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SOME ASYMPTOTIC RESULTS IN A MODEL OF
POPULATION GROWTH!

I. A Class of Birth and Death Processes

By BURTON SINGER

Columbia University

1. Introduction and summary. Motivated by ecological and genetic phenomena,
Karlin and McGregor [3] introduced the following model to describe the continued
formation and growth of mutant biological populations. It is assumed that a new
mutant population arises at each event time of a stochastic process (referred to as
the input process) {v(¢), > 0} whose state space is the non-negative integers. Each
new mutant population begins its evolution with a fixed number of elements and
evolves according to the laws of a continuous time Markov chain £ with stationary

transition probability function
P () i,j=0,1,2,---;t=0.

We assume that all populations evolve according to the same Markov Chain and
independent of one another. In terms of this structure, the basic question which we
consider in this work can be formulated in the following manner:

(A) Given an input process {v(¢),? > 0} and the individual growing process 2,
determine the asymptotic behavior as t > oo of the mean and variance of S(f) =
{number of different sizes of mutant populations at time ¢} and determine the limit
distribution as ¢ — oo of S(¢) appropriately normalized.

S(r) is a special functional of the vector process

N(t) = {No(8), N, (1), Ny(D)," -} t>0

where N,(f) = {number of mutant populations with exactly k members at time ¢}
and may be interpreted as a measure of the fluctuations in population size. We have
restricted our considerations to this special case because it serves as a model prob-
lem for more general situations and possesses all the subtle difficulties of the general
case.

The random variable S(¢) can also be identified as the number of distinct occupied
states at time ¢ among all Markov Chains which have begun their evolution up to
that time. In the subsequent discussion we will refer to {S(¢), # > 0} as the “occupied
states” process generated by the input process {v(z),7 > 0} and the Markov Chain
2. Without loss of generality we identify the state O as the initial state of all evolving
Markov Chains and — 1 as an absorbing state if absorption is possible.

In this paper we introduce “occupied states” processes generated by a class of
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116 BURTON SINGER

null recurrent, transient, and absorbing barrier Birth and Death processes and a
Poisson input process. The special feature of this class is that with the normalization

Y(t;u) = t 71 X(tu), a>0

({X(t),t > 0} is the growing process 2), the process Y(¢; u) converges weakly in the
Markov sense as ¢ — co to a Bessel diffusion (see C. Stone [8]). The main idea (also
applicable to more general growing processes 2) is that one requires local limit
theorems, and under some circumstances, specification of the rate of convergence
of the transition density of Y(¢;u) to the density of the limiting diffusion in order to
prescribe exact asymptotic formulas for ES(¢) and Var S(¢) and to prove a central
limit theorem for S(¢). The results of this paper are in sharp contrast with the
asymptotic formulas for ES(r) and Var S(r) which appear in the companion paper
[6], where the growing process £ is a general positive recurrent Markov chain and
the input process remains Poisson.

Section 2 contains basic definitions, some intuitive discussion, and precise state-
ments of the main results on asymptotic behavior of ES(¢) and Var S(¢). In Section
3, we present detailed proofs of the theorems of Section 2, and we conclude with a
central limit theorem for S(¢) in Section 4. The appendix contains some technical
lemmas which are essential for asymptotic formulas that incorporate speed of
convergence theorems.

2. Main results with discussion. A birth and death process is a stationary Markov
process whose state space is the non-negative integers and whose transition proba-
bility matrix

Pi(t) = Pr{X (t+5) = j| X(s) = i}
satisfies the conditions
Pi(t) = 2;t+0(1) if j=i+1,
= p;t+o(t) if j=i—1,
=1—(4+p)t+o(t) if j=1i;

as t— 0 where 4, >0 for i =20, y; >0 for i = 1 and yp, = 0. We restrict our con-
sideration to birth and death processes satisfying

(D n, ~Dn'"1, A, )"t ~ Cnf Y n— o0

where Ty = (Ao Ay Ane Of(pts M2 " Ha)s

C,D,y,B+y are positive constants and we assume f§ <0 when po > 0. When
1o = 0 and (1) is satisfied, the birth and death process is null recurrent or transient
according as = 0 or B < 0 respectively. For py > 0 {X(#),1 > 0} is an absorbing
barrier birth and death process where absorption occurs with positive probability
strictly less than 1. The sample paths of these processes which do not get absorbed
behave like a transient process whose parameters satisfy (I) with # < 0.

