SOME ASYMPTOTIC PROPERTIES OF POISSON PROCESS

G. SANKARANARAYANAN

(Received November 18, 1957)

1. Poisson Process $X(t, \omega)$ [$\omega \in \Omega$, $0 \leq t < \infty$] is a temporally and spatially homogeneous Markoff Process [Stationary increments (in the strict sense)] satisfying $X(0, \omega) = 0$ and $X(t, \omega) =$ integer greater than or equal to zero for every $\omega \in \Omega$ (ω denotes the probability parameter)

$$Pr[X(t, \omega) - X(t', \omega) = i] = \frac{[\lambda(t-t')]^i}{i!} e^{-\lambda(t-t')}$$
(1)

for t > t', where i is a non-negative integer and λ is a positive constant.

2. Definition of $L_m(\omega)$.

$$L_m(\omega) = t_{m+1}(\omega) - t_m(\omega)$$

$$t_m(\omega) = \text{Min} [T, X(T, \omega) = m],$$

where

 $t_{m}(\omega)$ exists almost certainly by the right continuity property of the Poisson Process. Further $t_m(\omega)$ is measurable. Thus $L_m(\omega)$ is a non-negative random variable.

3. A known Theorem. $L_0, L_1, \ldots, L_m, \ldots$ are mutually independent random variables, with a common distribution function F(x), where

. .

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise.} \end{cases}$$

Further $E(L_m) = 1/\lambda$
 $V(L_m) = 1/\lambda^2, \qquad m = 0, 1, \dots$

This theorem was suggested by P. Lévy [1] and a rigorous proof was given by T. Nishida [2].

4. Summary. From the sequence L_0, L_1, \ldots we form a new sequence y_1, y_2, \ldots where y_1 is the mean of the first *n* elements, y_2 is the mean of the next n elements and so on in the *L*-sequence.

We define $u_m = Max (y_1, y_2, \dots, y_m)$ and $l_m = Min (y_1, y_2, \dots, y_m)$ we have investigated the asymptotic behaviour of u_m and l_m . Takeyuki Hida [3] has defined

and
$$M_n = Max (L_0, L_1, \dots, L_{n-1})$$

 $Z_n = \frac{L_0 + L_1 + \dots + L_{n-1}}{M_n}.$

Using some of his results, we have obtained the asymptotic behaviour of M_n and Z_n . We have also investigated the asymptotic properties of

$$\frac{t_1+t_2+\ldots+t_m}{m^2},$$

which we have shown converges in probability to $\frac{1}{2\lambda}$,

5. Distribution of the arithmetic mean $y = \frac{L_0 + L_1 + \ldots + L_{n-1}}{n}$.

It follows immediately from the theorem in [3] that the characteristic function of L is

$$\phi_L(t) = rac{\lambda}{\lambda - it}$$

Hence the characteristic function of y is

$$\phi_y(t) = \left(1 - \frac{it}{n\lambda}\right)^{-n}.$$

Hence the frequency function p(x) of y is

$$p(x) = \frac{(n\lambda)^n}{\Gamma(n)} x^{n-1} e^{-n\lambda x} \text{ if } x > 0$$
$$= 0 \qquad \text{if } x \leq 0.$$

6. Definition and distribution of u_m . Let us consider the sequence of independent random variables L_0 , L_1 , L_2 , we now form a new sequence as follows

$$y_1 = \frac{L_0 + L_1 + \dots + L_{n-1}}{n},$$

 $y_2 = \frac{L_n + \dots + L_{2n-1}}{n},$

So y_1, y_2, \ldots form a sequence of independent and indentically distributed random variables.

Let $u_m = Max(y_1, y_2, \ldots, y_m),$ we now obtain the distribution function of u_m

$$Pr[u_{m} < x] = Pr[y_{1} < x, y_{2} < x, \dots, y_{m} < x]$$

$$= Pr[y_{1} < x] \cdot Pr[y_{2} < x] \dots Pr[y_{m} < x]$$

$$= \left[\frac{(n\lambda)^{n}}{\Gamma(n)} \int_{0}^{v} y^{n-1} e^{-n\lambda y} dy \right]^{m}$$

$$= \left[1 - \frac{1}{2^{n}\Gamma(n)} \int_{2^{n\lambda x}}^{\infty} v^{n-1} e^{-v/2} dv \right]^{m}$$
(6.1)

where $x \ge 0$.

