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We study the almost sure asymptotic properties of the local time of the uniform empirical process. In

particular, we obtain two versions of the law of the iterated logarithm for the integral of the square of

the local time. It is interesting to note that the corresponding problems for the Wiener process remain

open. Properties of L p-norms of the local time are studied. We also characterize the joint asymptotics

of the local time at a ®xed level and the maximum local time.
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1. Introduction

Let U1, U2, . . . denote a sequence of independent random variables, all uniformly distributed

on (0, 1). De®ne the uniform empirical process

án(t) �def
n1=2(Fn(t)ÿ t), 0 < t < 1,

where Fn(:) is the empirical distribution function based on the ®rst n observations, i.e.,

Fn(t) �def 1

n

Xn

i�1

1fUi< tg, 0 < t < 1:

We are interested in the (normalized) level crossings of the empirical process, de®ned by

Lx
1(án) �def

nÿ1=2
X
t<1

1fá n( t)�xg, x 2 R:

From a statistical point of view, the study of such functionals of the empirical process is

motivated by some nonparametric problems related to goodness-of-®t tests; see for example,

Gaenssler and Gutjahr (1985).

It is easily checked (see Shorack and Wellner 1986, pp. 398±399) that Lx
1(án) is also the

local time of án at x. Throughout the paper, for any stochastic process Z indexed by [0, 1]

or R�, we write Lx
t (Z) for the local time ± whenever it is well de®ned ± of Z at (level) x

up to time t. More precisely, for any bounded Borel function f ,
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� t

0

f (Z(s)) ds �
�

R

f (x)Lx
t (Z) dx: (1:1)

One of the ®rst results in the literature concerning the local time of án is the following

weak convergence, obtained by Dwass (1961):

lim
n!1P(L0

1(án) . x) � exp ÿ x2

2

� �
, x . 0: (1:2)

Since exp (ÿx2=2) is also the tail distribution of the local time at 0 of a standard Brownian

bridge, (1.2) con®rms that the local time at 0 of án converges weakly to that of the Brownian

bridge. Observe that this cannot be deduced, for example, from the strong approximation

theorem of KomloÂs et al. (1975) for án, since L0
1(án) is not a continuous functional of án.

(However, there does exist a strong approximation of L0
1(án) by the Brownian bridge local

time; see (7.2) below.)

In this paper we are interested in strong limit theorems for the local time of án. We ®rst

recall two important results. For notational convenience, we write

ö(n) �def
(2 log log n)1=2, (1:3)

throughout the paper.

Theorem A (ReÂveÂsz 1983). Almost surely,

lim sup
n!1

L0
1(án)

ö(n)
� 1: (1:4)

Theorem B (Bass and Khoshnevisan 1995). Let

L�1 (án) �def
sup
x2R

Lx
1(án):

Then

lim sup
n!1

L�1 (án)

ö(n)
� 1 a:s: (1:5)

lim inf
n!1 (log log n)1=2 L�1 (án) �

���
2
p

ð a:s: (1:6)

Our ®rst result concerns the joint asymptotics of L0
1(án) and L�1 (án).

Theorem 1.1. Almost surely,

L0
1(án)

ö(n)
,

L�1 (án)

ö(n)

 !
; n > 3

( )
is relatively compact, with limit set equal to
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A �deff(x, y) : 0 < x < y < 1g:

Remark 1.1. (i) Expressions (1.4) and (1.5) say that L0
1(án) and L�1 (án) satisfy the same law

of the iterated logarithm (LIL), whereas Theorem 1.1 con®rms that

lim sup
n!1

L�1 (án)ÿ L0
1(án)

ö(n)
� 1 a:s: (1:7)

This is satisfactory, since it is intuitively clear that L�1 (án) may be far greater than L0
1(án).

(ii) In light of (1.7), one may wonder if it is possible to obtain some information about

the asymptotics of Lx
1(án)ÿ L0

1(án). The corresponding problem is solved by CsoÈrgoÍ and

ReÂveÂsz (1985) for the random walk, and by CsaÂki and FoÈldes (1987) for the Wiener

process; see ReÂveÂsz (1990, pp. 122±129) for an overview.

Our second result is about the integral of the square of the local time.

Theorem 1.2. We have

lim sup
n!1

1

ö(n)

�1
ÿ1

(Lx
1(án))2 dx � 1���

3
p a:s:,

lim inf
n!1 (log log n)1=2

�1
ÿ1

(Lx
1(án))2 dx � 2ja1j

3

� �3=2

a:s:,

where a1 , 0 is the largest real zero of the Airy function Ai(:).

Remark 1.2. It is interesting to note that the corresponding problems for the integral of the

square of the Wiener local time are still open. In fact, let W denote a real-valued Wiener

process; then

lim sup
t!1

1

(2t3 log log t)1=2

�1
ÿ1

(Lx
t (W ))2 dx � c 2 (0, 1) a:s:

lim inf
t!1

(log log t)1=2

t3=2

�1
ÿ1

(Lx
t (W ))2 dx � c 2 (0, 1) a:s:

However, the values of c and c are unknown. More discussions on this can be found in

Khoshnevisan and Lewis (1998).

We also study the local time of án under the L p-norm. The case p � 3 takes a

particularly simple form.
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Theorem 1.3. We have

lim sup
n!1

1

ö2(n)

�1
ÿ1

(Lx
1(án))3 dx � 4

ð2
a:s:

lim inf
n!1 (log log n)

�1
ÿ1

(Lx
1(án))3 dx � 9

2
a:s:

Theorem 1.4. For p > 3,

lim sup
n!1

1

ö pÿ1(n)

�1
ÿ1

(Lx
1(án)) p dx � b

pÿ 1

2

� �
a:s:,

where, for q > 1,

b(q) �def (q� 1)qÿ1

qq

�1

0

dx���������������
1ÿ x2q
p

 !ÿ2q

� (4q)q(q� 1)qÿ1 Bÿ2q 1

2
,

1

2q

� �
, (1:8)

with B(:, :) standing for the usual beta function.