This distinction between null recurrent and transient Markov Chains does not,
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however, seem to be the deciding factor in determining the order of magnitude of
the mean and variance of S(¢). There is a natural trichotomy depending on whether
B+ is strictly greater than 1, equal to 1, or strictly less than 1 which leads to three
distinct types of asymptotic formulas. Roughly speaking, the quantity (8-+7) ! isa
measure of the rate at which individual particles move away from their initial state.
The more rapidly an individual particle can reach a state » starting from 0, the
greater the expected number of distinct occupied states among all particles in
existence. In particular, if T , = inf {¢: X(t) = n+1; X(0) = 0}, then subject to (I)

ET,,~ Cnf*" as n-oo

where C is a constant independent of n. According to the previously mentioned
trichotomy ES(z) and Var S(¢) have the most rapid growth for f+7 < 1, and the
growth decreases for f+7y = 1and f+y > 1 respectively.

Another interpretation of the role of f+7y and the rate at which individual
particles spread out from their initial state can be seen if one considers that subject
to hypotheses (I)

EM(t) ~ Kt®*V™" a5 t— o0,
where
M(t) = maxo <, < X(u),
and
lim,, ., Pr(M()/t? "7 < x) = G(x)

where G(x) is a non-degenerate distribution function which we will describe in the
proof of Theorem 2.3.
With these preliminaries at hand, our principal results take the following form.

THEOREM 2.1. If 0 < B4y < 1, then

¢y ES(t) ~t
and
2) VarS(t)~t as t-> o0.

It is assumed here and in Theorems 2.2-2.4, without loss of generality, that the
Poisson input process has parameter 4 = 1.

Note. (1) implies that we can expect as many distinct occupied states at time ¢ as
there are populations in existence.

THEOREM 2.2. Iff+7 = 1, then

3) ‘ ES(t) ~ C,t
C)) Var S(f) ~ C, t
where

Cy = [§ (1 —exp[—[5(1~q0)g(0, w;u) du] dw,
C; = [§ (exp [~ [§ (1~ q0)g(0, w; u) du] —exr [~ 2[5 (1~ 4o)g(0, w;u) du]) dw,
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and g(0,w;u) =d, (W~ Du "V exp[—d,u~'wP*?] is the transition density
corresponding to a Bessel diffusion with initial state O, present state w, and time para-
meter u. The constants d, and d, are given explicitly in the statement of Theorem
2.5, and g, = probability of eventual absorption starting from state O for a Birth
and Death process satisfying (I).

THEOREM 2.3. If f+y > 1, then

(5) TIEENTIHAES()) 50 as  t-> o0, ve>0
(6) t7WDTIES() > 00 as t— o,
0 LN I Var S(1) >0 as t-> 0 ve > 0.

Exact asymptotic formulas analogous to (1)-(4) for processes satisfying the con-
dition f+7 > 1 are not known in general. The principal difficulty in establishing
such results is the requirement of a delicate estimate of the rate of convergence of
the transition density of the normalized Birth and Death process ¢~ *X(c%) as
¢ — oo to the transition density of the limiting diffusion process X, (¢).

The appropriate formulas should be of the form

(8) ES(t) ~ t#071L (1), t— o0
9) Var S(1) ~ P07 Ly(1), t—> 0

where L,(¢) and L,(¢t) are slowly varying functions in the sense of Karamata,
L,(t)—> o0, t— 00, and L,(f)—> 0, t— c0. An example of this kind of result is
contained in Theorem 2.4 which is a special case of f+y = 2. We defer a discussion
of the class of Birth and Death processes for which (8) and (9) hold, and the
accompanying rate of convergence theorems, to a separate work. For a particular
case, consider the process

X@n =31z,
where
Z, = +1 with probability 1,
= —1 with probability 1, k=0,1,2,--

are independent of each other and of m(t), a Poisson process with parameter 4 = 1.
Then introduce the absolute value process Y(7) = | X(27)|.

THEOREM 2.4. If {S(t),t > 0} is the “occupied states” process generated by a

Poisson input process with parameter A =1 and the absolute value process Y(t)

described above, then

(10) ES(t) ~ (2tlogt)* t—>
. an Var S(1) ~ (c; 2*log2)(t*/log? 1) t—

where ey =[P P2y 2=y %) dy.
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Note. In the context of conditions (I), the absolute value process Y(¢) is a Birth
and Death process with 7, =2,(4,m,)"' =4 for n=1,2---. Thus D=2,C =14,
B=y=1.

The slowly varying functions which appear in (8) and (9) have an interesting
interpretation in terms of a related infinite urn scheme. In particular, suppose that
at each event time of a Poisson process one ball is thrown at an infinite array of
cells and has probability p, of hitting the kth cell, k = 0, 1,2, - - -. If S(¢) denotes the
number of occupied cells at time ¢, then

(12) ES(f) = Y5 o(1—e™7)
and
(13) Var8(1) = Yoo (e — ™ 21y,

The relevance of these formulas for the “occupied states’ process appears if we
make the identification

(14) = Jo 9(0, k; u)du.

