following examples.

Example 2.1 Consider the regression model Yt = m(Xt ) + εt , where the random
variables εt ’s stand as martingale differences with respect to the σ -field Sr ,δ, r ≤ t ≤
r + δ, generated by

{

(Xs, εs), (Xt ) : 0 ≤ s < r , r ≤ t ≤ r + δ
}

. Clearly, we have

E[Yt |Sr ,δ] = m(Xt ),

almost surely.

Example 2.2 Consider the regressionmodel Yt = m(Xt )+σ(Xt )εt , where the random
variables εt are centered and independent of the process (Xt )t≥0. Taking Sr ,δ as the
σ -field generated by

{

(Xs) : 0 ≤ s ≤ r
}

, it follows, for t ≤ r , that

E[Yt |Sr ,δ] = E[m(Xt ) + σ(Xt )εt |Sr ,δ] = m(Xt ) + σ(Xt )E[εt ] = m(Xt ),

almost surely.

Remark 2.3 For notational convenience, we have chosen the same bandwidth sequence
for all margins. This assumption can be dropped easily. If one wants to make use of
the vector bandwidths (see, in particular, Chapter 12 of Devroye and Lugosi [24]).
With obvious changes in the notation, our results and their proofs remain true when
hT is replaced by a vector bandwidth hT = (h(1)

T , . . . , h(1)
T ), where min h(i)

T > 0. In

this situation we set hT =∏d
i=1 h(i)

T , and for any vector v = (v1, . . . , vd) we replace

v/h by (v1/h(1)
T , . . . , vd/h(d)

T ). For a better understanding we will use real-valued
bandwidths throughout the text.
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2.2 Theoretical properties

Below, wewrite Z
D= N (μ, σ 2)whenever the random variable Z follows a normal law

with expectationμ and variance matrix σ 2,
D→ denotes the convergence in distribution

and
P→ the convergence in probability.

2.2.1 Consistency

The following theorem gives the almost sure consistency result.

Theorem 2.4 Under the hypotheses (A.1)–(A.4) and (A.6), for any n large enough, we
have

‖̂�T − �‖ = O(hβ
T) + O

⎛

⎝

(

log T

T hd
T

)1/2
⎞

⎠ , a.s.

The proof of Theorem 2.4 is postponed to the Sect. 4.

2.2.2 Asymptotic normality

To establish the asymptotic normality of ̂�T, observing the statement (2.4), we have
to prove that the numerator suitably normalised is asymptotically normally distributed
and that the denominator converges in probability to m(2)

T (̂�T, ψ). Let G be the d ×d
matrix defined by, for i, j = 1, . . . , d,

Gi, j =
∫

Rd

∂

∂ui
K (u)

∂

∂u j
K (u)du.

Let us introduce the matrix V (�, ψ), the d × d matrix defined by, for i, j = 1, . . . , d

Vi, j (�, ψ) = E(|ψ2(Y)||X = �)

f (�)
Gi, j

The main result to be proved here may now be stated precisely as follows.

Theorem 2.5 1. Under the assumptions (A.1), (A.3)(i)–(ii), (A.4) and (A.6), for any
n large enough, we have

√

T hd+1
T m̂(1)

T (�, ψ)
D→ N (0, V (�, ψ)).

2. If the assumptions (A.1)–(A.5), (A.6)(i) and (A.7) are fulfilled, we have, as T →
∞, m̂(2)

T (·, ψ) converges uniformly to m(2)(·, ψ) on the compact set C. Then, for
any n large enough, we have

√

T hd+1
T

(

̂�T − �
) D→ N (0, [m(2)(�, ψ)]−1V (�, ψ)[m(2)(�, ψ)]−1). (2.6)
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The proof of Theorem 2.5 is postponed to the Sect. 4.

Confidence set

The asymptotic variance in the central limit theorem depends on the unknown func-
tions, which should be estimated in practice. Let us introduce the matrix ̂V (̂�T, ψ)

an estimate of V (�, ψ), that is a d × d matrix defined for i, j = 1, . . . , n, by

̂Vi, j (�, ψ) = m̂T(̂�T, ψ2)

fT(̂�T)
Gi, j .

The asymptotic variance is estimated by

[m̂(2)
T (̂�T, ψ)]−1

̂V (̂�T, ψ)[m̂(2)
T (̂�T, ψ)]−1.

Furthermore, from (2.6), the approximate confidence region of � can be obtained as

� ∈
⎡

⎢

⎣

̂�T ± cα

[

[m̂(2)
T (̂�T, ψ)]−1

̂V (̂�T, ψ)[m̂(2)
T (̂�T, ψ)]−1

]1/2

√

T hd+1
T

⎤

⎥

⎦ ,

where cα , denotes the (1− α)−quantile of the multivariate normal distribution. Note
that cα is not unique since � is assumed to be a vector. Sinotina and Vogel [69] used a
different approach to construct confidence sets derived as suitable neighbourhoods for
maximum points of a regression estimator. The approach relies on the concentration-
of-measure inequalities for the regression estimators.

Remark 2.6 It can be observed that our proofs constitute a generalisation of those used
in the kernel density mode. Hence, one can obtain easily the corresponding results for
the mode density estimators as a particular case of our setting. More precisely, one can
consider the kernel estimator of the conditional density of Y given X = x, defined by

ĝT(y | x) :=
1

T hd
T

∫ T

0
K
(

y − Yt

h̆T

)

K

(

x − Xt

hT

)

dt

1

T hd
T

∫ T

0
K

(

x − Xt

hT

)

dt

, for
1

T hd
T

∫ T

0
K

(

x − Xt

hT

)

dt �= 0,

where K(·) is a kernel, h̆T is a positive sequence of real numbers tending to 0 at a
specific rate. We refer to Bouzebda et al. [8] for more details about the framework of
functional ergodic discrete time processes.

Remark 2.7 Chen et al. [17] considered that the conditional (or local) mode set at x is
defined as

M(x) =
{

y : ∂

∂ y
p(y | x) = 0,

∂2

∂ y2
p(y | x) < 0

}

, (2.7)
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824 S. Bouzebda, S. Didi

where p(y | x) = p(x, y)/ f (x) is the conditional density of Y given X = x . As a
simplification, the set M(x) can be expressed in terms of the joint density as:

M(x) =
{

y : ∂

∂ y
p(x, y) = 0,

∂2

∂ y2
p(x, y) < 0

}

. (2.8)

At each x , the local mode set M(x) may consist of several points, and so M(x) is in
general a multivalued function. Under appropriate conditions, as we will show, these
modes change smoothly as x changes. Thus, local modes behave like a collection of
surfaces called modal manifolds in Chen et al. [17]. In our setting, we have considered
the extension of the work of Ziegler [79] to the multivariate ergodic setting. The
approaches are different and the extension of Chen et al. [17] to the ergodic setting
is of interest. The proof of such a statement, however, should require a different
methodology than that used in the present paper, and we leave this problem open for
future research.

Remark 2.8 In continuous time, data are often collected by using a sampling scheme.
Several discretisation schemes have been proposed throughout the literature including
deterministic and randomised sampling. The interested reader is referred to Masry
[56], Prakasa Rao [62,63], Bosq [7] and Blanke and Pumo [6]. To simplify the idea,
we consider the density estimator of f (·) based on {Xt : t ∈ [0, T ]} and let {X(tk) :
k = 1, . . . , n} be its sampled discrete sequence. The sampled estimator of the density
f (·) is then

fn(x) = 1

nhd
n

n
∑

i=1

K

(

x − Xt j

hn

)

.

As in Masry [56], we only recall two cases of designs: irregular sampling and random
sampling.

Deterministic sampling. Consider the case where the instants (tk)1≤k≤n are deter-
ministic irregularly spaced with

inf
1≤k≤n

|t j+1 − t j | = 1

τ
,

for some τ > 0. For 1 ≤ k ≤ n, consider Gk := σ(X(tk))
the σ -field generated by {Xs : 0 ≤ s ≤ tk}. Obviously,
(Gk)1≤k≤n in an increasing family of σ -fields.