The rest of the paper is organized as follows. Section 2 is devoted to the study of some

exact distributions related to the local time of the Brownian bridge. The main tool is

Jeulin's theorem for the local time of the normalized Brownian excursion process, together

with some well-known sample path decomposition theorems. The local time of the

Brownian bridge is further investigated in Sections 3±6. In particular, we obtain in Section

3 the upper and lower tails of the integral of the square of the local time in question. The

third and higher moments of the local time are studied in Sections 4 and 5, respectively.

Section 6 concerns the joint tail of the local time at 0 and the maximum local time of the

Brownian bridge. Theorems 1.1±1.4 are proved in Section 7. Finally, in Section 8, we

brie¯y describe some asymptotic properties of the local time of the re¯ecting Brownian

bridge and empirical process.

Following the referee's advice, we emphasize that the present knowledge of the laws of

local times for the Brownian and Bessel bridges, recently discussed in a uni®ed way in

Pitman (1999), plays an important part throughout our paper.

In the rest of the paper, we adopt the usual notation a(u) � b(u), u! u0, to denote

limu!u0
a(u)=b(u) � 1.

2. Local time of the Brownian bridge

We start by introducing the normalized excursion process. Let W be, as before, a Wiener

process. Let
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G �def
supft < 1 : W (t) � 0g, (2:1)

D �def
infft > 1 : W (t) � 0g, (2:2)

which represent respectively the left and right extremities of the excursion interval straddling

time 1. The process

jW (G � (Dÿ G)t)j
(Dÿ G)1=2

; 0 < t < 1

� �
is called the normalized Brownian excursion process, cf. Chung (1976).

It was ®rst observed by Chung (1976) and Kennedy (1976) that the supremum of the

normalized excursion has the same distribution as the range of the Brownian bridge, which

suggests that there would exist a close relationship between the two processes. It turns out

that this is the case, as is revealed by the following theorem. For detailed surveys of

Brownian path decompositions, see Bertoin and Pitman (1994), Biane (1993) and Yor

(1995, Lecture 4).

Theorem C (Vervaat 1979). Let fã(t); 0 < t < 1g be a standard Brownian bridge process,

and U the almost surely unique location of the minimum of ã, that is, such that ã(U ) �
inf0< t<1 ã(t). Then U is uniformly distributed on (0, 1). Furthermore,

r(t) �def ã(t � U )ÿ ã(U ), if 0 < t < 1ÿ U ,

ã(t � U ÿ 1)ÿ ã(U ), if 1ÿ U < t < 1,

�
(2:3)

is distributed as a normalized Brownian excursion process, and is independent of the variable

U.

Another deep result which we shall need is Jeulin's theorem for the local time of the

excursion process.

Theorem D (Jeulin 1985, p. 264). Let fr(t); 0 < t < 1g denote a normalized excursion

process. De®ne J (s) �def � s

0
Lx

1(r) dx for all s > 0. Then

f1
2
LJÿ1

1
( t)(r); 0 < t < 1g �lawfr(t); 0 < t < 1g, (2:4)

where `�law
' stands for identity in law, and Jÿ1 is the continuous inverse of J.

From now on, ã and r denote respectively Brownian bridge and (normalized) excursion

processes. Here is the main result of the section, which has several interesting consequences.

Theorem 2.1. Let f > 0 and g > 0 be two Borel functions. Let U be uniformly distributed in

(0, 1), independent of the excursion process r. Then
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�r(U )

0

f (1
2
Lx

1(r))Lx
1(r) dx,

�1
r(U )

g(1
2
Lx

1(r))Lx
1(r) dx, 1

2
L
r(U )
1 (r)

 !
(2:5)

has the same distribution as

�U

0

f (r(t)) dt,

�1

U

g(r(t)) dt, r(U )

 !
: (2:6)

Remark 2.1. As a less complete ± but perhaps easier to memorize ± statement, we underline

that the occupation measures of the processes fl (x) �def 1
2
Lx

1(r); x > 0g and fr(t); 0 < t < 1g
have the same distribution, that is, for every Borel function f > 0,�1

0

f (l (x)) dhl (:)ix �law
�1

0

f (r(t)) dt,

where, for any process Z, hZi is the increasing process associated with Z. (Note that

hri t � t, whereas hl (:)ix � 2
� x

0
l (y) dy). For other pairs of processes with identical

occupation measure laws, see Pitman and Yor (1998a).

Proof of Theorem 2.1. Let, as before, J (s) � � s

0
Lx

1(r) dx. Let fÎ(t); t > 0g be an arbitrary

stochastic process, such that for each t > 0, Î(t) is an R2-valued variable, measurable with

respect to fr(s); 0 < s < 1g. For any Borel functions H > 0 and K > 0,

E[H(Î(r(U )))K(L
r(U )
1 (r))] � E

�1

0

H(Î(r(u)))K(L
r(u)
1 (r)) du

" #

� E

�1
0

Lx
1(r)H(Î(x))K(Lx

1(r)) dx

� �
,

by means of (1.1). According to the de®nition of J , the expression on the right-hand side is

E[
�1

0
H(Î(x))K(Lx

1(r)) dJ (x)]. Since J is strictly increasing over [0, sup0< t<1 r(t)], by a

change of variable x � Jÿ1(t), we obtain:

E[H(Î(r(U )))K(L
r(U )
1 (r))] � E

�1

0

H(Î(Jÿ1(t)))K(LJÿ1

1
( t)(r)) dt

" #

� E[H(Î(Jÿ1(U )))K(LJÿ1

1
(U )(r))]:

This means that (Î(r(U )), L
r(U )
1 (r)) has the same distribution as (Î(Jÿ1(U )), LJÿ1

1
(U )(r)). In

particular, taking
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Î(t) �def
� t

0

f (1
2
Lx

1(r))Lx
1(r) dx,

�1
t

g(1
2
Lx

1(r))Lx
1(r) dx

� �

�
� J ( t)

0

f (1
2
LJÿ1

1
(s)(r)) ds,

�1

J ( t)

g(1
2
LJÿ1

1
(s)(r)) ds

 !
,

it follows that, the R3-valued variable in (2.5) has the same distribution as�U

0

f (1
2
LJÿ1

1
(s)(r)) ds,

�1

U

g(1
2
LJÿ1

1
(s)(r)) ds, 1

2
LJÿ1

1
(U )(r)

 !
,

which, according to Theorem D, is distributed as�U

0

f (r(s)) ds,

�1

U

g(r(s)) ds, r(U )

 !
:

This completes the proof of the theorem. h

We present a few applications (which certainly are not exhaustive) of Theorem 2.1. The

®rst con®rms that the study of the distribution of additive functionals of L(ã) can be

reduced to that of the corresponding problems for the excursion process.

Corollary 2.2. Let ã be a Brownian bridge. For any Borel function h: R� 7! R�, such that

h(0) � 0, �1
ÿ1

h(Lx
1(ã)) dx �law 1

2

�1

0

h(2r(t))

r(t)
dt: (2:7)

In particular, for any p . 0,�1
ÿ1

(Lx
1(ã)) p dx �law

2 pÿ1

�1

0

(r(t)) pÿ1 dt: (2:8)

Remark 2.2. Let

S �def
sup

0< t<1

ã(t), I �def
inf

0< t<1
ã(t): (2:9)

An equivalent formulation of (2.7) is:�S

I

h(Lx
1(ã)) dx �law 1

2

�1

0

h(2r(t))

r(t)
dt, (2:10)

which now holds for any Borel function h: R� 7! R�.

Proof of Corollary 2.2. It is an immediate consequence of Theorem C that the processes

fL
x�ã(U )
1 (ã); x > 0g and fLx

1(r); x > 0g
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have the same distribution, where, as before, U is the location of the minimum of ã. In

particular, if h(0) � 0, �1
ÿ1

h(Lx
1(ã)) dx �law

�1
0

h(Lx
1(r)) dx: (2:11)

On the other hand, by Theorem 2.1, for any non-negative Borel function f ,�1
0

f (1
2
Lx

1(r))Lx
1(r) dx �law

�1

0

f (r(t)) dt:

This, jointly considered with (2.11), yields (2.7). h

The next result plays a key role in our proof of Theorem 1.1.

Corollary 2.3. Let ã be a Brownian bridge,

(L�1 (ã), L0
1(ã)) �law

(2(S ÿ I), ÿ2I), (2:12)

where S and I are as in (2.9). In particular, for any x . 0,

P(L�1 (ã) , x) � 1ÿ 2
X1
k�1

(k2x2 ÿ 1) exp ÿ k2x2

2

� �
(2:13)

�
�������������
128ð5
p

x3

X1
k�1

k2 exp ÿ 2k2ð2

x2

� �
: (2:14)

Consequently,

log P(L�1 (ã) , y) � ÿ 2ð2

y2
, y! 0, (2:15)

log P(L�1 (ã) . y) � ÿ y2

2
, y!1: (2:16)

Proof. Fix p . 0. Take f (x) � g(x) � x p in Theorem 2.1 to see that

2ÿ p

�1
0

(Lx
1(r)) p�1 dx, 1

2
L
r(U )
1 (r)

� �
�law

�1

0

r p(t) dt, r(U )

 !
:

Raising the ®rst variables on both sides to the power of 1=p, and then letting p go to in®nity,

we obtain:
1
2
sup
x>0

Lx
1(r), 1

2
L
r(U )
1 (r)

� �
�law

sup
0< t<1

r(t), r(U )
� �

:

Multiplying both sides by 2 and applying Theorem C yields (2.12).

The exact distribution of the range of the Brownian bridge is well known, (see CsoÈrgoÍ

and ReÂveÂsz 1981, p. 164; Kuiper 1960; Chung 1976): for x . 0,
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P(S ÿ I < x) � 1ÿ 2
X1
k�1

(4k2x2 ÿ 1) exp(ÿ2k2x2), (2:17)

which, in view of (2.12), implies (2.13). The expression in (2.14) immediately follows from

Poisson's summation formula (see Feller 1966, p. 630). h

Remark 2.3. The distribution function of the range of a Brownian bridge (cf. (2.17)), and

hence also that of L�1 (ã) (cf. (2.13)), is related to the Jacobi theta function. For probabilistic

interpretations of this famous function (and of the Riemann zeta function) in terms of

Brownian motion, we refer to Biane et al. (1999), Biane and Yor (1987), Chung (1976),

CsaÂki (1979), CsaÂki and Mohanty (1981; 1986), CsoÈrgoÍ and HorvaÂth (1997, p. 102),

Deheuvels (1985), Smith and Diaconis (1988), Williams (1990), and Yor (1997, Chapter

11).

Remark 2.4. (i) We can choose various functions f and g in Theorem 2.1 to obtain many

identities in law, which hold jointly. For example, together with Theorem C, we immediately

see that the random variable �1

0

1fã( t) . 0g dt

is uniformly distributed on (0, 1), independent of any variable of the form
�

R f (Lx
1(ã)) dx. In

particular, it is independent of (S ÿ I , supx2R Lx
1(ã)). This kind of independence is explained

and extended by Chaumont (1998).