Then, to establish (8) one uses the speed of convergence, as well as a local limit
theorem for large deviations, to show that

(15) ES(f) ~ t#07 Y 0 (1 —exp(— 1 =@ L 500, k; u) du)).

The infinite sum in (15) is just the expected number of occupied cells at time
11 =@+ 1 in the urn scheme described above. Now we introduce the function

(16) a(f) =max {k:p, =1t '},

and notice that for the special identification (14),

(17) o(t) = L(t) slowly varyingas t— oo,
By Theorem 1 of Karlin [5], condition (17) implies that

ES(t) ~ L(1), t— 00.
Hence,
ES(t) ~ t(B+v)“L(tl—(ﬂ+v)“ )

=1EN7L (1), t— 0.

To establish (9), the speed of convergence and large deviation form of a local
limit theorem are used to show

(18) ~ VarS(@t) ~ (27 (r)
where
J(@) = [&lexp (=t 71 g(0, y; u) du)
—exp (=21 "I E5(0, y;u)du)] dy.

The integral in (18) cannot, however, be replaced by Var S(t'! ~#+"7"1) where the
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infinite urn scheme has probabilities satisfying (14). To see the distinction between
these two expressions it is convenient to rewrite the above integral as

(19) Joe Py 2=y 7)) 8 (2*(2x) — a*(x)) dx) dy,
(replacing 11 =¥ +"7'1 by r) and to rewrite Var §(¢) as

(20) fee PRy 2=y~ ¥ (@(2x) —a(x)) dx) dy,
where

a*(x)=p '(x7),
p(») = fo 9(0,y;u) du,
a(x) = [a*(x)],

([a] = integer part of a).
The asymptotic behavior of J(¢) reduces to asymptotic behavior of

2D I*(x) = x"'[F(@*@w)—a*(W))dw as x—
while asymptotic behavior of Var 5(¢) is determined by that of
I(x) = x~ ! [§ (a(2w) — ou(w)) dw.

These two expressions, however, are not asymptotic to each other for f+7 > 1. Infact
for the absolute value process of Theorem 2.4, we have I*(x) ~ log2log™*x,x — o0,

and I(x) ~ %™, X - 00,
where Q(x) = —8(x)log® x4+ 16%(x),
3(x) = (2log¥x + 0 (loglog xlog™ ¥ x)) (mod 1).

Thus the final formula (9) is determined in general by showing that I*(x) ~ L(x),
x — oo where L(x) is slowly varying and converges to 0 as x — co.

We conclude this section with statements of the local limit theorems which are
required in the proofs of Theorems 2.1-2.4. For a discussion and detailed proofs of
these and other local limit theorems see B. Singer [7].

THEOREM 2.5. (i) If the infinitesimal parameters of a Birth and Death process
satisfy (I) with o = B/(B+7y) > 0 or a £ 0 and t' Py(t) monotone for t sufficiently large,
—j<af —(-1,j=1,2,"then

(22) : 1Py oy (1 71) > g(x, w3 w), t—
where g(x, w; u) is the transition density of a Bessel diffusion with the explicit formula
g(x,w;u) = DKO w1 (5 e I(—sxP I —swPtY)s ™% ds,
I(s) = T(1 —o)[CDs(B+7)* T2 L_ACDsP(B+1) ™),
(23) Ko =B+ [C* 'DTX(1-0)]"" for «>0,
’ ' = ([T -al(+a)] - CB+y)"
ooyt dldy (I (y)) dy
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Jor —j<as —(j—1),j=1,2,---. The convergence is uniform in x,w,u where
O<x,wusM< .

Nortk. An integral form of (i) for « > 0 was proved by W. Studden, [9].
(ii) Subject to the hypotheses of (i)

tPi,[tw](tﬂ+yu) —-g(0,w;u) for u;=0, f— 0
—-(1—q)g(0,w;u) for p; >0 and a<O.
g, = ﬂoz;(;i('q'nnn)_l
' 1+”02:;0=0(Annn)_1
= probability of eventual absorption starting from state i.

gO,wiu)=d, w lu""ENexp(—d,u"wft?)

where
d, =DK,I'(1 —a),
d, = CD(B+7)"2.
For the special example of 47y = 2 corresponding to the absolute value process
described previously, we require the rate of convergence estimate given by

THEOREM 2.6. If Y(1) =|Y 0G5 Z,| where
Z, = +1 with probability 1%,
—~1 with probability %, k=0,1,2,---

are independent of each other and of m(t), a Poisson process with parameter 1 = 1,
then

|18 P {(tu)—g(0, 1~ ¥j;u)| < 17 4 0Mg(0,17%j;u)
for t sufficiently large, where je[Cst*Ly(t), Cot***l,u 2 Ly(t),0 <a < %, C; and
C, are arbitrary positive constants, M a positive constant independent of t and u, and
L(t) are slowly varying functions such that L(t) - 0,¢ — oo fori = 3,4, and

90,17 ¥j;u) = (ru) ~* exp (—j*4tu).