7. We now prove the following result which will be used in the next section.

$$\frac{1}{\Gamma(n)} \int_{\theta}^{\infty} t^{n-1} e^{-t} dt \ge e^{-\theta} \quad (\theta > 0).$$
(7.1)

To show this it is enough, we prove

$$\frac{1}{\Gamma(n)}\int_{\theta}^{\infty}t^{n-1} e^{(\theta-t)} dt \ge 1.$$

Put $t - \theta = w$. Then

$$\frac{1}{\Gamma(n)} \int_{\theta}^{\infty} t^{n-1} e^{(\theta-t)} dt = \frac{1}{\Gamma(n)} \int_{0}^{\infty} (w+\theta)^{n-1} e^{-w} dw$$
$$\geq \frac{1}{\Gamma(n)} \int_{0}^{\infty} w^{n-1} e^{-w} dw \qquad (\theta \text{ being positive})$$
$$= 1.$$

Hence the result (7.1).

8. THEOREM 1. If $0 < \alpha < 1$, Then

$$Pr\left[\underset{m \to \infty}{\operatorname{Lim} \inf} \; \frac{n\lambda u_m}{\alpha \log m} \ge 1\right] = 1. \tag{8.1}$$

PROOF.

$$Pr(u_m < x) < (1 - e^{-n\lambda x})^m$$
, if $x \ge 0$ from (7.1).

$$Pr\left(u_m < \frac{\alpha \log m}{n\lambda}\right) < \left(1 - \frac{1}{m^{\alpha}}\right)^m$$

Therefore

$$\sum_{m=1}^{\infty} \Pr\left[u_m < \frac{\alpha \log m}{n\lambda}\right] < \sum_{m=1}^{\infty} \left(1 - \frac{1}{m^{\alpha}}\right)^m$$

The series on the right side is convergent if $0 < \alpha < 1$. So if $0 < \alpha < 1$

$$\sum_{m=1}^{\infty} Pr\left[u_m < \frac{\alpha \log m}{n\lambda} \right] < \infty.$$
$$S_m = \left(\omega, \ u_m < \frac{\alpha \log m}{n\lambda} \right).$$

Let

So

Let Λ be the set of points in infinitely many S_m 's. By Borel-Cantelli Lemma $Pr(\Lambda) = 0.$

Therefore $Pr(\Lambda^c) = 1$, where Λ^c is the complement of Λ i.e. $Pr(\liminf_{m \to \infty} S_m^c) = 1$

i.e.
$$Pr\left[\liminf_{m\to\infty}\frac{n\lambda \ u_m}{\alpha\log m}\geq 1\right]=1.$$

9. Definition and distribution of l_m . We define

$$l_{m} = \operatorname{Min} (y_{1}, y_{2}, \dots, y_{m}),$$

$$Pr(l_{m} > x) = Pr(y_{1} > x, \dots, y_{2} > x, y_{m} > x)$$

$$= Pr(y_{1} > x) Pr(y_{2} > x) \dots Pr(y_{m} > x)$$

$$= \left[\frac{(n\lambda)^{n}}{\Gamma(n)} \int_{x}^{\infty} u^{n-1} e^{-n\lambda u} du \right]^{m}$$

$$= \left[\frac{1}{\Gamma(n)} \int_{n\lambda x}^{\infty} v^{n-1} e^{-v} dv \right]^{m}$$

$$= \left[1 - \frac{1}{\Gamma(n)} \int_{0}^{n\lambda x} v^{n-1} e^{-v} dv \right]^{m}$$
(9.1)

where $x \ge 0$.