(ii) From (2.10) we deduce:

S ÿ I �law 1

2

�1

0

dt

r(t)
:

Therefore, (2.13) and (2.14) also express the distribution function of
� 1

0
dt=r(t). For further

discussions on this, see Biane and Yor (1987), Chung (1976) and Pitman and Yor (1996). We

also mention Chung's identity in law: if ~ã denotes an independent copy of ã,

sup
0< t<1

ã2(t)� sup
0< t<1

~ã2(t) �law
sup

0< t<1

r2(t);

see Chung (1976), Yor (1997, p. 16).

(iii) The identities (2.13) and (2.14) were previously proved by Bass and Khoshnevisan

(1995) using the Ray±Knight theorem. Not surprisingly, their consequences (2.15)±(2.16)

played an essential part in the proof of Theorem B above (for more details, see Bass and

Khoshnevisan 1995; see also Khoshnevisan 1992, 1993).

3. Tail probabilities for the square integral

Recall that ã is a Brownian bridge. This section is devoted to the study of the upper and

lower tails of the variable
�1
ÿ1(Lx

1(ã))2 dx.
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Theorem 3.1. We have

log P

�1
ÿ1

(Lx
1(ã))2 dx , y

� �
� ÿ 8ja1j3

27y2
, y! 0�, (3:1)

log P

�1
ÿ1

(Lx
1(ã))2 dx . y

� �
� ÿ 3

2
y2, y!1, (3:2)

where a1 , 0 is, as before, the largest real zero of the Airy function Ai(:).

We need the following result which relates the tail behaviour of a non-negative random

variable with its moment generating function.

Lemma 3.2. Let X be an almost surely non-negative random variable. Assume

lim
n!1

[E(X n)]1=n

n
� a, (3:3)

for some constant a 2 (0, 1). Then

log P(X . x) � ÿ x

ae
, x!1:

Proof. That lim supx!1 xÿ1 log P(X . x) < ÿ1=(ae) immediately follows from Chebyshev's

inequality and Stirling's formula. The lower bound, which needs more care, can be proved

using Laplace's method. We only outline the proof, and refer to the proof of Lemma 2.7 in

Marcus and Rosen (1994) for full details.

Let ä. 0. For all suf®ciently small å. 0, we have

(1� ä) log
1ÿ å

(1� ä)e
. max ÿ(1ÿ å)� (1� ä) log

1

(1� ä)2
, (1� ä) log

1� å

e

� �
: (3:4)

For large x . 0, de®ne y � (1� ä)2x and n � [(1� ä)x=(ae)]. Then

P(X . x) >
E(X n)

y n
ÿ 1

y n

�x

0

u n dP(X < u)ÿ 1

y n

�1
x

u n dP(X < u)

�def
A1 ÿ A2 ÿ A3:

By (3.3),

A1 >
((1ÿ å)an)n

y n
� exp n log

(1ÿ å)an

y

� �
:

On the other hand, by integration by parts and the upper bound lim supz!1zÿ1 log P(X .
z) < ÿ1=(ae),
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A2 <
n

y n

�x

0

u nÿ1P(X . u) du

<
n

y n

�x

0

u nÿ1c exp ÿ (1ÿ å)u

ae

� �
du

<
cn

y n
x n exp ÿ (1ÿ å)x

ae

� �
,

where c denotes a ®nite constant. We also have

A3 <
1

y n�[än]

�1
y

u n�[än] dP(X < u)

<
E(X n�[än])

y n�[än]

<
(1� å)a(n� [än])

y

� �n�[än]

:

In view of (3.4), A1 > 3A2 and A1 > 3A3. This gives

lim inf
x!1

1

x
log P(X . x) >

1� ä

ae
log

1ÿ å

(1� ä)e
,

which yields the lower bound in the lemma by sending å and ä to 0 (in this order). h

Proof of Theorem 3.1. Let r be as before a (normalized) excursion process. The exact

distribution of
� 1

0
r(t) dt has been determined by several authors, among them Darling (1983),

Louchard (1984), Groeneboom (1989) and TakaÂcs (1991; 1992). For all y . 0,

P

�1

0

r(t) dt , y

 !
� 27=6

9y7=3

X1
k�1

a2
k U

1

6
,

4

3
;

2jak j3
27y2

 !
exp ÿ 2jak j3

27y2

 !
, (3:5)

where U (a, b; x) is the con¯uent hypergeometric function, and 0 . a1 . a2 . . . . are the real

zeros of the Airy function Ai(:).
According to Abramowitz and Stegun (1965, p. 508), for ®xed a and b, U (a, b; x) � xÿa

(x!1), whereas as k goes to in®nity, jak j behaves like a constant multiple of k2=3

(Abramowitz and Stegun 1965, p. 450). Consequently,

log P

�1

0

r(t) dt , y

 !
� ÿ 2ja1j3

27y2
, y! 0�:

Since by (2.8), �1
ÿ1

(Lx
1(ã))2 dx �law

2

�1

0

r(t) dt, (3:6)

this yields (3.1).

Local time of the empirical process 1045



It remains to check (3.2). Curiously, the exact distribution (3.5) does not seem to

immediately yield the upper tail of
� 1

0
r(t) dt. However, the moments of this variable are

also estimated in TakaÂcs (1991; 1992):

E

�1

0

r(t) dt

 !n
24 35 � 3

���
2
p

n
n

12e

� �n=2

, n!1: (3:7)

Applying Lemma 3.2 gives

log P

�1

0

r(t) dt . y

 !
� ÿ6y2, y!1:

Together with (3.6), this implies (3.2), hence the theorem. h

Remark 3.1. In the proof of Theorem 3.1, that yÿ2 log P(
� 1

0
r(t) dt . y) has a non-denegerate

limit (as y goes to in®nity) follows from a large-deviation result for general Gaussian

processes; see Azencott (1980, p. 57). However, the identi®cation of the limit is easier using

(3.7).