REMARK. In contrast to Theorem 2.5, this is also an assertion about large
deviations since for values of j of the form [xt %], x is no longer restricted to a
bounded region independent of . The full power of Theorem 2.6 is required to
justify the asymptotic formulas (10) and (11).

3. Technical details. To establish Theorems 2.1-2.4 we first require exact
analytical expressions for ES(f) and Var S(¢). The assumption of a Poisson input
process with parameter 1 = 1 immediately implies that {N,(¢)};%, are independent
Poisson random variables with parameters _f oPos(t)dr, k=0,1,2,-, respectively
(e.g. Karlin 4] or Karlin and McGregor [3]). Then setting

=0 if N()=0,
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we may write
(29 S(t) = Yo Xi(®), .. _ES() = 320 (1—exp(—f5 Po i(7) d7)),
25 Var S(f) = 3 ;%o (exp (= fo Po (1) d7) —exp (—2 f Po 1(z) dv)).

Since the Local Limit Theorem 2.5 requires the variable # to be bounded away
from zero, we show that it is enough to consider the asymptotic behavior of

(26) E;S(t) = Y2 o(1—exp(—t 5 Py y(tu) du))
and
27 VsS(t) = Y=o (exp(—tf; Py (tu) du)—CXP(—?t §5 Pox(tu)du))

in Theorems 2.1 and 2.2, § > 0 is arbitrarily small and independent of .
To this end choose > 0 arbitrary and fix it. Then

0<t Y (ES(H)—E;S(})
=t Zl?;o exp(—tJ5 Pou(tu) du)(1—exp(— t_[g Py i(tu) du))
= Zl?:ojg Py (tu)du = 6.
A similar argument shows that ¢t~ | Var S(t) — V; S(n| = 36.

ProoF oF THEOREM 2.1. Choose ¢ > 0 sufficiently small that

(28) [69(0,w;u)dw < & uniformity in ue[0,1],

and c¢ sufficiently large that

(29) [29(0,w;u)dw < 6, Yueld,1].
Bring in the inequalities

30) 12t ES() =t ()

where

31 1) =YLl o Lo (1~ exp(—1 [} Po(t) d)).

We will show that ¢ ~11(¢) = 1 —é* for ¢ sufficiently large and 8 * arbitrary.

To this end we first apply the elementary inequality 1 —e™* = x—1x? for x > 0
in (31) to obtain the lower bound

(32) Iz tf} Pri{fet®* "™ < X(tw) < [ct¥*V7"]| X(0) = 0} du

-1 Z,EZE;Z);)]- 1 jé ﬁ Py (tu )Py ((tuy)du, du,.
Using (28), (29), and the integral form of Theorem 2.5, we have
(33) Pr{X(tu) > ct®+P7* | X(0) = 0} < 5, +5,

(34) Pr{X(tu) < et®*""" | X(0) =0} £ 6,+6
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where 4, > 0 is arbitrary and the inequalities hold for ¢ large, say ¢ > T(J,).
Substituting (33) and (34) in the first term of (32) we have
(35) tf3Priet® 7 < X(tu) < CH#HV 7 X(0) = 0} du = (1 —2(5; +5))(1—9).

For an upper bound on the second term in (32) we use the local limit Theorem 2.5
and a standard estimate to write

3L L 54 13 Pos(tuy)Pou(tus) duy duy
(36) < 214 5)2 O T (L[ g(0, X/t )
x (0, x/tP* V™ u,)du, du, dx.
Introduce the change of variable x = 1#*» ™'y, Then the integrals in (36) become
BD PTEITW+8)2[5 (3 3 90, wiu)g(0,w;uy) duy duydw = A2~
Combining (35)-(37) we have
(D) = (1-2(0, + )1 =) — At ~F+N7,

Since f+y < 1, the second term vanishes as ¢t — oo, and the proof of (1) is complete.
To verify (2) we simply write V;S(¢) as

VsS(t) = Y 2 o(1—exp(—2t [5 Py (tu) du)) — Y 2% o(1 —exp (—1t [3 Py 1(tu) du))
and apply the proof of (1) to each term to obtain Var S(¢) ~ 2r—¢ = tas ¢ — co.
Proor oF THEOREM 2.2. We decompose E;S(¢) into three terms as
EsS(D) = D kcpennt Db Sren T 2isrers(1 —xp (— 1 5 P i(tu) du)),
=1, +1,O)+15(0)

where ¢ > 01s arbitrarily small and ¢ is arbitrarily large but independent of 7.
t™'1,(t) < e trivially, since each term in this sum is bounded above by 1.