Random sampling. Assume that the instants (tk)1≤k≤n form a sequence of uni-
form random variables in the interval [0, T ] independent of
the process {Xt : t ∈ [0, T ]}. Define

0 ≤ τ1 < · · · < τn ≤ T

as the associated order statistics. Notice that (τk)1≤k≤n

are the process observation points. Obviously, the spacings
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between these points are all positive. As a consequence, tak-
ing Gk := σ(X(tk)) the σ -field generated by {Xs : 0 ≤ s ≤
τk}, it follows that (Gk)1≤k≤n is a sequence of increasing
σ -fields.

We would like here to mention that the penalisation procedure for the choice of the
mesh δ of the observations gives an optimal rate of convergence as demonstrated in
Comte and Merlevède [19], we leave this problem open for future research in the
framework of ergodic processes.

3 Concluding remarks

In the present paper, we are mainly concerned with the nonparametric regression
model, where the regression function m(·, ψ) is given by m(x, ψ) = E(ψ(Y) | X =
x)). For a measurable function ψ : Rq → R, estimation of the location � (mode) of
a unique maximum of m(·, ψ) by the location ̂�T of a maximum of the Nadaraya–
Watson kernel estimator m̂T(·, ψ) for the curve m(·, ψ) is considered. Within this
context, we obtain consistency and asymptotic normality results for ̂�T under mild
local smoothness assumptions on m(·, ψ) and the design density of X. It is worth
noticing that the ergodic framework covers and completes various situations compared
to the mixing case and is more convenient to use in practice, in this sense our work
extends the already existing research in the literature. We have illustrated how to use
our results to construct the confidence set for the mode �. In a future research one
could consider the same estimation problem for stationary and ergodic discrete time
processes in the case of censored data. It will be of interest to relax the stationarity to
the local stationarity and establish similar results to those presented in this work, which
requires a different mathematical methodology than the one used in this document.
We leave this problem open for further investigation.

4 Proofs

This section is devoted to the proofs of our results. The previously defined notation
continues to be used in what follows.

From the definition of ̂�T in (1.2) and �, we have

|m(̂�T, ψ) − m(�, ψ)| ≤ |m̂T(̂�T, ψ) − m(̂�T, ψ)|
+|m̂T(̂�T, ψ) − m(�, ψ)|

≤ sup
x∈C

|m̂T(x, ψ) − m(x, ψ)|

r +
∣

∣

∣

∣

sup
x∈C

m̂T(x, ψ) − sup
x∈C

m(x, ψ)

∣

∣

∣

∣

≤ 2 sup
x∈C

|m̂T(x, ψ) − m(x, ψ)| . (4.1)
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826 S. Bouzebda, S. Didi

Consider the following decomposition

QT(x) := (�T(x, ψ) − �̄T(x, ψ)) − m(x, ψ)( fT(x) − f̄T(x)),

(4.2)

RT(x, ψ) := −BT(x, ψ)( fT(x) − f̄T(x)), (4.3)

BT(x, ψ) := �̄T(x, ψ)

f̄T(x)
− m(x, ψ), (4.4)

m̂T(x, ψ) − m(x, ψ) = BT(x, ψ) + QT(x, ψ) + RT(x, ψ)

f (x)
f (x)
fT(x)

, (4.5)

where

f̄T(x) = 1

T hd
T

∫ T

0
E

[

K

(

x − Xt

hT

)

| Ft−δ

]

dt,

�T(x, ψ) = 1

T hd
T

∫ T

0
ψ(Yt)K

(

x − Xt

hT

)

dt,

and

�̄T(x, ψ) = 1

T hd
T

∫ T

0
E

[

ψ(Yt)K

(

x − Xt

hT

)

| Ft−δ

]

dt .

The following simple lemmas will play an instrumental role in the sequel.

Lemma 4.1 Let (Zn)n≥1 be a sequence of real martingale differences with respect to
the sequence of σ−fields (Fn = σ(Z1, . . . , Zn))n≥1, where is the σ -field generated
by the random variables Z1, . . . , Zn. Set

Sn =
n
∑

i=1

Zi .

For any p ≥ 2 and any n ≥ 1, assume that there exist some nonnegative constants C
and dn such that

E
[

Z p
n |Fn−1

] ≤ C p−1 p! d2
n , almost sure.

Then, for any ε > 0, we have

P (|Sn| > ε) ≤ 2 exp

{

− ε2

2(Dn + Cε)

}

.

where

Dn =
n
∑

i=1

d2
i .
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Lemma 4.2 Let �×�
′
be an index set and for each (η, η

′
) ∈ �×�

′
, let {Zi (η, η

′
), i ≥

1}, be a sequence of a martingale difference such that
∣

∣

∣Zi (η, η
′
)

∣

∣

∣ ≤ B a.s. then, for

all ε > 0 and all sufficiently large n, we have

P

{∣

∣

∣

∣

∣

n
∑

i=1

Zi (η, η
′
)

∣

∣

∣

∣

∣

> ε

}

≤ 2 exp

{

− ε2

2nB2

}

.

The following proposition describes the almost sure consistency of m̂T(x, ψ) with
rate.

Proposition 4.3 Under assumptions (A.1)–(A.4) and (A.6), we have

sup
x∈C

|m̂T(x, ψ) − m(x, ψ)| = O(hβ
T) + O

⎛

⎝

(

log T

T hd
T

)1/2
⎞

⎠ , a.s. (4.6)

Proof of Proposition 4.3.

Making use of conditions (A.2) and (A.3), we infer readily that

sup
x∈C

|m̂T(x, ψ) − m(x, ψ)|

= sup
x∈C

∣

∣

∣

∣

BT(x, ψ) + QT(x, ψ) + RT(x, ψ)

f (x)
f (x)
fT(x)

∣

∣

∣

∣

≤ sup
x∈C

|BT(x, ψ)| + 1

λ
sup
x∈C

∣

∣

∣

∣

∣

QT(x, ψ) + RT(x, ψ)

fT(x)
f (x)

∣

∣

∣

∣

∣

. (4.7)

Lemma 4.4 Didi and Louani [26] Let (Xt)t≥0 be a strictly stationary and ergodic
process, under (A.1) and (A.4), we have then

sup
x∈C

∣

∣

∣

∣

fT(x)
f (x)

− 1

∣

∣

∣

∣

= oa.s(1), as T −→ ∞. (4.8)

Proof of Lemma 4.4

Notice that we have the following decomposition

fT(x) − f (x)
f (x)

= fT(x) − f̄T(x) + f̄T(x) − f (x)
f (x)

= 1

f (x)

{

F1,T (x) + F2,T (x)
}

, (4.9)
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where

f̄T(x) = 1

T hd
T

∫ T

0
E

[

K

(

x − Xt

hT

)

|Ft−δ

]

dt .

Two terms to be investigated, we first take a closer look to the the second term F2,T (x).
We have

F2,T (x) = 1

T hd
T

∫ T

0
E

[

K

(

x − Xt

hT

)

|Ft−δ

]

dt − f (x)

= 1

T hd
T

∫ T

0

∫

Rd
K

(

x − u
hT

)

f Ft−δ (u)dudt − f (x)

= 1

T

∫ T

0

∫

Rd
K (r) f Ft−δ (x − hTr)drdt − f (x).

Taylor expansion of f Ft−δ (x− hTr) in neighbourhood of x with assumption (A.4)(i),
yields

f Ft−δ (x − hTr) = f Ft−δ (x) + hT∇ f Ft−δ (x∗),

where x∗ is between x and x − aTr. It follows from assumption (A.4)(i) that

∣

∣

∣ f Ft−δ (x − hTr) − f Ft−δ (x)
∣

∣

∣ ≤ ChT‖r‖.