4. Tails of the third moment

The tail probabilities of the third moment of the local time of the Brownian bridge bear the

following simple form:

Theorem 4.1. If ã is a Brownian bridge,

log P

�1
ÿ1

(Lx
1(ã))3 dx , y

� �
� ÿ 9

2y
, y! 0�, (4:1)

log P

�1
ÿ1

(Lx
1(ã))3 dx . y

� �
� ÿð2 y

8
, y!1: (4:2)

In order to prove Theorem 4.1, we need the following preliminary result.

Lemma 4.2. Fix m > 2. Let î1, î2, . . ., îm denote independent non-negative variables, such

that for any 1 < i < m,

log P(îi . y) � ÿay, y!1, (4:3)

for some constant a . 0. Then

log P(î1 � . . . � îm . y) � ÿay, y!1:

Proof of Lemma 4.2. Only the upper bound needs checking. By induction, we only have to

treat the case m � 2. According to (4.3), for å. 0, there exists a constant Cå, depending on

å, such that
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P(îi > x) < Cå eÿ(1ÿå)ax,

for i � 1 or 2, and all x > 0. Therefore,

P(î1 � î2 . y) < P(î1 . y)� P(î1 � î2 . y, î1 < y)

< Cå eÿ(1ÿå)ay ÿ
� y

0

P(î2 . yÿ x) dxP(î1 > x)

< Cå eÿ(1ÿå)ay ÿ Cå

� y

0

eÿ(1ÿå)a( yÿx) dxP(î1 > x):

By integration by parts, the integral expression on the right-hand side is

P(î1 > y)ÿ eÿ(1ÿå)ay ÿ (1ÿ å)a

� y

0

eÿ(1ÿå)a( yÿx)P(î1 > x) dx

> ÿeÿ(1ÿå)ay ÿ Cåa

� y

0

eÿ(1ÿå)a( yÿx) eÿ(1ÿå)ax dx

� ÿeÿ(1ÿå)ay ÿ Cåay eÿ(1ÿå)ay:

Assembling these pieces yields lim sup y!1 yÿ1 log P(î1 � î2 . y) < ÿ(1ÿ å)a. This

completes the proof of the lemma by sending å to 0�. h

Proof of Theorem 4.1. The Laplace transform of
� 1

0
r2(t) dt is well known (see, for example,

Pitman and Yor 1982, p. 432): for all ë. 0,

E exp ÿë
�1

0

r2(t) dt

 !" #
�

�����
2ë
p

sinh
�����
2ë
p

 !3=2

: (4:4)

This, combined with an exponential-type Tauberian theorem (see Bingham et al. 1987,

Theorem 4.12.9), yields the following lower tail:

log P

�1

0

r2(t) dt , y

 !
� ÿ 9

8y
, y! 0�:

In view of (2.8), this is equivalent to (4.1).

It is also possible to prove (4.2) from (4.4) by means of analytic continuation and a

sophisticated version of the Tauberian theorem. However, there is an easier way to handle

the problem. According to Williams's identi®cation (see, for example, Rogers and Williams

1987, pp. 88±89), r can be realized as a standard three-dimensional Bessel bridge, that is,��������������������������
ã2 � ~ã2 � ã̂2

p
is an excursion process, (4:5)

where ~ã and ã̂ denote two independent copies of the Brownian bridge ã. The exact

distribution function of
� 1

0
ã2(t) dt is explicitly known (see, for example, CsoÈrgoÍ and ReÂveÂsz

1981, p. 43): for y . 0,
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P

�1

0

ã2(t) dt < y

 !
� 1ÿ 2

ð

X1
k�1

(ÿ1)k�1

�2kð

(2kÿ1)ð

exp (ÿyt2=2)��������������
tj sin tjp dt,

from which it immediately follows that

log P

�1

0

ã2(t) dt . y

 !
� ÿð2 y

2
, y!1:

By (2.8),
�

R(Lx
1(ã))3 dx is distributed as 4

� 1

0
r2(t) dt. This, together with (4.5) and Lemma

4.2, yields (4.2), hence the theorem. h

5. Upper tails of higher moments

This section is devoted to the study of the upper tail of Lx
1(ã) under the L p-norm, where ã is,

as before, a Brownian bridge.

Theorem 5.1. For any p > 3,

log P

�1
ÿ1

(Lx
1(ã)) p dx . y

� �
� ÿ y1=q

2b1=q(q)
, y!1, (5:1)

where q �def
( pÿ 1)=2, and b(q) is as in (1:8).

Proof. Clearly, q �def
( pÿ 1)=2 > 1. For any process Z indexed by [0, 1], write its Lq-norm

under the Lebesgue measure over [0, 1] as kZkq �def
(
� 1

0
jZ(t)jq dt)1=q. Let ~ã and ã̂ denote two

independent copies of ã. De®ne

r(t) �def
�������������������������������������������
ã2(t)� ~ã2(t)� ã̂2(t),

p
0 < t < 1,

which, according to (4.5), is an excursion process. By the triangular inequality,

kã2kq < kr2kq < kã2kq � k~ã2kq � kã̂2kq: (5:2)

Assume for the moment that we could show

log P kã2kq . y
ÿ � � ÿ 2

b1=q(q)
y, y!1; (5:3)

then by (5.2) and Lemma 4.2, we would also have

log P kr2kq . y
ÿ � � ÿ 2

b1=q(q)
y, y!1:

Using (2.8), this would complete the proof of Theorem 5.1.