10. THEOREM 2. If $\beta > 1$, then

$$Pr\left[\lim_{m\to\infty}\sup \frac{l_m}{\beta\left[\frac{n!}{(n\lambda)^n}\frac{\log m}{m}\right]^{1/n}} \leq 1\right] = 1.$$
(10.1)

Proof. By (9.1) we get

$$Pr[l_m > x] = \left[1 - \frac{1}{\Gamma(n)} \int_0^{n \lambda x} v^{n-1} e^{-v} dv\right]_{-1}^m$$

If $0 \leq \theta \leq 1$

$$\frac{1}{\Gamma(n)}\int_0^\theta e^{-v}v^{n-1} dv = \frac{\theta^n}{n!} [1+O(\theta)].$$

Assuming $n\lambda x \leq 1$, we get

$$Pr[l_m > x] = \left[1 - \frac{(n\lambda x)^n}{n!} \{1 + O(n\lambda x)\}\right]^m$$

Write

$$n\lambda x = n\lambda\phi(m)$$
, where $\phi(m) \to 0$ as $m \to \infty$

Then

$$Pr[l_m > \phi(m)] = \exp \left\{ -m - \frac{[n\lambda\phi(m)]^n}{n!} [1 + o(1)] \right\}.$$

Now take

$$\frac{m[n\lambda\phi(m)]^n}{n!} = \alpha \log m.$$

Therefore

$$Pr[l_m > \phi(m]] = \exp\{-\alpha \log m[1 + o(1)]\}$$

$$=\frac{1}{m^{\alpha[1+o(1)]}}.$$

So if $\alpha > 1$

$$\sum_{m=1}^{\infty} Pr[l_m > \phi(m)] \text{ converges.}$$

So

$$Pr\left[\limsup_{m \to \infty} \frac{l_m}{\phi(m)} \leq 1\right] = 1.$$

Here

$$\phi(m) = \frac{1}{n\lambda} \left[\frac{\alpha \log m}{m} \cdot n! \right]^{1/n}$$
$$= \left[\frac{n!}{(n\lambda)^n} \cdot \frac{\alpha \log m}{m} \right]^{1/n}.$$

Therefore

$$Pr\left[\operatorname{Lim}_{m \to \infty} \operatorname{Sup} \frac{l_m}{\left[\frac{n!}{(n\lambda)^n} \frac{\alpha \log m}{m}\right]^{1/n}} \leq 1\right] = 1.$$

Now $\beta = \alpha^{1/n}$, since $\alpha > 1$, $\beta > 1$. Hence we finally get:

If $\beta > 1$

$$Pr\left[\limsup_{m \to \infty} \frac{l_m}{\left[\frac{n!}{(n\lambda)^n} \frac{\alpha \log m}{m}\right]^{1/n}} \leq 1\right] = 1.$$

By putting n = 1, in Theorems (1) and (2) we get the results obtained by Takeyuki Hida.

11. Takeyuki Hida [3] has proved the following results. He defines

$$M_n = \operatorname{Max} [L_0(\omega), L_1(\omega), \ldots, L_{n-1}(\omega)]$$

 $Z_n = \frac{L_0(\omega) + L_1(\omega) + \ldots + L_{n-1}(\omega)}{M_n(\omega)}.$

He has proved

and

$$E(M_n) = O(\log n),$$
$$E(Z_n) = O\left(\frac{n}{\log n}\right).$$

We can derive the following theorems from the above results. The fact that M_n and Z_n are non-negative almost everywhere may be noted in the proofs of the following theorems.