Making use of assumptions (A.1)(iii) and (A.4)(ii), it follows that

F2,T (x) = ChT

∫

Rd
‖r‖K (r)dr + 1

T

∫ T

0
f Ft−δ (x)dt − f (x)

= o(1), a.s. (4.10)

Now, we will focus on the first term of decomposition (4.9), G1,T (x), it is clear that

F1,T (x) = 1

T hd
T

∫ T

0

(

K

(

x − Xt

hT

)

− E

[

K

(

x − Xt

hT

)

|Ft−δ

])

dt

= 1

T hd
T

n
∑

k=1

ZT,k(x),

where

T = nδ, Tk = kδ
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and

ZT,k(x) =
∫ Tk

Tk−1

(

K

(

x − Xt

hT

)

− E

[

K

(

x − Xt

hT

)

|Gt−δ

])

dt .

We observe that the sequence {ZT,k(x)}, k = 1, . . . , n, is a sequence of martingale
differences with respect to the σ−field

Fk−1 = σ(Xs : 0 ≤ s < Tk−1).

Under assumption (A.1), the kernel K (·) is a compactly supported probability function,
then we obtain

∣

∣ZT,k(x)
∣

∣ ≤
∫ Tk

Tk−1

∣

∣

∣

∣

K

(

x − Xt

hT

)

− E

[

K

(

x − Xt

hT

)

|Ft−δ

]∣

∣

∣

∣

dt

≤ 2δsup
x∈C

|K (x)|
= 2δ˜K ,

where

˜K = sup
x∈C

|K1(x)|.

Now, for any ε >, making use of Lemma 4.2 we obtain

P

{∣

∣

∣

∣

∣

n
∑

k=1

ZT,k(x)

∣

∣

∣

∣

∣

> ε(T hd
T)

}

≤ 2 exp

{

−ε2(T hd
T)2

8nδ2˜K 2

}

= 2 exp

{

−ε2T h2d
T

8δ˜K 2

}

.

The right-hand side of the last inequality is the general term of a convergent series,
hence, for sufficiently large T we conclude by Borel-Cantelli lemma that

∞
∑

n=1

P

{∣

∣

∣

∣

∣

n
∑

k=1

ZT,k(x)

∣

∣

∣

∣

∣

> ε(T hd
T)

}

< ∞,

which means that
F1,T (x) = 0, a.s. (4.11)

The proof is achieved by combining the statements (4.10) and (4.11). ��
The following lemma gives the rate of convergence of fT(x) over a compact set C.
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Lemma 4.5 Didi and Louani [26] Under assumption (A.1), we have

sup
x∈C

∣

∣ fT(x) − f̄T(x)
∣

∣ = O

⎛

⎝

(

log T

T hd
T

)1/2
⎞

⎠ , a.s. (4.12)

Proof of Lemma 4.5

We refer to the Theorem 1 of Didi and Louani [26]. As in the proof of (4.11) in Lemma
4.4 we obtain the result by using Lemma 4.1 instead of Lemma 4.2. ��
In order to complete the proof of Proposition 4.3, we will will show Lemma 4.6 and
Lemma 4.7 given hereafter.

Lemma 4.6 If hypothesis (A.1)(i), (A.3), (A.4)(i), (A.6)(ii)-(iii) are fulfilled, we have

sup
x∈C

∣

∣�T(x, ψ) − �̄T(x, ψ)
∣

∣ = O

⎛

⎝

(

log T

T hd
T

)1/2
⎞

⎠ , a.s. (4.13)

Proof of Lemma 4.6

For k = 1, . . . , l, let xk,∈ C. Consider a covering of the compact set C by a finite
number l of spheres Sk centered upon by xk , with radius

r = hd+q+1
T /T ,

we have that

C ⊂
l
⋃

k=1

Sk .

Then we have

sup
x∈C

∣

∣�T(x, ψ) − �̄T(x, ψ)
∣

∣ ≤ max
1≤k≤l

sup
x∈Sk

|�T(x, ψ) − �T(xk, ψ)|

+ max
1≤k≤l

∣

∣�T(xk, ψ) − �̄T(xk, ψ)
∣

∣

+ max
1≤k≤l

sup
x∈Sk

∣

∣�̄T(xk, ψ) − �̄T(x, ψ)
∣

∣

= �1,T (x, xk) + �2,T (xk) + �3,T (x, xk).

Making use of the Cauchy-Schwarz inequality together with assumption (A.1)(i),
(A.3), (A.6)(iv) and Lemma 4.4, we readily obtain

|�T(x, ψ) − �T(xk, ψ)|
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≤ 1

T hd
T fT(x)

∫ T

0
|ψ(Yt)|

∣

∣

∣

∣

K

(

x − Xt

hT

)

− K

(

xk − Xt

hT

)∣

∣

∣

∣

dt

≤ 1

T hd
T fT(x)

(∫ T

0
ψ2(Yt)dt

)1/2 (∫ T

0

(

K

(

x − Xt

hT

)

− K

(

xk − Xt

hT

))2

dt

)1/2

≤ 1√
T hd

T fT(x)

(

1

T

∫ T

0
ψ2(Yt)dt

)1/2 √
T CK

hT
‖x − xk‖

≤ CK

hd+1
T f (x)

‖x − xk‖ Oa.s
(

E
[

ψ2 (Y0)
])

≤ CK

hd+1
T λ

‖x − xk‖ Oa.s
(

E
[

ψ2 (Y0)
])

≤ CK

hd+1
T λ

hT

T
Oa.s

(

E
[

ψ2 (Y0)
])

= CK

T hd
Tλ

Oa.s
(

E
[

ψ2 (Y0)
])

. (4.14)

Considering the right hand side of statement (4.14) togetherwith the fact thatE
[

ψ2 (Y0)
]

<

∞, we obtain for

εT = ε0

(

log T /T hd
T

)1/2
,

that

ε−1
T �1,T (x, xk) = Oa.s

⎛

⎝

(

1

T hd
T log T

)1/2
⎞

⎠ . (4.15)

Making use of similar arguments as those used for �1,T (x, xk), we infer that

∣

∣�̄T(x) − �̄T(xk)
∣

∣

≤ 1

T hd
T

∫ T

0
E

[

|ψ(Yt)|
∣

∣

∣

∣

K

(

x − Xt

hT

)

− K

(

xk − Xt

hT

)∣

∣

∣

∣

|Ft−δ

]

dt

≤ CK

T hd
T

∫ T

0
E

[

|ψ(Yt)|
∥

∥

∥

∥

x − xk

hT

∥

∥

∥

∥

|Ft−δ

]

dt

≤
∥

∥

∥

∥

x − xk

hT

∥

∥

∥

∥

CK

T hd+1
T

∫ T

0
E
[|ψ(Yt)| |Ft−δ

]

dt

≤ hT

T

CK

hd+1
T

(

1

T

∫ T

0
E
[|ψ(Yt)| |Ft−δ

]

dt

)

≤ CK

T hd
T

O (E [|ψ(Y0)|]) .
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Using the fact in (2.5), we get

lim
T →∞

1

T

∫ T

0
E
[

ψ(Yt)|Ft−δ

]

dt = E [ψ(Y0)] .

This implies that we have

ε−1
T �3,T (x, xk) = O

⎛

⎝

(

1

T hd
T log T

)1/2
⎞

⎠ , a.s. (4.16)

Now we deal with �2,T (x, y, sk). Observe that

�2,T (xk)

= max
1≤k≤l

∣

∣

∣

∣

∣

1

T hd
T

∫ T

0
ψ(Yt)

(

K

(

x − Xt

hT

)

− E

[

K

(

xk − Xt

hT

)

|Ft−δ

])

dt

∣

∣

∣

∣

∣

= 1

T hd
T

max
1≤k≤lT

∣

∣

∣

∣

∣

∣

n
∑

j=1

RT, j (xk)

∣

∣

∣

∣

∣

∣

,

where

RT, j (xk) =
∫ Tj

T j−i

(

K

(

x − Xt

hT

)

− E

[

K

(

x − Xt

hT

)

|Ft−δ

])

dt,

where

T = nδ and Tj = jδ.