171 ,(t) < [3 Pr{X(tu) > ct| X(0) = O} du < [; (| 9(0, w;u)dw)+5,) du
<Jd,+9d,
where §, > 0is chosen arbitrarily and then c is large enough that
& 9(0,w;u)dw < 85, vie[s,1]

8, > 0 is chosen arbitrarily, and the integtal form of Theorem 2.5 implies that for
t> T())

[Pr{X(ru) > ct| X(0) = 0} — [ g(0, w; u) dw| < §,.
. Thus the growth of ES(z) is subsumed in the second term, I,(¢). Rewrite I,(t) as
(38) 1y(t) = Y i (1 —exp (=[5 (0, t™ ke u) du)) +ey(2)
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where

e, (t) = Zic——r-][et] exp(—f} 9(0,t™ ' k; u) du)

(1—exp (=[5 (tPo (tu)—g(0, 1™ 'k; w)) du)).
Routine estimates applied to the first term in (38) allow us to write this sum as
(39) Ja(t—exp(—J; g(0,t™ 'x; u) du)) dx + O(1).
Introduce the change of variable x = wt in the integral in (39), and we obtain
40) 17 YL (1 —exp(—f3 (0. 1™ k3 u) du))
— [¢(1—exp(—{} 9(0, w; u) du)) dw as t— 0.

For the error term e, () in (38) we use the Local Limit Theorem 2.5 to assert that
for arbitrary ¢ 'e; = ¢* > 03 T(e;,¢) suchthat > T(e,,c)implies
(41D |tPo i(tu) —g(0,t™ ks u)| < €*.
Using (41) in e,(¢) yields the inequalities
(42) el() £ YK qexp(—f3 9(0,¢™ 'k;u) du)(1 —exp(~—€*)) < e¥et.
and
@) ()2 ~Tiexp(—f3 9(0, ™ 'k; u) du) exp (e*)(1 —exp (—e*))
> —g, *ctexp(e¥).

Then (42) and (43) imply thatt ~le,(f) - O as t - .
Since ¢ > 01is arbitrarily small and ¢ is arbitrarily large, we have

E;S(t) ~ 1§ (1—exp(—[; g(0, w; u) du)) dw, t—

and the proof of (3) is complete.
To show that Var S(¢) ~ C,t,t — oo, we rewrite V;S(¢) as in the proof of Theorem

2.1 and apply the asymptotic formula (3) to each term. []
For ease of exposition we divide the proof of Theorem 2.3 into two lemmas.

LemMmA 3.1, If f+y> 1, then W € > 0.
%) ES(t)t~1 74,0 g5 t— o0;
N Var S(t)t [0+l 0 g5 t— 0.

PrOOF. Let M{t) = max, <<, X{(s) where Xy(s),i=1,2, -+ are independent
copies of Birth and Death processes satisfying the hypotheses (I) with f+y > 1.
Then notice that

(44) S() £ max, <;<,¢) {M(1)}.
v(?) is the Poisson input process with parameter 4 = 1.
Thus

(45 ES(p)t~tF+n71+e < E, E(max, giév(z)(Mi(t)f[(ﬂH)_l *9) | ().
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Now define G,(#) = Pr {M()t~#*""" < u}. Then we have
E(max, << o (M)t LAV el | y(1) = k)
<6+ (1—-GX(tu)du
(46) S O+k[P (1—G(t'w)) du
SO+k[5 du [5,dG(y)
SO+k(r—1)7107C Ve Y AGy)

where & > 0 is arbitrary. Choose r > ¢~ ! and fix it. Substituting (46) in the in-
equality (45) we obtain

47 ES()t™ 1B+ el < 5 4 [(r—1)8C ™ Ve =)7L [ y" dG(y).

Now G,(x) is a distribution function having moments of arbitrary order, and it
converges to a non-degenerate distribution function G (x) at continuity points of
G, (*). The limit distribution is known explicitly in the sense that

(48) G (x) = 1—F(x~®*")
where the Laplace transform of F(-) is given by

(49) & e dF(x) = (I(sy~
and

I(s) = T((B+y) " DICDsB+) 2T E I _gypsyy UCDS(B+7)7Y).