THEOREM 1. For any p > 0

$$Pr\left[\lim_{n\to\infty}\frac{M_n}{n\,(\log n)^{2+p}}\,=\,0\,\right]=\,1.$$

PROOF. We know that

$$E(M_n) = O(\log n).$$

So

$$E\left[\frac{M_n}{n(\log n)^{2+\frac{1}{p}}}\right] = O\left(\frac{1}{n(\log n)^{1+p}}\right).$$
$$E\left[\frac{M_n}{n(\log n)^{2+p}}\right] < \frac{K}{n(\log n)^{1+p}}$$

Hence

where K is a constant not depending upon n. By Tchebycheff's inequality

$$Pr\left[\frac{M_n}{n (\log n)^{2+p}} > \varepsilon\right] < \frac{K}{\varepsilon n (\log n)^{1+p}}$$

for any $\varepsilon > 0$ and for all large *n*. Hence

$$\sum_{n=2}^{\infty} \Pr\left[\frac{M_n}{n (\log n)^{2+p}} > \varepsilon\right] < \frac{K}{\varepsilon} \sum_{n=2}^{\infty} \frac{1}{n (\log n)^{1+p}}.$$

For any p > 0, the series on the right side is convergent. Therefore

$$\sum_{n=2}^{\infty} \Pr\left[\frac{M_n}{n (\log n)^{2+p}} > \varepsilon\right] < \infty.$$

By applying Borel-Cantelli Lenma

$$Pr\left[\lim_{n\to\infty}\frac{M_u}{n\,(\log n)^{2+p}}=0\right]=1.$$

THEOREM 2. For any p > 0,

$$Pr\left[\lim_{n\to\infty}\frac{Z_n}{n^2(\log n)^p}=0\right]=1.$$

PROOF. We know that

$$E(Z_n) = O\left(\frac{n}{\log n}\right).$$
$$E\left[\frac{Z_n}{n^2 (\log n)^p}\right] < \frac{K}{n (\log n)^{1+p}},$$

 \mathbf{So}

where K does not depend upon n. By Tchebycheff's inequality

$$Pr\left[\frac{Z_n}{n^2(\log n)^p} > \varepsilon\right] < \frac{K}{\varepsilon n(\log n)^{1+p}}$$

for any $\varepsilon > 0$ and for all large *n*. Therefore for any p > 0

$$\sum_{n=2}^{\infty} Pr\left[\frac{Z_n}{n^2 (\log n)^p} > \varepsilon\right] < \infty.$$

Hence by Borel-Cantelli Lemma

$$Pr\left[\lim_{n\to\infty}\frac{Z_n}{n^2(\log n)^p}=0\right]=1.$$

12. Asymptotic Behaviour of $\frac{t_1(\omega) + t_2(\omega) + \ldots + t_m(\omega)}{m^2}$.

We define

$$t_m(\omega) = \operatorname{Min}(T, X(T, \omega) = m)$$

Hence from the definition

$$t_0(\boldsymbol{\omega})=0.$$

We define

$$L_m(\omega) = t_{m+1}(\omega) - t_m(\omega).$$

$$t_m(\omega) = L_0 + L_1 + \dots + L_{m-1}.$$

Hence Therefore

$$t_1 + t_2 + \ldots + t_m = mL_0 + (m-1) L_1 + \ldots + L_{m-1}$$

Hence

$$\frac{t_1+t_2+\ldots\ldots+t_m}{m^2} = \frac{m L_0 + (m-1)L_1 + \ldots + L_{m-1}}{m^2}.$$

THEOREM. $\frac{t_1+t_2+\ldots+t_m}{m^2}$ converge in probability to $\frac{1}{2\lambda}$.

PROOF. Let $\phi_m(t)$ denote the characteristic function of $\frac{t_1 + t_2 + \ldots + t_m}{m^2}$.

Hence

$$\begin{split} \phi_{m}(t) &= \phi_{(t_{1}+\ldots+t_{m})/m^{2}}(t) \\ &= \phi_{\frac{mL_{0}+(m-1)L_{1}+\ldots+L_{m-1}}{m^{2}}}(t) \\ &= \frac{1}{\left(1-\frac{imt}{m^{2}\lambda}\right)\left(1-\frac{i(m-1)t}{m^{2}\lambda}\right)\cdots\left(1-\frac{it}{m^{2}\lambda}\right)} \\ &= \frac{1}{\prod_{r=1}^{m}\left[1-\frac{irt}{m^{2}\lambda}\right]}. \end{split}$$