Weobserve that the sequence
{

RT, j (xk)
}

0≤ j≤n is a sequence ofmartingale differences
adapted to the filtration

F j−1 = σ((Xs,Ys) : 0 ≤ s < Tj−1).

For p ≥ 2, making use of Jensen and Minkowski’s inequalities, we get

∣

∣

∣E

[

R p
T, j (xk) | F j−2

]∣

∣

∣

=
∣

∣

∣

∣

∣

E

[(

∫ Tj

T j−i

ψ(Yt)

(

K

(

xk − Xt

hT

)

− E

[

ψ(Yt)K

(

xk − Xt

hT

)

|Ft−δ

])

dt

)p

| F j−2

]∣

∣

∣

∣

∣

≤
∫ Tj

T j−i

E

[∣

∣

∣

∣

K

(

xk − Xt

hT

)

− E

[

ψ(Yt)K

(

xk − Xt

hT

)

|Ft−δ

]∣

∣

∣

∣

p

| F j−2

]

dt

≤
∫ Tj

T j−i

(

E

[

ψ p(Yt)K p
(

xk − Xt

hT

)

| F j−2

]1/p
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−E

[

E

[

ψ(Yt)K

(

xk − Xt

hT

)

|Ft−δ

]p

| F j−2

]1/p
)p

dt

≤
∫ Tj

T j−i

(

2E

[

ψ p(Yt)K p
(

xk − Xt

hT

)

| F j−2

]1/p
)p

dt

= 2p
∫ Tj

T j−i

E

[

ψ p(Yt)K p
(

xk − Xt

hT

)

| F j−2

]

dt, (4.17)

Furthermore, by assumption (A.6)(iii), we get

E

[∣

∣

∣

∣

ψ p(Yt)K p
(

x − Xt

hT

)∣

∣

∣

∣

| F j−2

]

= E

[∣

∣

∣

∣

E

[

ψ p(Yt)K p
(

x − Xt

hT

)

| St,δ

]∣

∣

∣

∣

| F j−2

]

= E

[∣

∣

∣

∣

E
[

ψ p(Yt) | St,δ
]

K p
(

x − Xt

hT

)∣

∣

∣

∣

| F j−2

]

= E

[

∣

∣h p(Xt)
∣

∣ K p
(

x − Xt

hT

)

| F j−2

]

≤ E

[

∣

∣h p(Xt) − h p(x)
∣

∣ K p
(

x − Xt

hT

)

| F j−2

]

+ E

[

∣

∣h p(x)
∣

∣ K p
(

x − Xt

hT

)

| F j−2

]

≤ E

[

K p
(

x − Xt

hT

)

| F j−2

]

(

sup
‖x−u‖≤λhT

∣

∣h p(Xt) − h p(x)
∣

∣+ ∣∣h p(x)
∣

∣

)

≤ η(x)E
[

K p
(

x − Xt

hT

)

| F j−2

]

,

where η(x) is a constant. We infer from condition (A.4)(i) that

E

[

K p
(

x − Xt

hT

)

| F j−2

]

=
∫

Rd+1
K p
(

x − v
hT

)

f
F j−2
T (v)dv

= hd
T

∫

Rd+1
K p
1 (w) f

F j−2
T (x − aTw)dw

≤ hd
T ‖K‖p . (4.18)

Notice that the Eq. (4.17) can be rewritten using Eq. (4.18) as follows

E

[

R p
T, j (xk) | F j−2

]

≤ 2pC(x)δhd
T ‖K1‖p

≤ p!C p−2d2
j , (4.19)
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where C = 2 ‖K‖ and

d2
j = 2δC(x)hd

T‖K‖2.

Let

Dn =
n
∑

j=1

d2
j =

n
∑

j=1

2δhd
T‖K‖ = O(T hd

T).

An application of Lemma 4.1 and keeping in mind that εT = ε0
(

log T /T hd
T

)1/2
, we

get, for any ε0 > 0,

P

⎧

⎨

⎩

max
1≤k≤l

∣

∣

∣

∣

∣

∣

n
∑

j=1

RT, j (xk)

∣

∣

∣

∣

∣

∣

> εT(T hd
T)

⎫

⎬

⎭

≤
l
∑

k=1

P

⎧

⎨

⎩

∣

∣

∣

∣

∣

∣

n
∑

j=1

RT, j (xk)

∣

∣

∣

∣

∣

∣

> εT(T hd
T)

⎫

⎬

⎭

≤ 2l exp

{

− ε2T(T hd
T)2

2(Dn + C(T hd
T)εT)

}

≤ 2l exp

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

− ε20(T hd
T)
(

1/T hd
T

)

O(T hd
T) + 2C

(

T hd
T

)

ε0

(

log T
T hd

T

)1/2

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

≤ 2l exp

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

− ε20(T hd
T)2 log T /T hd

T

O(T hd
T)

(

1 + ε0

(

log T
T hd

T

)1/2
)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

:= 2l exp
{

log T −2Cε20C1
}

= 2lT −ε20C1 ,

where C1 is a positive constant. The right-hand side of the previous inequality, is the
general term of convergent series, hence for T large enough, we obtain the following
statement via the Borel-Cantelli lemma

∞
∑

n=1

P

⎧

⎨

⎩

max
1≤k≤l

∣

∣

∣

∣

∣

∣

n
∑

j=1

RT, j (xk)

∣

∣

∣

∣

∣

∣

> εT(T hd
T)−1

⎫

⎬

⎭

< ∞.
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This, in turn, implies that

1

T hd
T

max
1≤k≤l

∣

∣

∣

∣

∣

∣

n
∑

j=1

RT, j (xk)

∣

∣

∣

∣

∣

∣

= O

⎛

⎝

(

log T

T hd
T

)1/2
⎞

⎠ , a.s. (4.20)

By combining (4.15), (4.16) and (4.20) with Lemma 4.4, we obtain that,

sup
x∈C

∣

∣�T(x, ψ) − �̄T(x, ψ)
∣

∣ = O

⎛

⎝

(

log T

T hd
T

)1/2
⎞

⎠ , a.s. (4.21)

Therefore the proof is complete. ��
We next evaluate the term BT(x, ψ) defined in (4.5).

Lemma 4.7 Under assumptions (A.1) and (A.6)(i)–(ii), we have

sup
x∈C

|BT(x, ψ)| = O
(

hβ
T

)

. (4.22)

Proof of Lemma 4.7

First, we will use the notation

KhT(·) = 1

hd
T

K

( ·
hT

)

.

We let

sup
x∈C

|BT(x, ψ)| = sup
x∈C

∣

∣

∣

∣

B�
T(x, ψ)

f̄T(x)

∣

∣

∣

∣

.

Observe that assumption (A.6)(i) implies that

B�
T(x, ψ) = �̄T(x, ψ) − f̄T(x)m(x, ψ)

= 1

T

∫ T

0
E
[

(ψ(Yt) − m(x, ψ)) KhT(x − Xt) | Ft−δ

]

dt

= 1

T

∫ T

0
E
[

KhT(x − Xt)E
[

(ψ(Yt) − m(x, ψ)) | ST−δ,δ

] | Ft−δ

]

dt

= 1

T

∫ T

0
E
[

KhT(x − Xt) (E [ψ(Yt) | Xt] − m(x, ψ)) | Ft−δ

]

dt,

= 1

T

∫ T

0
E
[

KhT(x − Xt) (m(Xt, ψ) − m(x, ψ)) | Ft−δ

]

dt .
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Under assumption (A.6)(ii), we have

|B�
T(x, ψ)| ≤ sup

‖u−x‖≤hTλ

|m(Xt, ψ) − m(x, ψ)| 1
T

∫ T

0
E
[

KhT(x − Xt) | Ft−δ

]

dt

≤ Cψλβhβ
T

1

T hd
T

∫ T

0
E

[

K

(

x − Xt

hT

)

| Ft−δ

]

dt

= Cψλβhβ
T f̄T(x).