It remains to prove (5.3). There exists a ®nite positive constant c(q), depending only on

q, such that

log P kã2kq . y
ÿ � � ÿc(q)y, y!1: (5:4)
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This follows from a well-known large-deviation result (Azencott 1980, p. 62), or from the

general theory for Gaussian measures (Fernique 1997, p. 39; Ledoux and Talagrand 1991,

p. 59). Therefore, the proof of (5.3) is reduced to showing

c(q) � 2

b1=q(q)
: (5:5)

The Gaussian theory does give the exact value of the constant c(q), in the form of an extreme

value of some functional in a Gaussian space. However, in our setting, we do not need to do

any technical computation in order to determine the value of c(q). Indeed, according to the

strong approximation theorem of KomloÂs et al. (1975), possibly in an enlarged probability

space, there exist a coupling for án and a sequence of independent Brownian bridges

fãkgk>1, such that

sup
0< t<1

����án(t)ÿ 1���
n
p

Xn

k�1

ãk(t)

���� � O
(log n)2���

n
p

 !
a:s:

Applying (5.4) and the usual Borel±Cantelli argument, we obtain:

lim sup
n!1

k(án)2kq

log log n
� 1

c(q)
a:s: (5:6)

On the other hand, the Finkelstein (1971) functional LIL con®rms that

lim sup
n!1

k(án)2kq

2 log log n
� sup

f 2S, f (1)�0

k f 2kq �def
d(q), a:s:, (5:7)

where S � f f : f (t) � � t

0
_f (s) ds,

� 1

0
_f 2(s) ds < 1g is Strassen's set. Comparing (5.6) and (5.7)

yields c(q) � 1=(2d(q)). To compute d(q), recall that, according to Strassen (1964),

~d(q) �def
sup
f2S

k f 2kq � b1=q(q),

where b(q) is as in (1.8). Since f f 2 S: f (1) � 0g is a compact subset (in the space of

continuous functions on [0, 1] endowed with the uniform topology), the `sup' expression in

(5.7) is attained by some function, say f �, with f � 2 S and f �(1) � 0. By symmetry, f �(t)

� f �(1ÿ t). Let ~f (t) �def
2 f �(t=2) for t 2 [0, 1]. Then ~f 2 S and realizes sup f 2S k f 2kq, that

is

~d(q) � k ~f 2kq � 4k f 2

�kq,

which yields

d(q) � k f 2

�kq �
~d(q)

4
� b1=q(q)

4
:

Since c(q) � 1=(2d(q)), we obtain (5.5). This completes the proof. h
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6. Joint tail

In order to prove Theorem 1.1, we need the joint tail behaviour of L0
1(ã) (ã being a Brownian

bridge) and L�1 (ã) �def
supx2R Lx

1(ã). Here is the main result of this section.

Theorem 6.1. Fix 0 , x1 , x2 , y1 , y2 , 1. There exists n0 � n0(x1, x2, y1, y2) ,1 such

that, for all n > n0,

P x1 <
L0

1(ã)

ö(n)
< x2, y1 <

L�1 (ã)

ö(n)
< y2

 !
>

1

log n
, (6:1)

where ö is the function de®ned in (1:3).

The main ingredient in the proof of Theorem 6.1 is the following estimate. Recall (S, I)

from (2.9).

Lemma 6.2. As a and b go to in®nity,

log P(S . a, jI j. b) � ÿ2(a� b)2: (6:2)

Proof of Lemma 6.2. The upper bound in the lemma is easy. Indeed, P(S . a,

jI j. b) < P(S � jI j. a� b), whereas from (2.17), it is easily seen that log P(S

� jI j. a� b) � ÿ2(a� b)2 (for a� b!1). This yields the desired upper bound in (6.2).

To verify the lower bound, we use the representation ã(t) � W (t)ÿ tW (1) (for

0 < t < 1), where W is a standard Wiener process. Fix 0 , å, 1. For a . 1 and b . 1,

let us assume a < b without loss of generality, to see that

P(S . a, jI j. b) > P( sup
0< t<1

(W (t)ÿ tW (1)) . a, inf
0< t<1

(W (t)ÿ tW (1)) ,ÿb, jW (1)j, å)

> P( sup
0< t<1

W (t) . (1� å)a, inf
0< t<1

W (t) ,ÿ(1� 2å)b, jW (1)j, å)

> P((1� å)a , W (u) , (1� 2å)a,

ÿ (1� 5å)b , W (v) ,ÿ(1� 2å)b, ÿå, W (1) , å),

for any 0 , u , v , 1. By the Markov property,

P(S . a, jI j. b) > P((1� å)a , W (u) , (1� 2å)a)

3 P(ÿ(1� 3å)(a� b) , W (vÿ u) ,ÿ(1� 2å)(a� b))

3 inf
ÿ(1�5å)b , x ,ÿ(1�2å)b

P(ÿå, W (1ÿ v) , åjW (0) � x):

We now choose u � a=2(a� b) and v � u� 1=2. By Mill's ratio for Gaussian tails, for any

å1 . 0, when a!1 and b!1,
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log P(S . a, jI j. b) >ÿ (1� å1)[(1� å)2a(a� b)� (1� 3å)2(a� b)2 � (1� 6å)2b(a� b)]

>ÿ 2(1� å1)(1� 6å)2(a� b)2,

which yields the lower bound in (6.2) since å and å1 can be as close to 0 as possible. Lemma

6.2 is proved. h

Proof of Theorem 6.1. By Corollary 2.3,

(L�1 (ã)ÿ L0
1(ã), L0

1(ã)) �law
(2S, 2jI j): (6:3)

Now ®x 0 , x1 , x2 , y1 , y2 , 1. Without loss of generality, we can assume y1 ÿ
x1 , y2 ÿ x2 (otherwise, we certainly will have x2 � y1 ÿ y2 . 0 and can replace x1 by

x2 � (y1 ÿ y2)=2). In view of (6.3), the probability term on the left-hand side of (6.1) is

greater than or equal to

P y1 ÿ x1 <
L�1 (ã)ÿ L0

1(ã)

ö(n)
< y2 ÿ x2, x1 <

L0
1(ã)

ö(n)
< x2

 !

