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Abstrac t .  Some simple models are introduced which may be used for mod- 
elling or generating sequences of dependent discrete random variables with 
generalized Poisson marginal distribution. Our approach for building these 
models is similar to that of the Poisson ARMA processes considered by Al-Osh 
and Alzaid (1987, J. Time Ser. Anal., 8, 261-275; 1988, Statist. Hefte, 29, 
281-300) and McKenzie (1988, Adv. in Appl. Probab., 20, 822-835). The mod- 
els have the same autocorrelation structure as their counterparts of standard 
ARMA models. Various properties, such as joint distribution, time reversibility 
and regression behavior, for each model are investigated. 

Key words and phrases: Generalized Poisson process, regression, time re- 
versibility, quasi-binomial distribution, quasi-multinomial distribution, vector 
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I. Introduction 

In many problems which are Poissonian in nature the probability of occur- 
rence of an event does not remain constant. Instead it is affected by the previous 
occurrences, thus resulting in unequal mean and variance in the data. For such 
type of data Consul and Jain (1973) introduced the generalized Poisson (GP) or 
Lagrangian distribution with probability function given by: 

x = 0 , 1 , 2 , . . .  

(1.1) P ( X - - - - x ) =  0 for x > m  when 0 < 0 ,  

where A > 0, m a x ( - 1 , - A / m )  < 0 < 1, m > 4. The GP distribution was studied 
by many researchers. Janardan et al. (1979) have given many interesting biological 
applications of this model. The relevancy of the GP distribution in queueing theory 
is discussed by Consul and Shenton (1973) and Kumar (1981). The mean and the 
variance of the GP distribution are given by: 

(L2a) e ( x )  : AI(1 - O) 

and 
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(1.2b) Var(X) = A/(1 - 0) 3. 

From these expressions it is clear tha t  unless 0 = O, the variance can be greater or 
less than  the mean according to whether 0 is positive or negative. Consequently the 
GP distr ibution can be used as an alternative distribution for modelling counting 
processes whenever the index of dispersion (variance + mean) is not near one. 

The purpose of this paper is to introduce some simple models for discrete 
t ime processes with GP marginal distribution. Our approach is parallel to tha t  of 
A1-Osh and Alzaid (1987, 1988), Alzaid and A1-Osh (1988, 1990) and McKenzie 
(1985, 1988) which dealt with discrete t ime s tat ionary processes with Poisson 
marginal distribution. In the development of the Poisson time series models, the 
binomial thinning is used instead of the scalar multiplication in the s tandard  au- 
toregressive moving average (ARMA) processes. Specifically, it has been assumed 
tha t  an element of the Poisson process at t ime t - 1, X t - 1 ,  independently of the 
other elements and the t ime of the process has a constant  probability, say ct, of 
being retained to t ime t and probability, 1 - a = (~, of being deleted during the 
t ime interval (t - 1, t]. This assumption implies tha t ,  given X t - 1  = x ,  the number 
of retained elements to t ime t is a random variable having the binomial distribu- 
t ion with parameters (a, x). However, for many real da ta  on counting processes, 
it seems logical to consider tha t  the probability of retaining an element is not 
constant  but  might depend on the t ime o r / and  the number of elements already 
retained. 

In our development of some ARMA models with GP marginal distribution, 
we will assume tha t  the probability of retaining an element is not constant  but  
is a linear function of the number of elements being retained. Specifically, given 
X t - 1  = n we will assume tha t  the number of retained elements to t ime t has a 
quasi-binomial (QB) distribution with parameters (p, 0, n) i.e. 

( n )  (pq_ x O ) x _ l (  q q- (rt - X)O)n--x--1/(1 q- n0) n - l ,  (1.3) P ( Y  = x)  = pq x 

x = 0 , 1 , 2 , . . . , n  

where 0 < q = 1 - p  < 1 and 0 is such tha t  nO < rain(p, q). Consul and Mittal  
(1975) introduced the QB distribution as an urn model. Shenton (1986) summa- 
rized some properties of the QB distr ibution and gave a list of references which 
dealt with this distribution. The mean and the variance of the QB distr ibution 
are given by: 

(1.4a) E ( Y )  = 

and 

~-1 n!Oj 
(1.4b) Var(Y) = p q  n 2 - E (n - j - 2 ) ! ( l  + nO) j+l  

j=0 

As in the case of the binomial distribution which tends to the Poisson distr ibution 
for large n such tha t  np -+ A, the QB distr ibution tends to the GP distribution. 