We obtain that

sup
x∈C

|BT(x, ψ)| = O
(

hβ
T

)

, a.s. (4.23)

The proof of the lemma is therefore completed. ��
Recalling (4.21), the proof of Theorem 4.3 is completed by combining Lemmas 4.4,
4.5 and 4.7. ��

In the following lemma, we give the almost sure convergence of ̂�T.

Lemma 4.8 Under the hypotheses of Theorem (2.4), we have, as T → ∞,

‖̂�T − �‖ a.s−→ 0.

Proof of Lemma 4.8

The uniqueness hypothesis of the conditional mode of the regression gives

∀ε > 0, ∃η(ε) > 0; ∀ξ : ‖� − ξ‖ ≥ ε ⇒ |m̂T(�, ψ) − m(ξ, ψ)| ≥ η(ε).(4.24)

Combining conditions (4.24) and (4.1), we obtain, for any fixed x ∈ C all ε > 0, that
there exists a ξ > 0 such that

P {‖�T − �‖ ≥ ε} ≤ P

{

sup
x∈C

|mT(x, ψ) − m(x, ψ)| ≥ ξ

}

. (4.25)

Which gives the desired result provided that the right-hand side of Eq. (4.25) converges
almost surely to zero. The proof is therefore completed by using Proposition 4.3. ��
The following lemma gives the uniform convergence of m̂(2)

T (x, ψ) over the compact
set C. To simplify our reasoning, from now on, all our will be given in the univariate
setting. The extension to the multivariate setting follows easily.

Lemma 4.9 If assumptions (A.1)(ii), (A.3), (A.4)(i), (A.5), (A.6)(i) and (A.7)(i) are
fulfilled, we have, as T → ∞,

sup
x∈C

∥

∥

∥m̂(2)
T (x, ψ) − m(2)(x, ψ)

∥

∥

∥ −→ 0, almost surely. (4.26)
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Proof of Lemma 4.9

We first observe that we have

m̂(2)
T (x, ψ) =

(

̂MT(x, ψ)

f (x)

)(2)

=
(

̂M (1)
T (x, ψ) f (x) − f (1)(x)̂MT(x, ψ)

)(1)

f 2(x)

−
2 f (1)(x)

(

̂M (1)
T (x, ψ) f (x) − f (1)(x)̂MT(x, ψ)

)

f 3(x)

=
̂M (2)
T (x, ψ)

f (x)
− 2 f (1)(x)̂M (1)

T (x, ψ)

f 2(x)

+
̂MT(x, ψ)

(

2( f (1)(x))2 f (x) − f (2)(x)
)

f 3(x)

= 1

f (x)
1

T hd+2
T

∫ T

0
ψ(Yt)K (2)

(

x − Xt

hT

)

dt

−2 f (1)(x)
f 2(x)

1

T hd+1
T

∫ T

0
ψ(Yt)K (1)

(

x − Xt

hT

)

dt

+
(

2( f (1)(x))2

f 3(x)
− f (2)(x)

f 2(x)

)

1

T hd
T

∫ T

0
ψ(Yt)K

(

x − Xt

hT

)

dt .

Let us define

m̃(2)
T (x, ψ) = 1

f (x)
1

T hd+2
T

∫ T

0
E

[

ψ(Yt)K (2)
(

x − Xt

hT

)

|Ft−δ

]

dt

−2 f (1)(x)

f 2(x)

1

T hd+1
T

∫ T

0
E

[

ψ(Yt)K (1)
(

x − Xt

hT

)

|Ft−δ

]

dt

+
(

2( f (1)(x))2 f (x) − f (2)(x)

f 3(x)

)

1

T hd
T

∫ T

0
E

[

ψ(Yt)K

(

x − Xt

hT

)

|Ft−δ

]

dt .

Consider the following decomposition

m̂(2)
T (x, ψ) − m(2)(x, ψ) = m̂(2)

T (x, ψ) − m̃(2)
T (x, ψ)

+ m̃(2)
T (x, ψ) − m(2)(x, ψ)

= AT,1(x, ψ) + AT,2(x, ψ). (4.27)
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To achieve the asymptotic uniform convergence over the compact set C of the term
AT,1(x, ψ) in the decomposition (4.27), we have to prove that

sup
x∈C

∥

∥

∥

∥

∥

1

T hd+2
T

(∫ T

0
ψ(Yt)K (2)

(

x − Xt

hT

)

dt

−
∫ T

0
E

[

ψ(Yt)K (2)
(

x − Xt

hT

)

|Ft−δ

]

dt

)∥

∥

∥

∥

= oa.s(1), (4.28)

sup
x∈C

∥

∥

∥

∥

∥

1

T hd+1
T

(∫ T

0
ψ(Yt)K (1)

(

x − Xt

hT

)

dt

−
∫ T

0
E

[

ψ(Yt)K (1)
(

x − Xt

hT

)

|Ft−δ

]

dt

)∥

∥

∥

∥

= oa.s(1), (4.29)

sup
x∈C

∥

∥

∥

∥

∥

1

T hd
T

(∫ T

0
ψ(Yt)K

(

x − Xt

hT

)

dt

−
∫ T

0
E

[

ψ(Yt)K

(

x − Xt

hT

)

|Ft−δ

]

dt

)∥

∥

∥

∥

= oa.s(1), (4.30)

Using a simple integration par parts and Lemma 4.6, we obtain proof of (4.28)–(4.30),
and combining Assumptions (A.1), (A.3), (A.4), (A.6)(i)–(ii) and statements (4.28)–
(4.30) we obtain

sup
x∈C

‖AT,1(x, ψ)‖ = oa.s(1). (4.31)

Remark that

m(2)(x, ψ) = M (2)(x, ψ)

f (x)
− 2 f (2)(x)M (1)

T (x, ψ)

f 2(x)

+
(

2( f (1)(x))2 f (x) − f (2)(x)
)

M(x, ψ)

f 3(x)
. (4.32)

We now treat the second term AT,2(x, ψ) in (4.27). We have

AT,2(x, ψ)

= 1

f (x)
1

T hd+2
T

∫ T

0
E

[

ψ(Yt)K (2)
(

x − Xt

hT

)

|Ft−δ

]

dt

−2 f (1)(x)
f 2(x)

1

T hd+1
T

∫ T

0
E

[

ψ(Yt)K (1)
(

x − Xt

hT

)

|Ft−δ

]

dt

+
(

2( f (1)(x))2 f (x) − f (2)(x)
f 3(x)

)

1

T hd
T

∫ T

0
E

[

ψ(Yt)K

(

x − Xt

hT

)

|Ft−δ

]

dt

− M (2)(x, ψ)

f (x)
+ f (2)(x)M (1)

T (x, ψ)

f 2(x)
−
(

2( f (1)(x))2 f (x) − f (2)(x)
)

M(x, ψ)

f 3(x)
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= 1

f (x)

(

1

T hd+2
T

∫ T

0
E

[

ψ(Yt)K (2)
(

x − Xt

hT

)

|Ft−δ

]

dt − M (2)(x, ψ)

)

−2 f (1)(x)
f 2(x)

(

1

T hd+1
T

∫ T

0
E

[

ψ(Yt)K (1)
(

x − Xt

hT

)

|Ft−δ

]

dt − M (1)
T (x, ψ)

)

+
(

2( f (1)(x))2 f (x) − f (2)(x)
f 3(x)

)(

1

T hd
T

∫ T

0
E

[

ψ(Yt)K

(

x − Xt

hT

)

|Ft−δ

]

dt − M(x, ψ)

)

.