See, e.g., Karlin and McGregor [2]. The convergence of G, to a limit distribution
and the fact that for every r > 0, 1€ (0, o), x" is uniformly integrable with respect to
{G(x)}, implies the inequality

(50) ES()t™1® D7 el < SR~ 1(r— 1)6¢ ™ D]

where K is a constant independent of t. Letting  — co in (50) establishes (5).
To verify (7) rewrite Var S(z) as

Var S(2) = Z?:O ( -exp(—2_ff) Po,k(T)df))—Zkoio(l _eXp(—j(') Py (1) d1))
and apply the above proof of (5) to both sums. (]

LemMMA 3.2, If B+y > 1, then
(6) ESHt """ S50 as t- .

Proor. Invoking the Local Limit Theorem 2.5 we have for arbitrary é, such that
0<d, <1,

(51) t(ﬂh)-lpo,k (tu) Z g(0, kt_(ﬂ+”_l;u)(1 —41),

where ke[c, t#*"7 ¢, t#TN7'], t > some T(8,),and 0 < ¢3 < ¢4 < 0.
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Using the inequality (51) we obtain the lower bound
ES(t)t(IH')’)" > t(ﬂ+‘/)_12[04t(ﬁ+v) 1 (1 —exp(— t_[a Po k(tu) du))

k=[cye(B+» 1]

2 @yl T (Lmexp (=11 DT U =5,)f} 90, kt ~PFD 7wy du)).

k=(catB+7)
Since e >0
liminf,, , (1—exp(—t'"¢*"7'(q () kt™®*07 u) du))
21—¢,  kelcyt¥tn7 c 1NN

we have liminf,., , ES(t)t®*"™" > (¢, —3)(1 —&) where c, is an arbitrarily large
positive constant and ¢; is an arbitrarily small positive constant. []

PrROOF OF THEOREM 2.4 (Equation 10). Let
E S(t)=3"0(1—exp(— tﬁ(z) Py i (tu) du))
where L(t) - 0, t —» oo and is slowly varying.

For our purposes we will choose L(t) = (3elog™'1)?*. Introduce ES(t) =
Y o(1—exp (—tp,)) where p, = {§ g(0, k; u) du and write

ES(t) ES(t) E.S(f) ES(t)
Qtlogt)* _ E,S@t) 1 TES(t) (2logf)t
To verify that each of these ratios converges to 1 as t — o we break the remainder
of the proof into three principle steps.

(i) In accordance with the discussion in Section 2, ES(z) is the expected number of
occupied cells at time ¢ in an urn scheme where one ball is thrown at each event
time of a Poisson process at an infinite array of cells with probability

P = [09(0, k; u)du, k=0,1,2,
of hitting the kth cell. By Theorem 1 in Karlin [5], asymptotic behavior of
ES(¢) is determined by asymptotic behavior of a(x) = [0*(x)] = max {k:pezx™1}
where a*(x) = p~'(x™') and p(y) = [$g(0, y;u)du. From the proof of Lemma
A.3 in the appendix, a(x) ~ 2(log x)*, x - co. Hence, ES(1) ~ 2(log 1)}, t - oo or
ES(tH)/(2logt)* - 1, t — o0.

(i)

E S() = Zk<[e(t/logt)‘/z] +Zkal[/zc(+t7log %] +Zk>[ct‘/z +aj(1—exp(— tﬁ(,) Py i (tu) du))

=L+ 1,()+1,(0), O<a<i,
1,(?) < e(t/log 1)*
since each term is bounded above by 1.
Using the integral form of Theorem 2.6 we have

I(t) £ t 1 Pr{X(tu) > ct***| X(0) = 0} du
(52 S Kt{Lodu [y +«g(0,w;u)dw
! < K*t3/2_°‘exp(—%czt2“).
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Thus
I, (H/(tlogt)* -0, t— o
Ly(H/(tlog )t — 0, t— o
and the asymptotic behavior of E;S(¢) is incorporated in 7,(z).