We now find the limit of $\phi_m(t)$ as $m \to \infty$. For this we first consider the limit of the denominator

$$\prod_{r=1}^{m} \left(1 - \frac{irt}{m^2 \lambda} \right) = \left[\prod_{r=1}^{m} \left\{ \left(1 - \frac{irt}{m^2 \lambda} \right) \exp\left(\frac{irt}{m^2 \lambda} \right) \right\} \right] \\ \times \exp\left(- \frac{it}{\lambda m^2} \sum_{r=1}^{m} r \right).$$
(1)

Consider now the limit as $m \to \infty$ of

$$\prod_{r=1}^{m} \left(1 - \frac{irt}{m^2\lambda}\right) \exp\left(\frac{irt}{m^2\lambda}\right).$$

Put $1 + W_r(m) = \left(1 - \frac{ur}{m^2}\right) \exp\left(\frac{ur}{m^2}\right)$ where $u = \frac{it}{\lambda}$

Therefore

$$W_r(m) = \left(1 - \frac{ur}{m^2}\right) \exp\left(\frac{ur}{m^2}\right) - 1.$$

Let $|u| \leq k$, we can choose an $m > m_0$ such that

$$\left|\frac{ur}{m^2}\right| \leq \frac{|k|}{m} \leq 1 \quad \text{in } |u| \leq k.$$

Now

$$W_{r}(m) = \left(1 - \frac{ur}{m^{2}}\right) \exp\left(\frac{ur}{m^{2}}\right) - 1$$

= $\left(1 - \frac{ur}{m^{2}}\right) \left(1 + \frac{ur}{m^{2}} + \frac{(ur)^{2}}{2!m^{4}} + \dots\right) - 1$
= $-\frac{1}{2} \left(\frac{ur}{m^{2}}\right)^{2} \left[1 + \frac{4}{3!} \left(\frac{ur}{m^{2}}\right)^{3} + \frac{6}{4!} \left(\frac{ur}{m^{2}}\right)^{4} + \dots\right].$

Therefore

$$|W_r(m)| < rac{Ar^2}{m^4} < rac{Ar^2}{r^4} < rac{A}{r^2}$$
, where A is a constant

Since $\sum_{r=1}^{\infty} \frac{1}{r^2}$ is convergent, conditions of Tannery's theorem are fulfilled.

Hence

$$\lim_{m\to\infty}\prod_{r=1}^m\left(1-\frac{irt}{m^2\lambda}\right)\exp\left(\frac{irt}{m^2\lambda}\right)=1.$$

Also

$$\lim_{m\to\infty}\exp\Big(-\frac{it}{m^2\lambda}\sum_{r=1}^m r\Big)=\lim_{m\to\infty}\exp\Big\{-\frac{it}{m^2\lambda}\frac{m(m+1)}{2}\Big\}=\exp\Big(-\frac{it}{2\lambda}\Big)$$

Hence the denominator of $\phi_m(t) \to \exp(-it/2\lambda)$, as $m \to \infty$. Therefore $\lim_{m \to \infty} \phi_m(t) = \exp(it/2\lambda)$, for all t, since k is arbitrary.

Hence

$$\lim_{m\to\infty} \Pr\left[\frac{t_1+\ldots+t_m}{m^2} \leq x\right] = \begin{cases} 1 & \text{if } x \geq 1/2\lambda \\ 0 & \text{otherwise.} \end{cases}$$

In other words $\frac{t_1 + t_2 + \ldots + t_m}{m^2}$ converges in probability to $\frac{1}{2\lambda}$.

G. SANKARANARAYANAN

Acknowledgement

The author wishes to express his gratitude to Professor V. Ganapathy Iyer for the valuable suggestions and criticisms while preparing this paper.

References

- P. LÉVY, Processus Stochastiques et mouvement brownien, 1948.
 NISHIDA On the inverse function of Poisson Process, Mathematica Japonicae, 2(1952), 135-142.
- [3] TAKEYUKI Hida, On some Asymptotic properties of Poisson Process, Nagoya Mathematical Journal, 6 (1953), 29-36.

ANNAMALAI UNIVERSITY.