To achieve the asymptotic uniform convergence over the compact set C of the term
AT,2(x, ψ), we have to show the following statements

sup
x∈C

∣

∣

∣

∣

∣

1

T hd
T

∫ T

0
E

[

ψ(Yt)K

(

x − Xt

hT

)

|Ft−δ

]

dt − M(x, ψ)

∣

∣

∣

∣

∣

= oa.s(1),

(4.33)

sup
x∈C

∥

∥

∥

∥

∥

1

T hd+1
T

∫ T

0
E

[

ψ(Yt)K (1)
(

x − Xt

hT

)

|Ft−δ

]

dt − M (1)
T (x, ψ)

∥

∥

∥

∥

∥

= oa.s(1),

(4.34)

sup
x∈C

∥

∥

∥

∥

∥

1

T hd+2
T

∫ T

0
E

[

ψ(Yt)K (2)
(

x − Xt

hT

)

|Ft−δ

]

dt − M (2)(x, ψ)

∥

∥

∥

∥

∥

= oa.s(1).

(4.35)

Observe that statement (4.33) may be rewritten as follows

sup
x∈C

∣

∣

∣

∣

∣

1

T hd
T

∫ T

0
E

[

ψ(Yt)K

(

x − Xt

hT

)

|Ft−δ

]

dt − M(x, ψ)

∣

∣

∣

∣

∣

= sup
x∈C

∣

∣

∣

∣

∣

1

T hd
T

∫ T

0
E

[

ψ(Yt)K

(

x − Xt

hT

)

|Ft−δ

]

dt − m(x, ψ) f (x)

∣

∣

∣

∣

∣

.

The desired result can be obtained in similar way to the statement (4.23). We have

M (1)(x, ψ) = (m(x, ψ) f (x))(1)

= m(1)(x, ψ) f (x) + m(x, ψ) f (1)(x). (4.36)

On the other hand, under assumption (A.6)(i), we have

1

T hd+1
T

∫ T

0
E

[

ψ(Yt)K (1)
(

x − Xt

hT

)

|Ft−δ

]

dt

= 1

T hd+1
T

∫ T

0
E

[

E

[

ψ(Yt)K (1)
(

x − Xt

hT

)

∣

∣St,δ

]

∣

∣Ft−δ

]

dt

= 1

T hd+1
T

∫ T

0
E

[

m(Xt)K (1)
(

x − Xt

hT

)

∣

∣Ft−δ

]

dt
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= 1

T hd+1
T

∫ T

0

∫

Rd
m(u)K (1)

(

x − u
hT

)

f Ft−δ (u)dudt .

By integrating by parts we infer that

U (u) = m(u) f Ft−δ (u) → U (1)(u) = m(1)(u) f Ft−δ (u) + m(u)
(

f Ft−δ

)(1)
(u),

V (1)(u) = 1

hT
K (1)

(

x − u
hT

)

→ V (u) = −K

(

x − u
hT

)

.

By integrating by parts and the change of variable y = x−u
hT

combined with Taylor
expansions of order one, under assumptions (A.4)(i), (A.5) and (A.7)(i), we readily
obtain

1

T hd
T

∫ T

0
E

[

ψ(Yt)K (1)
(

x − Xt

hT

)

|Ft−δ

]

dt

= 1

T hd
T

∫ T

0

([

m(u)K

(

x − u
hT

)

f Ft−δ (u)

]

Rd

+
∫

Rd
K

(

x − u
hT

)(

m(1)(u) f Ft−δ (u) + m(u)
(

f Ft−δ

)(1)
(u)

)

du
)

dt

= 1

T hd
T

∫ T

0

∫

Rd
K

(

x − u
hT

)(

m(1)(u) f Ft−δ (u) + m(u)
(

f Ft−δ

)(1)
(u)

)

dudt

= 1

T

∫ T

0

∫

Rd
K (y)

(

m(1)(x) + O(hT)
) (

f Ft−δ (x) + O(hT)
)

dydt

+ 1

T

∫ T

0

∫

Rd
K (y) (m(x) + O(hT))

(

(

f Ft−δ

)(1)
(x) + O(hT)

)

dydt

=
(

m(1)(x)
(

1

T

∫ T

0
f Ft−δ (x)dt

)

+m(x)
(

1

T

∫ T

0

(

f Ft−δ

)(1)
(x)dt

))∫

Rd
K (y)dy + O(hT)

= m(1)(x)
(

1

T

∫ T

0
f Ft−δ (x)dt

)

+ m(x)
(

1

T

∫ T

0

(

f Ft−δ

)(1)
(x)dt

)

+ O(hT),(4.37)

where

gFi−2
i (x) =

(

f Ft−δ

)(1)
(x)

is a stationary and ergodic process. Therefore, one have (see Krengel [47], Theorem
4.4),

lim
T →∞ sup

x∈Rd

∣

∣

∣

∣

1

T

∫ T

0
gFt−δ

i (x)dt − E

[

gF−δ

1 (x)
]

∣

∣

∣

∣

= 0, (4.38)
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where
E

[

gF−δ

1 (x)
]

= f (1)(x).

By combining the statements (4.37) and (4.38) we conclude proof of (4.34).Moreover,
statement (4.35) may be proved in the same way as in statement (4.34), keeping in
mind that

M (2)(x, ψ) =
(

m(1)(x, ψ) f (x) + m(x, ψ) f (1)(x)
)(2)

= m(2)(x, ψ) f (x) + 2m(1)(x, ψ) f (1)(x)

+m(x, ψ) f (2)(x).

By applying integration by parts twice, we obtain (4.34). Combining statement (4.33),
(4.34) and (4.35), yields to

sup
x∈C

∣

∣AT,2(x, ψ)
∣

∣ = oa.s(1). (4.39)

Statements (4.31) and (4.39) complete the proof of Lemma 4.9. ��

Proof of Theorem 2.4

Under assumption (A.3)(ii) and using Taylor expansion of m(�T, ψ) around � we
obtain

m(�T, ψ) = m(�, ψ) + (�T − �)m(2)(��
T, ψ)(�T − �), (4.40)

where ��
T is between �T and �, it follows from equations (4.1) and (4.40) that

‖�T − �‖2
∥

∥

∥m(2)(��
T, ψ)

∥

∥

∥ = O

(

sup
x∈C

|m̂T(x, ψ) − m(x, ψ)|
)

.

Using Lemma 4.8 and condition (A.7)(ii), one obtains

lim
T →∞

∥

∥

∥m(2)(��
T, ψ)

∥

∥

∥ =
∥

∥

∥m(2)(�, ψ)

∥

∥

∥ �= 0.

Therefore,

‖�T − �‖2 = O

(

sup
x∈C

|m̂T(x, ψ) − m(x, ψ)|
)

, (4.41)

which is enough, while considering Proposition 4.3, to complete the proof. ��
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Proof of Theorem 2.5

By using formula (2.4), we readily obtain

√

T hd+2
T m̂(1)

T (�, ψ) =
√

T hd+2
T (̂�T − �) m̂(2)

T (̂�
�

T, ψ),

where ̂�
�

T is a random variable taking his values between� and ̂�T. From the hypoth-
esis made on ̂�T it results that ̂�

�

T also converges a.s. towards �. The continuity of
function m(2)(·, ψ) leads

lim
T →∞m(2)(̂�

�

T, ψ) = m(2)(�, ψ).

For T large enough, we have almost surely

∣

∣

∣m̂
(2)
T (̂�

�

T, ψ) − m(2)(�, ψ)

∣

∣

∣ ≤ sup
x∈C

∣

∣

∣m̂
(2)
T (x, ψ) − m(2)(x, ψ)

∣

∣

∣

+
∣

∣

∣m(2)(̂�
�

T, ψ) − m(2)(�, ψ)

∣

∣

∣ .

The uniform convergence in probability m̂(2)
T (·, ψ) to m(2)(·, ψ) over C implies

the convergence of the sequence m̂(2)
T (̂�

�

T, ψ) in probability to the non-null real

m(2)(�, ψ). The conclusion results from the asymptotic normality of m(1)
T (�, ψ).