By Consul (1989), we have tha t  the probability generating function (p.g.f.) of 
a random variable X ~ GP(A, 0) is Cx(u)  = e )~(t-1) where t = ue  O(t-1). Observe 
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that for fixed 101 < 1 the function te - ° ( t - l )  is increasing in t for Itl _< 10--1l. 
Therefore, it has an inverse Ao(t)  (say), i.e. Ao(te - ° ( t - l ) )  = t. Therefore the p.g.f. 
qSx (u) can be rewritten as 

(1.5) (fix(u) = e -x(A°(u)-l),  lul _~ 1. 

An important property of the GP distribution which will play a major role in 
our development of the GP processes is summarized in the following lemma given 
in Consul (1975). 

LEMMA 1.1. Let the random variable Y be the sum of two random variables 
Y1 and Y2. Then Y has a GP(A, 0) distribution, and the conditional distribution 
of Y1 I Y = n is QB(p, O/A, n) if and only i f  Y1 and Y2 are independent such that 
Vl ~ GP(pA, 0) and Y2 ~ GP(qA, 0). 

Let {S(n) : n = 0, 1, . . .} be a sequence of random variables such that S(n )  
QB(p, 0/A, n) for some p and 0. Such random variables will be called throughout 
the paper quasi-binomial operators. This is analogous to the terminology of the 
binomial thinning mentioned above. Using Lemma 1.1, we have the following 
corollary. 

COROLLARY 1.1. I f  X ~ GP(A,0) and is independent of {S(n)} then 
s ( x )  ~ Cp(pA, 0). 

The present paper contains four additional sections• The following section 
presents a first order autoregressive process with GP marginal distribution. Section 
3 discusses the corresponding first order moving average process. Extension of this 
process to a higher order moving average process is given in Section 4. The last 
section presents a GP process with ARMA correlation structure. Properties of 
each of these models, such as autocorrelation behaviour, joint distribution and 
regression, are discussed and compared with those of the corresponding Gaussian 
processes• 

2. The first-order autoregressive process 

The first-order generalized Poisson (GPAR(1)) process is built using a se- 
quence {et} of independent identically distributed (i.i.d.) GP(qA, 0) random vari- 
ables. The GPAR(1) process is defined by: 

(2.1) X t  = S t ( X t - 1 )  + et t = 1 ,2 , . . .  

where {St(.) : t = 1, 2, . . .}  is a sequence of independent and identically quasi- 
binomial operators (p, 0/A, .) independent of {et}. The process {Xt} ,  defined by 
(2.1), is a Markov chain with transition matrix given by: 

(2.2) Pij = P ( X t + l  = j I xt  = i) 

:min{i'J} ( £ ) E  pqA [pA-]-kOlk-1 [qA-~(i-~)O]i-k-1 
L ~ T ~  J ;T~ j k=O 

• A q [ , \ q  + O ( j  - k ) ] J - k - ~ e - ~ q - ~ e ( ~ - k ) / ( j  - k ) ! .  
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This Markov chain is ergodic and hence there is a unique stationary distribution. 
Therefore, the GP(I ,  0) distribution is the unique stationary distribution. Con- 
sequently if X0 ~ GP()~, 0) we get a strictly stationary GPAR(1) process with 
distribution given by (1.1). 

The mean and the variance of GPAR(1) process are given by (1.2). The 
autocorrelation function p x ( k )  may be derived easily using (2.1) and it is of the 
form 

( 2 . 3 )  px(k) = c o r r ( X t , X t - k )  = p l k l  k = 0, 4-1, + 2 , . . . .  

Thus the behaviour of the autocorrelation function of the GPAR(1) process is 
similar to that of the AR(1) process except that it is always nonnegative due to 
the fact that p is a nonnegative number. 

From (2.2) and (2.3), it follows that the parameters A and 0 describe the 
marginal distribution of the process while p independently describes the correlation 
structure of the process. 