� P
y1 ÿ x1

2
<

S

ö(n)
<

y2 ÿ x2

2
,

x1

2
<
jI j
ö(n)

<
x2

2

� �
,

which, according to Lemma 6.2, is greater than exp (ÿ(1� å)y2
1ö

2(n)=2) for any ®xed å. 0

and suf®ciently large n. Since y1 , 1, we can choose å such that (1� å)y2
1 , 1. This

completes the proof. h

7. Proof of Theorem 1.1

The proofs of Theorems 1.1±1.4 are based on the corresponding tail estimates evaluated in

Sections 3±6, together with the usual Borel±Cantelli argument. The latter is quite similar to

the argument in Bass and Khoshnevisan (1995), who provide in full detail the proof of

Theorem B. Hence, we give the proof of Theorem 1.1, and we feel free to omit the rest of the

proofs. The key ingredients in the Borel±Cantelli argument are the following Facts 7.1±7.3

(all of which can be found in Bass and Khoshnevisan 1995), and the usual LIL for the

uniform empirical process án (see, for example, CsoÈrgoÍ and ReÂveÂsz 1981, p. 157).

Fact 7.1. Fix 0 , ì, 1
4
. Possibly in an enlarged probability space, there exists a coupling for

án and a sequence of Brownian bridges (ãn)n>1, such that for all suf®ciently large n,

P sup
x2R

jLx
1(án)ÿ Lx

1(ãn)j > nÿì
� �

< nÿ2: (7:1)

Consequently, as n goes to in®nity,

sup
x2R

jLx
1(án)ÿ Lx

1(ãn)j � O (nÿì) a:s: (7:2)
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Fact 7.2. Let fZ1(t); 0 < t < 1g and fZ2(t); 0 < t < 1g be adapted stochastic processes.

For any b . 0,

sup
x2R

jLx
1(Z1)ÿ Lx

1(Z2)j < sup
0< t<1

jZ1(t)ÿ Z2(t)j
b2

�
X2

j�1

sup
x, y2R,jxÿ yj<b

jLx
1(Z j)ÿ L

y
1 (Z j)j:

Fact 7.3. Let ã be a Brownian bridge. There exists a universal constant C . 0 such that for

all 0 , b , 1 and ë. 0,

P sup
x, y2R,jxÿ yj<b

jLx
1(ã)ÿ L

y
1 (ã)j >

���
b
p

(2
������������������
log (1=b)

p
� ë)

� �
< C exp ÿ ë2

C

� �
: (7:3)

Fact 7.4. The following LIL holds:

lim sup
n!1

sup
0< t<1

ján(t)j
ö(n)

� 1

2
a:s:,

where ö is de®ned in (1:3).

Proof of Theorem 1.1. In view of (1.4) and (1.5) (though our proof outlined below would

also yield Theorems A and B, with only a few modi®cations), the only part to check is that

any (x, y) 2A is a limit point of (L0
1(án)=ö(n), L�1 (án)=ö(n)). Without loss of generality,

we can assume 0 , x , y , 1. Fix ä. 0 so small that

0 , xÿ 3ä, x� 3ä, yÿ 3ä, y� 3ä, 1:

De®ne n(k) �def
k17k . Recall from Section 1 that án is the empirical process based on the

®rst n observations of an independent and identically distributed sampling fUigi>1. Let

Ä(k) �def
n(k)ÿ n(k ÿ 1),

~ák
( t) �def 1����������

Ä(k)
p

Xn(k)

i�n(kÿ1)�1

(1fUi< tg ÿ t), 0 < t < 1:

Observe that ~ák is the empirical process based on the observations (Un(kÿ1)�1, � � � , Un(k)).

For each k, the process ~ák is distributed as áÄ(k). Write L�1 (~ák) �def
supx2R Lx

1(~ák), and

consider the measurable events

Ek �def
xÿ 2ä <

L0
1(~ák)

ö(n(k))
< x� 2ä, yÿ 2ä <

L�1 (~ák)

ö(n(k))
< y� 2ä

( )
:

By (7.1), for all suf®ciently large k,
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P(Ek) > P xÿ ä <
L0

1(ã)

ö(n(k))
< x� ä, yÿ ä <

L�1 (ã)

ö(n(k))
< y� ä

 !
ÿ 1

Ä2(k)

>
1

log n(k)
ÿ 1

Ä2(k)
,

the last inequality following from Theorem 6.1. This yields
P

kP(Ek) � 1. Since the events

(Ek) are independent, we can apply the Borel±Cantelli lemma to see that, almost surely, there

are in®nitely many k satisfying:

xÿ 2ä <
L0

1(~ák)

ö(n(k))
< x� 2ä, yÿ 2ä <

L�1 (~ák)

ö(n(k))
< y� 2ä: (7:4)

Now we want to show that for all suf®ciently large k, Lx
1(~ák) is `very close' to Lx

1(án(k)),

uniformly in x. The idea is to apply Fact 7.2 to the processes Z1 �def
~ák and Z2 �def

án(k). First,

observe that ���������
n(k)

p
án(k) �

�����������������
n(k ÿ 1)

p
án(kÿ1) �

����������
Ä(k)

p
~ák :