Since

lim
T →∞ fT(x) = f (x)

almost surely and uniformly on the set C, refer for details [26]. Notice that we have

m̂(1)
T (x, ψ) =

(

MT(x, ψ)

f (x)

)(1)

= M (1)
T (x, ψ) f (x) − f (1)(x)MT(x, ψ)

f 2(x)

= 1

f 2(x)

(

f (x)

T hd+1
T

∫ T

0
ψ(Yt)K (1)

(

x − Xt

hT

)

dt

− f (1)(x)

T hd
T

∫ T

0
ψ(Ys)K

(

x − Xs

hT

)

ds

)

, (4.42)

where

m̂(1)
T (x, ψ) = 1

T hd+1
T f 2(x)

[

f (x)
∫ T

0
ψ(Yt)K (1)

(

x − Xt

hT

)

dt
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−hT f (1)(x)
∫ T

0
ψ(Yt)K

(

x − Xt

hT

)

dt

]

,

and

m̃(1)
T (x, ψ) = 1

T hd+1
T f 2(x)

[

f (x)
n
∑

i=1

∫ Ti

Ti−1

E

[

ψ(Yt)K (1)
(

x − Xt

hT

)

|Fi−2

]

dt

−hT f (1)(x)
∫ T

0
E

[

ψ(Yt)K

(

x − Xt

hT

)

|Ft−δ

]

dt

]

.

We will make use of the following additional notation

Wi (x, ψ) = ( f (x) − hT f (1)(x))

(T hd
T)1/2 f 2(x)

∫ Ti

Ti−1

ψ(Yt)K (1)
(

x − Xt

hT

)

dt,

�i (x, ψ) = (Wi (x, ψ) − E
[

Wi (x, ψ)|Fi−2
])

,

σ 2(x, ψ) = �2(x, ψ)

f (x)

∫

Rd

[

K (1)(u)
]2

du,

where

�2(x, ψ) = E(|ψ2(Y)||X = x).

Observe that

(T hd+2
T )1/2

(

m̂(1)
T (x, ψ) − m̃(1)

T (x, ψ)
)

= (T hd+2
T )1/2

T hd+1
T

( f (x) − hT f (1)(x))
f 2(x)

×
n
∑

i=1

∫ Ti

Ti−1

(

ψ(Yt)K (1)
(

x − Xt

hT

)

− E

[

ψ(Yt)K (1)
(

x − Xt

hT

)

|Fi−2

])

dt

=
n
∑

i=1

�i (x, ψ). (4.43)

Lemma 4.10, stated below, will play an instrumental role in the proof of Theorem 2.5.

Lemma 4.10 Under assumptions (A.1), (A.3)(i)–(ii), (A.4) and (A.6), as n → ∞, we
have

n
∑

i=1

�i (x, ψ) =
n
∑

i=1

(

Wi (x, ψ) − E
[

Wi (x, ψ)|Fi−2
]) D→ N (0, σ 2(x, ψ)).
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4.1 Proof of Lemma 4.10

It is easily seen that (Wi (x, ψ))1≤i≤n is a sequence of martingale differences with
respect to the sequence of σ−fields (Fi−1)1≤i≤n . Therefore, we have to check the
following two conditions.

(a)

n
∑

i=1

E

[

�2
i (x, ψ)|Fi−2

]

P→ σ 2(x, ψ);

(b)

nE
[

�2
i (x, ψ)1{|�i (x,ψ)|>ε}

]

= o(1) holds, for any ε > 0.

These conditions are necessary to establish the asymptotic normality related to discrete
time martingale difference sequences (see, for instance, Hall and Heyde [37]).

Proof of (a)

First, observe that
∣

∣

∣

∣

∣

n
∑

i=1

E

[

W 2
i (x, ψ)

∣

∣Fi−2

]

−
n
∑

i=1

E

[

�2
T,i (x, ψ)

∣

∣Fi−2

]

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

n
∑

i=1

(

E
[

Wi (x, ψ)
∣

∣Fi−2
])2

∣

∣

∣

∣

∣

.

Note that, for Ti−1 ≤ t ≤ Ti , we have ST−δ,δ ⊂ Fi−2. Therefore, making use of
condition (A.6)(i), we obtain

∣

∣E
[

Wi (x, ψ)
∣

∣Fi−2
]∣

∣

=
∣

∣

∣

∣

∣

1

(T hd
T)1/2

( f (x) − hT f (1)(x))
f 2(x)

E

[

ψ(Yt)K (1)
(

x − Xt

hT

)

∣

∣Fi−2

]

dt

∣

∣

∣

∣

∣

≤ 1

(T hd
T)1/2

( f (x) − hT f (1)(x))
f 2(x)

∫ Ti

Ti−1

E

[

|ψ(Yt)| K (1)
(

x − XT

hT

)

∣

∣Fi−2

]

dt

≤ Mψ

(T hd
T)1/2

( f (x) − hT f (1)(x))
f 2(x)

∫ Ti

Ti−1

E

[

K (1)
(

x − XT

hT

)

∣

∣Fi−2

]

dt .

Using Taylor’s formula combined with assumption (A.4), we obtain

∣

∣

∣

∣

∣

n
∑

i=1

(

E
[

Wi (x, ψ)
∣

∣Fi−2
])2

∣

∣

∣

∣

∣

≤
(

f (x) − hT f (1)(x)
f 2(x)

)2 M2
ψ

T hd
T

n
∑

i=1

(∫ Ti

Ti−1

∫

Rd
K (1)

(

x − y
hT

)

f Fi−2
T (y)dydt

)2

123



Some asymptotic properties of kernel regression estimators… 845

=
(

f (x) − hT f (1)(x)
f 2(x)

)2 M2
ψhd

T

T

n
∑

i=1

(∫ Ti

Ti−1

∫

Rd
K (1)(z) f Fi−2

T (x − hTz)dzdt

)2

=
(

f (x) − hT f (1)(x)
f 2(x)

)2 M2
ψhd

T

δ

(

1

n

n
∑

i=1

(∫ Ti

Ti−1

f Fi−2
T (x)dt

)2

+ O(hT)

)

:=
(

f (x) − hT f (1)(x)
f 2(x)

)2 M2
ψhd

T

δ

1

n

n
∑

i=1

(

gFi−2
i (x)

)2 + O
(

hd
T

)

= O
(

hd
T

)

,

where

gFi−2
i (x) =

(∫ Ti

Ti−1

f Fi−2
T (x)dt

)2

,

is a stationary and ergodic process. So the sum 1
n

∑n
i=1 gFi−2

i (x) has a finite limit, (see
Krengel [47, Theorem 4.4]), which is

E

[

gF−δ

1 (x)
]

= g1(x) =
(∫ δ

0
fT(x)dt

)2

= δ2 f 2(x). (4.44)

Moreover, observe that by assumptions (A.3), we have

( f (x) − hT f (1)(x))
f 2(x)

= 1

f (x)
+ O(hT) = 1

f (x)
+ o(1).

Using Jensen inequality and Assumption (A.6)(iii), we obtain

n
∑

i=1

E
[

W 2
i (x, ψ)

∣

∣Fi−2
]

=
(

f (x) − hT f (1)(x)
f 2(x)

)2
1

T hd
T

E

[

(∫ Ti

Ti−1

ψ(Yt)K (1)
(

x − Xt

hT

)

dt

)2
∣

∣Fi−2

]

≤
(

f (x) − hT f (1)(x)
f 2(x)

)2
1

T hd
T

∫ Ti

Ti−1

E

[

E

[

ψ2(Yt)

(

K (1)
(

x − Xt

hT

))2
∣

∣St,δ

]

∣

∣Fi−2

]

dt

=
(

f (x) − hT f (1)(x)
f 2(x)

)2
1

T hd
T

∫ Ti

Ti−1

E

[

�2(Xt, ψ)

(

K (1)
(

x − Xt

hT

))2
∣

∣Fi−2

]

dt .
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According to Assumption (A.6)(iii), the function �2(·, ψ) is continuous in the neigh-
bourhood of x, we have

n
∑

i=1

E
[

W 2
i (x, ψ)

∣

∣Fi−2
]

≤
(

f (x) − hT f (1)(x)
f 2(x)