As an illustration of the considerable differences between the GPAR(1) process 
and the corresponding PAR(l) process, Fig. 1 displays one realization of length 
100 for each process. In both processes the mean and the autocorrelation are 
kept the same as 2 and .5 respectively. Figure l(a) displays the realization of the 
PAR(l)  (0 = 0) process whereas Fig. l(b) displays the GPAR(1) (0 = 1/2) process. 
From the figures it is clear that the GPAR(1) process has more variability than 
the PAR(l)  process. This is expected since the variance of the GPAR(1) process 
is twice that of the PAR(l) process. 

The joint distribution of Xt+l and Xt  for the stationary GPAR(1) process can 
be obtained by utilizing (2.2). Instead we will compute the joint p.g.f, of Xt+l 
and X t  which is: 

= E(us(xd+~+,  vX~) 

= E(u~+~) • E(uS(XdvS(X,)+x~-s(x~))  

: 

where in the last step we have used Lemma 1.1. Observe that Lemma 1.1 implies 

et+l d X t  - S ( X t )  where a__ stands for equality in distribution. Therefore 

(2.4) Cx,+~,x, (u, v) = exp[Aq( Ao(u) + Ao(v) - 2) + ~kp( Ao(uv) - 1)]. 

The above p.g.f, is symmetric in u and v and hence the joint distribution of 
Xt+l  and Xt  is symmetric. Also, since the joint distribution of any finite set of 
Xt ' s  can be obtained from (2.4) and the marginal GP distribution, the GPAR(1) 
process is time reversible. As an application of this observation, it follows from 
(2.1), (1.2a) and (1.4a) that: 

(2.5) E ( X n + l  I X n  = x) = E ( X  n I X'n+ 1 = x)  

= px + q,k/(1 - 0), x = O, 1 , . . . .  
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Pig. 1(a). Poisson AR(1) process (A = 2,0 = 0). 
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Fig. l (b) .  Generalized Poisson AR(1) process (A = 2, 0 = 0.5). 

This shows that the regression behaviour in the GPAR(1) process is similar to 
that of Gaussian AR(1) process. However as in the Poisson AR(1) process the 
similarity does not extend to higher order moments. 

3. The first-order moving average process 

The generalized Poisson first order moving average (GPMA(1)) process is 
constructed in essentially the same way as the GPAR(1) process discussed in the 
previous section. Let {et} be a sequence of i.i.d, random variables such that 
et ~ GP(A*, 0) and let {St(.)} be a sequence of i.i.d, random operators independent 
of {et} such that St(n) .o QB(p*, 0/A*, n). We define the GPMA(1) process {Xt} 
by 

(3.1)  Xt+l = S t + l @ t )  -Jc- e t+a ,  t = 0, 1 , . . . .  

It is obvious from (3.1) that {Xt} is a stationary process and Xt+~ and Xt are in- 
dependent if Irl > 1. Also St+l(et) and et+l are independent by assumption. This 
implies by consecutive applications of Lemma 1.1 that the marginal distribution 
of. Xt is GP(A, 0) where A = (1 +p*)A*. 

The autocorrelation function for the GPMA(1) process may be determined 
directly and it is of the form 

p, I k l = l  
(3.2) p x ( k ) =  0, Ikl > 1. 
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where p = p*(1 + p , ) - l .  
The fact that p* _> 0 implies 0 _< px(1) _< .5 which is a full possible range of 

positive correlation. This is because for the ordinary first order moving average 
Ipx(1)[ _< 0.5. 

Figure 2 displays realizations of the GPMA(1) and the PMA(1) processes. 
Similar remarks as those of AR(1) processes hold. 
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Fig. 2(a) .  
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Fig. 2(b) .  
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Genera l i zed  Po isson  M A ( 1 )  process  (A = 2, 0 = 0.5). 

Unlike the GPAR(1) process, the GPMA(1) process is not Markovian. How- 
ever, the joint p.g.f, of the GPMA(1) process can be computed easily using (3.1). 
The bivariate p.g.f, of X t + l  and X t  is given by 

(3.3) G x i + l , X  t (~1, ~2) : exp[/k*(Ae(ul) + A e ( u 2 )  - 2) + A * p * ( A e ( u l u 2 )  - 1)] 

= exp[)~q(A6(ul )  + Ae(u2) - 2) + A p ( A e ( u l u 2 )  - 1)]. 