Now
() = Z;cc:[/i::t;‘ljog o (1 —exp(— t*§109(0,1~ s u) du))+ e (1)
where
(53) e(®= l[cc:[/zs;r;‘l]og our eXp(— 1 {1 90,17 *k; u) du)
x [1—exp (=1 [ Ly (2P (tu) — g(0, t~¥k; 1)) du)].
Routine estimates allow us to rewrite the first term in ,(¢) as
Vetfioanyn (1—exp (=1 [y 9(0, 1™ x5 u) du)) dx +O(1).
Introducing the change of variable x = wr* and approximating the integral by a
sum we have
(54) L,(t) = ES(tH) + O(t) +e,(2).
By Lemma A.2 in the appendix [e, ()| < K, 1**,0 < a < £.
Hence I,())/(t*ES(t)) -» 1, t = oo.
(iii) Finally
ES()/(E, S(1)) = 1 +[ES()— EL S(D]/E, S()

and 0 Z[ES()—E,S(OYELS®) < [ES()—E_S(H)/(t/log)* > 0,1 >0, by
Lemma A.1. Thus ES(#) ~ (2t log £)* and the proof of (10) is complete. []

Proor oF THEOREM 2.4 (Equation 11). Let
(1) = & (exp(—1[59(0, y; u) du)—exp (=2t f5.9(0, y; u) du)) dy
and
Vi) = Yo (exp(— t [ Loy Pos(tu) du) —exp (—2¢ §Lay Pos(tu) du)).
Now decompose Var S(¢) into three terms as in the proof of Formula (10), denoting
them respectively by V,(2), V,(2), and V4(¢). Thus we have
VarS(t) _ V(1) + V() Vi ZGIRAG
rf(ny  Bf@ v Ve [ for

where

f(©) =c;(2/logt)tlog2,  cy=[Fe™ 2y =y dy.
~ The first term is less than ¢ since each component is bounded above by 1. The last
" term vanishes as r — oo using the estimates 0 < I;(t) £ K¥*+¥/2 *exp(—4c?r**) and
0 V() £ Yoscru+=(1 —exp(—2t fg Po(tu) du)).
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Finally PH)/f(t)—> 1, t—co, by Lemma A.3. V,(t)/[t*P(?)]-1,t> 0, by
rewriting V,(t) as
Vi) = fo’:o (1- exp(—Zt.f,{(,) Py (tu) du)—Zfi‘;o (I—exp(~- tﬁ(r) P, (tu) du))

and applyingtheestimates of the previous proof to write V(1) = t* P(t¥)+ O(e (1)) +
o(1), where e,(t) is given by (53).

Since Var S(¢)/V(t) = 1, t » o0, by Lemma A.1, the proof of Theorem 2.4 is
complete.

Notke. The speed of convergence and large deviation parts of Theorem 2.6 are
essential for the estimate on e,(¢) given by Lemma A.2. A large deviation theorem
is also used in Lemma A.1, and a generalization of this argument to general Birth
and Death processes satisfying (I) with f+y > 1 is required for formulas like (8)
and (9).

4. A central limit theorem. If we consider “‘occupied states™ processes generated
by arbitrary continuous time Markov Chains with stationary transition probabili-
ties and a Poisson input process, recall that

{N(t)} = {number of chains in state k at time t}{2,
are independent Poisson random variables with parameters
{6 Po (1) dr, k=0,1,2,---,

respectively.
Thus

X (=1 if N (>0,
=0 if N () =0, k=0,1,2,---,
are independent uniformly bounded random variables and
(55) St =Y 0 Xi() < 00 with probability 1

for all finite ¢#. The family {X,(¢)}, t>0, k =0,1,2,--- forms an infinite array of
independent random variables satisfying (55) and an imitation of the proof of the
Central Limit Theorem for finite arrays of independent random variables using the
Lindeberg conditions yields

(56) Pr{[S(H)—ES(t)]/(Var S(1)} < x} - ®(x) as t-
provided Var S(t) - o0 as t — 0.

The last condition; namely, Var S(¢) - oo, t— oo is satisfied for all processes
considered in this work. Thus we have in particular,

THEOREM 4.1. If {S(2), t > 0} is an “‘occupied states™ process generated by Birth
and Death processes satisfying (Y) and a Poisson input process, then

Pr{[S()—ES(H)]/(Var S())* £ x} > B(x) as - oo.
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For central limit theorems involving other input and growing processes we refer
the reader to [6]. In general S(z) is a sum of dependent random variables which,
nevertheless, is asymptotically normal for wide classes of input and growing pro-
cesses. For examples where a central limit theorem is not valid in the context of
positive recurrent Markov Chains, consider the infinite urn scheme described
previously with {p,}_, such that limsupy_. ,, px+ 1/px < 1. Then Var 5(¢)is bounded,
and there is no convergence of the appropriately normalized occupied cells process
to a normal distribution. For an extensive discussion of this question in the context
of the infinite urn scheme, see [5].
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APPENDIX

Throughout this section we refer to the absolute value process of Theorem 2.4.
Lemmas A.1, A.2, and A.3, however, indicate the kind of arguments which are
essential in general for exact asymptotic formulas when g+7y > 1.