)2
1

T hd
T

∫ Ti

Ti−1

E

[

|�2(Xt, ψ) − �2(x, ψ)|
(

K (1)
(

x − Xt

hT

))2
∣

∣Fi−2

]

dt

+
(

f (x) − hT f (1)(x)
f 2(x)

)2
1

T hd
T

∫ Ti

Ti−1

E

[

�2(x, ψ)

(

K (1)
(

x − Xt

hT

))2
∣

∣Fi−2

]

dt

≤
(

f (x) − hT f (1)(x)
f 2(x)

)2
1

T hd
T

sup
‖x−v‖≤hT

|�2(v, ψ) − �2(x, ψ)|

×
∫ Ti

Ti−1

E

[

(

K (1)
(

x − Xt

hT

))2
∣

∣Fi−2

]

dt

+
(

f (x) − hT f (1)(x)
f 2(x)

)2
�2(x, ψ)

T hd
T

∫ Ti

Ti−1

E

[

(

K (1)
(

x − Xt

hT

))2
∣

∣Fi−2

]

dt

= 1

T hd
T f 2(x)

(�2(x, ψ) + o(hT))

∫ Ti

Ti−1

E

[

(

K (1)
(

x − Xt

hT

))2
∣

∣Fi−2

]

dt .

By a first order Taylor expansion of the function fT,T i−2, for x∗ in [x − hTv, x], we
obtain

n
∑

i=1

E

[

W 2
i (x, ψ)

∣

∣Fi−2

]

≤ �2(x, ψ)

T hd
T f 2(x)

∫ Ti

Ti−1

E

[

(

K (1)
(

x − Xt

hT

))2
∣

∣Fi−2

]

dt

= �2(x, ψ)

T hd
T f 2(x)

n
∑

i=1

∫ Ti

Ti−1

∫

Rd

(

K (1)
)2
(

x − u
hT

)

f
FTi−2
T (u)dudt

= �2(x, ψ)

T f 2(x)

n
∑

i=1

∫ Ti

Ti−1

∫

Rd

(

K (1)
)2

(v) f
FTi−2
T (x − hTv)dvdt

= �2(x, ψ)

δ f 2(x)

(

1

n

n
∑

i=1

∫ Ti

Ti−1

f
FTi−2
T (x)dt + O(hT)

)

∫

Rd

(

K (1)
)2

(v)dv.

It is clear, whenever δ is small enough, that the quantities

(∫ Ti

Ti−1

f
FTi−2
T (x)dt

)

i∈N
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may be approximated by

(

δ f
FTi−2
Ti−1

(x)
)

i∈N
.

Consequently, using the ergodic and stationarity properties of the process (Xt)T≥0, it
follows that

1

n

n
∑

j=1

(

∫ Tj

T j−1

f
FTi−2
T (x)dt

)

= E

(∫ T1

T0
fT(x)dt

)

+ o(1)

=
∫ δ

0
E ( fT(x)) dt + o(1)

= δ f (x) + o(1).

It follows that

n
∑

i=1

E

[

W 2
i (x, ψ)

∣

∣Fi−2

]

= �2(x, ψ)

f (x)

∫

Rd

(

K (1)
)2

(y)dy + O(hT).

This implies that

n
∑

i=1

E

[

W 2
i (x, ψ)

∣

∣Fi−2

]

= �2(x, ψ)

f (x)

∫

Rd

(

K (1)
)2

(y)dy, as T → ∞. (4.45)

Proof of (b)

Using the inequalities of Holder, Markov, Jensen and Minkowski’s inequalities,
together with Assumption (A.6)(iii), we obtain for all ε > 0 and all p and q, such that

1

p
+ 1

q
= 1,

that

E[�2
T,i (x)1{|�T,i (x)|>ε}]

≤ (E[�2q
T,i (x)])1/q (P{|�T,i (x)| > ε})1/p

≤ ε−2q/p
E[|�T,i (x)|2q ]

= ε−2q/p

(T hd
T)q f 2q (x)

E

[

∫ Ti

Ti−1

∣

∣

∣

∣

ψ(Yt)K (1)
(

x − Xt

hT

)

− E

[

ψ(Yt)K (1)
(

x − Xt

hT

)

|Fi−2

]∣

∣

∣

∣

2q

dt

]

≤ 22qε−2q/p

(T hd
T)q f 2q (x)

∫ Ti

Ti−1

E

[

∣

∣

∣

∣

ψ(Yt)K (1)
(

x − Xt

hT

)∣

∣

∣

∣

2q
]

dt

= 22qε−2q/p

(T hd
T)q f 2q (x)

∫ Ti

Ti−1

E

[

E
[|ψ(Yt)|2q |St,δ

]

(

K (1)
)2q
(

x − Xt

hT

)]

dt
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= 22qε−2q/p

(T hd
T)q f 2q (x)

∫ Ti

Ti−1

E

[

h2q (Xt, ψ)
(

K (1)
)2q
(

x − Xt

hT

)]

dt

≤ 22qε−2q/p

(T hd
T)q f 2q (x)

(

sup
‖x−v‖≤hT

∣

∣h2q (v, ψ) − h2q (x, ψ)
∣

∣+ h2q (x, ψ)

)

×
∫ Ti

Ti−1

E

[

(

K (1)
)2q
(

x − Xt

hT

)]

dt

= 22qε−2q/p

(T hd
T)q f 2q (x)

(

h2q (x, ψ) + o(1)
)

∫ Ti

Ti−1

∫

R

(

K (1)
)2q
(

x − u
hT

)

f (u)dudt

= 22qδε−2q/p

(T hd
T)q f 2q (x)

(

h2q (x, ψ) + o(1)
)

∫

R

(

K (1)
)2q

(u) f (x − hTu)du.

By a first order Taylor’s expansion, we have

E[�2
T,i (x)1{|�T,i (x)|>ε}]

=
22qε−2q/p

∥

∥

∥

(

K (1)
)2q

(v)
∥

∥

∥∞
(T hd

T)(q−1) f 2q−1(x)

(

h2q(x, ψ) + o(1)
)

= o(1). (4.46)

Combining statements (4.45) and (4.46), we obtain

(T hd+2
T )1/2

(

m̂(1)
T (x, ψ) − m̃(1)

T (x, ψ)
) D→ N

(

0,
�2(x, ψ)

f (x)

∫

Rd

(

K (1)
)2

(y)dy
)

.

(4.47)
Lemmas 4.9 and 4.10 combined with Theorem 2.4 complete the proof of Theorem
2.5. ��
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5 Appendix

For the sake of clarity, introduce some details defining the ergodic property of con-
tinuous time processes. Let Z = {Zt }t≥0 be a continuous time process taking values
in some measurable space (E,Z) on which is defined a probability measure μ. For
δ ≥ 0, let ϒδ be a δ-shift transformation, i.e., (ϒδ(x))s = xs+δ . A measurable set A
is δ-invariant if it does not change under δ-shift transformation , i.e., ϒδ(A) = A.

Definition 5.1 (δ-ergodicity) A continuous time process Z = {Zt }t≥0 is δ-ergodic if
every measurable δ-invariant set related to the process Z has probability either 1 or 0,
in other words, for any δ-invariant set A, μ(A) = (μ(A))2.
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This definition means that if we take the process X and slice it into time blocks of
length δ then the new discrete time process (Zδ

0,Z
2δ
δ ,Z3δ

2δ,Z
4δ
3δ, . . .) is ergodic. For

discrete time processes, we refer, for instance, to Krengel [47] for the definition and
details on the ergodic property.

Definition 5.2 (Ergodicity) A continuous time process Z = {Zt }t≥0 is ergodic if it is
δ-ergodic for every δ > 0.

It is well known from the ergodic theorem that, for a measurable function g and a
stationary ergodic process Z = {Zt }t≥0, we have

lim
T →∞

1

T

∫ T

0
g(Zt )dt = E(g(Z0)). (5.1)

We refer to the book of Krengel [47] for an account of details and results on the ergodic
theory.
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