Comparison of (3.3) and (2.4) shows that the bivariate distribution in the GPMA(1) 
process is similar to that of the GPAR(1) process. An immediate consequence of 
this observation leads, in view of (2.5), to 

qA 
E(X,+~  I x~ = x) = F_,(X~ I X~+~ = ~) = px  + 1 ~  
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The joint p.g.f, of any finite set of consecutive observations can be obtained by 
the procedure that yielded (3.3). Thus the joint p.g.f, of (X t ,  X t - 1 , . . . ,  Xt_~+l) 
is given by 

(3.4) ±( J ¢ ( u l , . . . , u ~ )  = exp /~q Ao(ui )  - 1) +/~p Ao(uiui+a) - 1) . 
= i=1 

It is obvious from (3.4) that the GPMA(1) process is time-reversible. Also 
from (3.4) we can compute the distribution of the total counts occurring during 

X time (t - r + 1, t] i.e. Tr = Y~i=l t-r+i.  The p.g.f, of T~ can be obtained by 
setting ui = u, i = 1 , . . . ,  r in (3.4). This gives 

E ( u  T~) = exp[Aqr(Ao(u)  - 1) + Ap(r - 1 ) (Ao(u  2) - 1)]. 

This implies that T~ is distributed like the sum of two independent random vari- 
ables say Z + 2Y where Z ~ GP(Ar, 0) and Y ,,~ GP((r  - 1)Ap, 0). Consequently 
the behaviour of the Poisson MA(1) process extends to the GPMA(1) process 
which is in contrast to the standard Gaussian MA(1) process in which ~ Xi still 
has Gaussian distribution. 

4. Higher order moving average processes 

A generalized Poisson moving average process of higher order can be 
constructed by extending the GPMA(1) process in an obvious way. Thus, the 
GPMA(q) process is defined by 

q 

Xt = ~t q- E St,i@t-1)' 
i=1 

where {et} is a sequence of i.i.d GP(A, 0) random variables and {S t  = ( S t , i , . . . ,  
St ,q) '} is an independent sequence of i.i.d, random vector operators with the 
St,i(rn) ~ QB(pi, m, 0). By Lemma 1.1, the above conditions on {et} and { S t }  
are sufficient to determine the marginal distribution of X t  as GP(#, 0) where 
# = A (Y~-i=lq Pi + 1). However, the conditions on { S t }  are not sufficient to de- 
termine the joint distribution of the process unless the joint distribution of St is 
given. One approach is to assume the components of St being independent. Such 
an assumption has been made by McKenzie (1988) to define a MA(q) process with 
Poisson marginal distribution. Alternatively one may assume a certain kind of de- 
pendence among the components of St as suggested by A1-Osh and Alzaid (1988) 
in their definition of Poisson MA(q) process. The latter approach results in some 
complication in calculating the joint distribution and hence ,in some structural 
properties of the process. Therefore we assume, here, that the components of St 
are independent. Under this assumption we get the autocorrelation function as 

q-k q 

i=0 i=0 
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where P0 = 1. This is a close analogue of the usual autocorrelation function 
of the MA(q) process and it is of the same form as that of the Poisson MA(q) 
process introduced by McKenzie (1988). Therefore the autocorrelation function 
does not play any role in the determination of the marginal distribution of the 
process. On the other hand, the mean and the variance give indication whether 
the process is more likely to be Poisson (E(X) = Var(X)) or generalized Poisson 
(E(X) ¢ Var(X)). 

5. A ( p , p -  1) autoregressive moving average process 

Realization of some processes depends not only on their immediate past, as in 
GPAR(1) case, but also on previous realization. In this section we shall introduce 
a generalized Poisson process with ARMA(p, p - 1) correlation structure. 

Let a = (al ,  a 2 , . . . ,  c~p) t be a vector of nonnegative components such that 
P }-]i=1 c~i < 1 and let 0 be a nonnegative number. Now for every integer n > 0, 

define (in distribution) the vector random operator S(n) on the set of nonnegative 
integers by 

(5.1) H L 0 ~ i ( ~  / k + xiO/)O xi-1 

\ / x  (1 + n O / / ~ )  n - 1  ' 

(;) o 
where x -= (x l , . . . ,  Xp), = n!/I-LP.=0 xiI, c~0 = 1 - ~-]i:1 cti and x0 = n - 

p }-2-~=1 xi. Since the univariate marginal distribution of S(n) is quasi-binomial, we 
will call a distribution of the form (5.1) quasi-multinomial distribution with vector 
parameter (0, a, n) (denoted by QMB(0, ~, n)) (see Consul and Mittal (1977) for 
more details about this distribution). 