Lemma Al
[ES(t)— E, S(t)]/(t/logH)* - 0, t— o0
where
E S(t) = Y- o (1 —exp(—1 f1) Po (tu) du))
L(t) = (elog™ ' 1)**.
ProoF. Let L,(z) = (logt)"*and Ly(¢) = (logt)~ %
Then
0< ES()—E_S()
(57) < e L)+ Yo asran (L—exp (=t J5O P (1) du))
< etfLy (1) +t [& O Pr {X(tu) > et*L (1) | X(0) = 0} du.
Recall that X(tu) = |Y(2(tu))| where, fork =0,1,2,---
Y(t) = Y0y 2,
Z,= +1 with probability 4,
= —1 with probability 1,
are independent of each other and of the Poisson process mi(¢).

Now decompose the above integral into two terms as

L Lay-% | [L
fo® = 4 [ L w.
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For the first integral we apply Chebyshev’s inequality to the integrand to obtain
(58) J 1 Pr{|Y(2tu)| > et!Ly(0)} du < L% (0)/[e**L ()] - O, t > .
For Ly(#)t ™% < u < L(t) we have

Pr{|Y(2tu)| > et*L (1)} < Pr{Y(2tw)/(2tu)t > eL,(1)/(2*u* %)}

where 4 is chosen sufficiently close to 4 that we can apply the asymptotic formula
for large deviations Pr{¥(n)-n~* >x}/(1 —®(x)) - 1, x = o0, where xn~ /¢ -0,
n - 00, and

[—®(x) ~ (2n) " *x " texp(—x?/2), X = 0.
With 4 = 11/24 we have
Pr {Y(2tu)/(2tu)* > eLy(1)/(2%u'/*%)}
S CH(m)*eLy(1) ™ 'u'?* exp (— &’ L, (1)/4u'/'?)
and
(59)  tfEQ - Pr{Y(2tu) > er*Ly(1)} du
< CHL@)' P He(m)Ly(1) ™t -0, 1~ oo.
Substituting (58) and (59) in (57) we have
ES(t)—EL S(t) < et*Ly(1) + L3> (1)(e* Lo (1) 1+ 2C(L() P H(La(1) ™,
and the proofiis complete. []
LEmMMA A2,
lex(®] < K, 1%, O<a<i
where
ei(t) = Y g1 €XP (= 1 {1 9(0, 72k u) du)
x [(1—exp(—1t* [} (1P (1) — g(0, 1~ ¥k u)) du].
Proor. Using the Local Limit Theorem 2.6 we have
e, () Y (L—exp(— Mt~ G4 ] 2 9(0,1™k; u) du))
(60) SMe G741 S 9(0,t ks u)du
S M* G2 [ du ([ g o 900,17 Fx; ) dx +O(1)

where both oftheabove sumsare overintegersintherange [e(f/log?)*] £ k < [er***].
Let x = wt? in the integral in (60). Then

e (t) £ Mt~ G40 dqu(t* [§ g(0,w; u)dw+0(1)) < K, 1%, 0<a<i

Similar estimates yield a lower bound e,(f) 2 — K, t**.
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Lemma A.3.

P =[5 (exp(—1p(y)) —exp (—2tp(y))) dy
~log2log 13 e P (2y~2 -y~ 3)dy, t— oo
where p(y) = [59(0, y;u) du.
PROOF. Define
oa*() =sup{y:p(y) 2 x~'},
=0 if {yip(y)zx7'} =4,
=p '(x7").
Then we may rewrite P(¢) as
V(1) = [ (exp(—1/x) —exp(—2t/x)) do*(x);
=[5 e P2y =y T [ @t @w) —a*(w)) dw) dy,
after two integrations by parts.
To obtain an explicit formula for a*(x) we integrate p(y) by parts to obtain
(61)  p(y) =4y *n texp(—y*/4)
x (1—4y™2-3+4y™ 2 3-3[P 2z Fexp(—y*(z—1)/4) dz),

= [es y™2exp(=y*IH](1 +h(y)),
where h(y) = O(y~2); ¢; = 4n~ %,
Setting p(y) = x~! in (61) we apply a standard asymptotic argument (see, e.g.,
de Bruijn [1]) to solve this equation for

y = a*(x) = 2(logx)* —log"* xloglog ¢, x +log™* xlog ¢, + O(log™* x(log log x)?)
where ¢, = 7% Then a*(2x) —a*(x) = log2log™* x + O(log™ ! x)

and

(62) x7H§ (@*2w)—a*(w)) dw ~ log 2log ™ x, X - 0.

Substituting (62) in the above formula for P(¢) and applying routine estimates, we
obtain
P(1) ~ log2log *t7H[e e~ 172y ~2 -y~ %) dy. 0
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