Therefore,

sup
0< t<1

j~ák(t)ÿ án(k)(t)j <
���������
n(k)
p ÿ ����������

Ä(k)
p����������

Ä(k)
p sup

0< t<1

ján(k)(t)j �
�����������������
n(k ÿ 1)
p ����������

Ä(k)
p sup

0< t<1

ján(kÿ1)(t)j

< kÿ8 sup
0< t<1

ján(k)(t)j � kÿ8 sup
0< t<1

ján(kÿ1)(t)j:

Applying the LIL for án (see Fact 7.4) gives that (almost surely) for all large k,

sup
0< t<1

j~ák(t)ÿ án(k)(t)j < kÿ7: (7:5)

Now we study the oscillations of the local times of ~ák and án(k). Fix 0 , ì, 1
4
. By (7.1) and

(7.3),

P sup
x, y2R,jxÿ yj<kÿ3

jLx
1(án(k))ÿ L

y
1 (án(k))j > kÿ1

� �
< nÿ2(k)� P sup

x, y2R,jxÿ yj<kÿ3

jLx
1(ã)ÿ L

y
1 (ã)j > kÿ1 ÿ 2nÿì(k)

� �
< nÿ2(k)� kÿ3

< kÿ2: (7:6)

Similarly, we have

P sup
x, y2R,jxÿ yj<kÿ3

jLx
1(áÄ(k))ÿ L

y
1 (áÄ(k))j > kÿ1

� �
< kÿ2: (7:7)
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Recall that ~ák has the same law as áÄ(k). Applying the Borel±Cantelli lemma to (7.7) and

(7.6) yields that almost surely, for all large k,

sup
x, y2R,jxÿ yj<kÿ3

jLx
1(~ák)ÿ L

y
1 (~ák)j < kÿ1,

sup
x, y2R,jxÿ yj<kÿ3

jLx
1(án(k))ÿ L

y
1 (án(k))j < kÿ1:

Combining these two inequalities with (7.5), and applying Fact 7.2 to b � kÿ3, we obtain

that, for all large k,

sup
x2R

jLx
1(~ák)ÿ Lx

1(án(k))j < 3

k
:

In view of (7.4), we have proved that, with probability one, there are in®nitely many n such

that

xÿ 3ä <
L0

1(án)

ö(n)
< x� 3ä, yÿ 3ä <

L�1 (án)

ö(n)
< y� 3ä:

This completes the proof. h

8. Local time of the re¯ecting empirical process

We start with the local time of the re¯ecting Brownian bridge. Let W be a Wiener process,

and let G denote the last zero of W before time 1 (see (2.1)). The process

jW (G � (1ÿ G)t)j
(1ÿ G)1=2

; 0 < t < 1

� �
is referred to by Chung (1976) as the Brownian meander process.

It is observed by Kennedy (1976) that the supremum of the meander is distributed as

2 sup0< t<1jã(t)j, where ã is a Brownian bridge. A pathwise explanation to this (aÁ la

Vervaat) is provided by Biane and Yor (1987); see also Bertoin and Pitman (1994).

The following analogue of Jeulin's theorem (Theorem D) for the local time of the

re¯ecting Brownian bridge is known.

Theorem E (Biane and Yor 1987). Let K(s) �def � s

0
Lx

1(jãj) dx for all s > 0; then

f1
2
LKÿ1

1
( t)(jãj); 0 < t < 1g

is distributed as a Brownian meander process.

Remark 8.1. For a uni®ed approach to Theorems E and D, as well as for some extensions, we

refer to Carmona et al. (1999), Pitman (1999).

From Theorem E, we can easily deduce the following identity in law, which is the

counterpart of Corollary 2.3:
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(L�1 (jãj), L0
1(jãj)) �law

2 sup
0< t<1

m(t), 2m(1)
� �

, (8:1)

where L�1 (jãj) �def
supx>0 Lx

1(jãj), and fm(t); 0 < t < 1g denotes a meander process.

The joint law of sup0< t<1 m(t) and m(1) is determined by the following `Gauss

transform': let N denote a Gaussian N (0, 1) variable, independent of the meander process

m; then according to Pitman and Yor (1998b), for all y . x . 0,

@2

@x@ y
P jN j sup

0< t<1

m(t) , y, jN jm(1) , x
� � � sinh x

(sinh y)2
: (8:2)

Unfortunately, we have not succeeded in obtaining accurate asymptotics of the joint tail of

L�1 (jãj) and L0
1(jãj) from (8.1)±(8.2).

If we are only interested in the variable L�1 (jãj), then (8.1) con®rms that it has the same

distribution as twice the supremum of the meander. The latter having been explicitly

evaluated by Chung (1976) and Kennedy (1976), we arrive at:

Theorem 8.1. For any x . 0,

P(L�1 (jãj) , x) �
��������
32ð
p

x

X1
k�1

exp ÿ 2(2k ÿ 1)2ð2

x2

� �

� 1ÿ 2
X1
k�1

(ÿ1)k�1 exp ÿ k2x2

8

� �
:

In particular,

log P(L�1 (jãj) , y) � ÿ 2ð2

y2
, y! 0�,

log P(L�1 (jãj) . y) � ÿ y2

8
, y!1:

We also have the following LILs for the maximum local time of the re¯ecting empirical

process, which is to be compared with Theorem B. Note that the local time at 0 of the

re¯ecting empirical process is easy, since it is twice that of the original empirical process.

Theorem 8.2. Let án be a uniform empirical process, and let

L�1 (jánj) �def
sup
x>0

Lx
1(jánj):

Then

lim sup
n!1

L�1 (jánj)
ö(n)

� 2 a:s:,

lim inf
n!1 (log log n)1=2 L�1 (jánj) �

���
2
p

ð a:s:,

where ö is de®ned in (1:3).
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