Now let X be GP(A, 0). Then S(X)  has a multiple generalized Poisson distri- 
bution, that is 

(5.2) P ( s ( x )  = ~) = H exp - ( ~  + Oxd 
i = 1  Xi! i = 1  

xi = 0 , 1 , 2 , . . . ,  i = l , . . . , p .  

Let {St(n) - (Sl , t(n), . . . ,  Sp,t(n)) : n >_ 0}t=0 be a sequence of independent 
classes of independent random vectors such that for every m and n > O, St has 
QMB(0, a, n) distribution. Furthermore, let {et} be a sequence of lid random vari- 
ables independent of {St(n)} such that ct has GP(a0A, 0) distribution. Assuming 
that the joint distribution of (Xo, X1 , . . . ,  Xp-1) is given and that it is independent 
of {St(n), ct}, then we define the process {Xt} by 

p 

(5.3) x t  = ~ s~, t_~(xt-d + ~t, t = p ,p  + 1 , . . . .  
i = 1  

The process {Xt}, as defined by (5.3), is a generalization of the Poisson ARMA(p, 
p -  1) of Alzaid and Al-Osh (1990) where the thinning operations a io  are replaced 
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with the random operations S~(.). In fact the Poisson ARMA(p, p -  1) corresponds 
to the case 0 = 0. The autoregressive structure of the process (5.2) is due to the 
dependence of Xt on Xt-i for i = 1 , . . . , p .  The moving average dependence is 
a result of the dependence between the components of St-i(Xi) which appear in 
different lags of time. The moving average dependence implies that  {Xt} is not p- 
Markovian which is a typical property of the ordinary AR(p) process. This results 
in difficulty in direct calculations of the joint distribution of the process. This 
problem can be overcome by considering the vector process {Z,~} where 

Zt ~- Xt, Si,t+l-i(Xt+l-i), Si,t-b2-i(Xt+2-i),...,Sp,t-l(Xt-1 
i =2  i =3  

Since the distribution of Xt is marginal distribution of that of Z, it follows that 
the joint distribution of the process {Xt} is a marginal distribution of the joint 
distribution of the process {Zt}. Following an argument similar to that  of Alzaid 
and A1-Osh (1990), it can be shown that the process (Z,~} is Markovian with the 
multiple generalized Poisson distribution 

P(Z  -.~- z) ~-- H e x p  - -  (Wi--l~ ~-Ozi) 
i=1 zd 

WO:I ,  Wi:EO~jWi--j, z i = O ,  1 , . . . ,  i = l , . . . , p  
j = l  

as the limiting distribution of the process. This in turn implies that the process 
{Xn} has GP(0, A) limiting distribution. 

In fact if one assumes that the initial distribution and limiting distribution of 
{Z} are identical, a stationary process would be obtained. A typical situation in 
which this happens is when X0, X 1 , . . . ,  Xp-1 are lid with GP(0, A) distribution. 

Finally the autocovariance function 7(k) for the stationary process {X,~} can 
also be computed following an argument similar to that of Alzaid and Al-Osh 
(1990). This results in 

; ; aoA 
(5.4) ~(k) = ~ ~ ( k  - i) + ~ ~(s~, k - i) + e~(0) (1 - 0)~ 

i=1  i=k+l 

where 5k(O) = 1 if k = 0 and 0 if k # 0 and 7(S~, k -  i) is such that 

with 

l--i O~i/~ 

7(Si,-1) = E aj~/(Si,j - l) + 5i-z(O) (1 - 0) 3, 
j = l  

1 = 2 , . . . , p  

a~A 
~(s i ,  - 1 )  = ~_1(0)  (1 - 0)3' i = 1 , . . .  ,p. 

It is clear from (5.4) that the behaviour of 7(k) is the same as that of ARMA(p, 
p -  1). 
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