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Abstract. This article concerns packings and coverings that are formed by 
the application of rigid motions to the members of a given collection K of 
convex bodies. There are two possibilities to construct such packings and 
coverings: One may permit that the convex bodies from K are used re- 
peatedly, or one may require that these bodies should be used at most once. 
In each case one can define the packing and covering constants of K as, 
respectively, the least upper bound and the greatest lower bound of the 
densities of all such packings and coverings. Three theorems are proved. First 
it is shown that there exist always packings and coverings whose densities are 
equal to the corresponding packing and covering constants. Then, a quantita- 
tive continuity theorem is proved which shows in particular that the packing 
and covering constants depend, in a certain sense, continuously on K. Finally, 
a kind of a transference theorem is proved, which enables one to evaluate the 
packing and covering constants when no repetitions are allowed from the case 
when repetitions are permitted. Furthermore, various consequences of these 
theorems are discussed. 

1. Introduction 

Let E"  denote n-dimensional euclidean space, and let K = { K~ } be an indexed 
collection of convex bodies in E". Thus, each K, is assumed to be a compact 
convex subset of E"  with nonempty interior, and K~ = K~ holds if and only if 
u = / t .  Let I denote the group of all isometries and T the group of all translations 
of E n, and let G be a subgroup of I that contains T. We view K as a "supply" of 
sets and consider packings and coverings that are constructed by the application 
of rigid motions from G to the convex bodies of K. In the traditional 
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theory of packings and coverings (cf. L. Fejes T6th [3] or Rogers [9]) one usually 
starts with a very small set K (in most cases consisting of one element only) but 
permits repeated use of the dements of this set. The following definition corre- 
sponds to this type of packings and coverings. 

Definition 1. Let K = ( K ~ ) ~  N be an indexed collection of convex bodies in 
E". A class C of convex bodies will be called a K~-packing in E"  (with respect to 
G) if the following conditions are satisfied: 

(a) For each v ~ N there is a (possibly empty) subset G~ of G such that 
C = O~Eu(gK~:  g~G~}. 

(b) Every ball in E" meets only finitely many sets of C. 
(c) The interiors of any two sets from C are disjoint. 
Similarly, C is called a K~-covering of E" (with respect to G) if (a) and (b) are 

satisfied and 

(d) e"cUC, (CieC). 

In this definition the superscript r indicates that the sets from K may be used 
repeatedly, i.e., some of the sets G~ may have more than one element. More 
recently another possibility to generate packings and coverings has received some 
attention (see the survey [8]). One may start with a large set K (usually an infinite 
sequence) and use each K~ ~ K at most once. The following definition describes 
this situation. 

Definition 2. Let K be a set as in Definition 1. A class C of convex bodies is 
called a K-packing or K-covering if, respectively, (a), (b), and (c), or (a), (b), and 
(d) hold, and, in addition, the sets G~ can be selected so that each of them has at 
most one element. 

In investigations dealing with this kind of packings and coverings it is often 
assumed that each G~ should contain exactly one element, i.e., each set of K 
should actually be used. However, this additional requirement is immaterial. 
Indeed, if K is countable and not all sets are used, it is easy to modify the 
packings and coverings so that all sets are used and the densities remain the same; 
and if K is not  countable, it is impossible to use all its members (due to (b)). 

If C is a K-packing, Krpacking, K-covering, or K~-covering (with respect to a 
given group G), then its density is defined by 

8(c) =lira 1 E v(B, nC3, 
o(S,) c, c 

where B t denotes the ball in E" of radius t with center at the origin, and v 
denotes volume in E". Since 8(C) does not  always exist, it is often useful to 
introduce the upper density and the lower density of C. These are defined, 
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respectively, by 

- -  1 
~(C) = lim v(B,) ~-" v(B, nCi)  

t~oO CtEC 

and 

1 
8_(C) = 1.!m v(BI---ff E v(BtcqC,)- 

t~o¢ c, cC 

If the set of the diameters of all C i is bounded, one can prove that these densities 
do not depend on the choice of the origin of E n and that the sums S,v(B t n C,) 
could be replaced by Y.v(C,) taken over all C i with C, c B t or over all C, with 
B t n C, 4:¢0 (see [5], Satz 4). The packing and covering constants of K (with 
respect to G) can now be defined by 

d.(K,C) 
a;(K, C) 
d,(k,C) 
d,:(K,C) 

= sup( ~(C): C is a K-packing with respect to G }, 

= sup( ~(C): C is a K~-packing with respect to G }, 

= inf( _~(C): C is a K-covering with respect to G ), 

= inf( _(C): C is a Kr-covering with respect to G ). 

We note that the definition of d,.(K, G) is only of interest if there is at least 
one K-covering with respect to G. This is not always the case, even if K is infinite. 

The above definitions reflect the fact that one is primarily interested in 
packings of high density and coverings of low density. In fact, a large part of the 
theory of packings and coverings is, directly or indirectly, concerned with the 
evaluation or estimation of packing and covering constants. 

If the group G is determined by the context in which it appears, or if G is 
immaterial for a particular statement, we simplify the notation by writing dp(C), 
d~(C), de(C), and d~(C) instead of de(C, G), d~(C, G), d~.(C, G), and d,~.(C, G). 

In this article three rather basic theorems on packing and covering constants 
will be established. First we prove that under very general assumptions there are 
always packings and coverings whose densities equal, respectively, dp(K), d~(K), 
d,(K), and d,f(K). In the case of d~(K) and d~(K) such theorems have already 
been proved in [5], but if no repetluons are allowed, some additional considera- 
tions are necessary. Then we show that the packing and covering constants 
depend continuously on K. In fact, we give explicit estimates to this effect. As a 
consequence of this theorem we obtain a limit theorem concerning tilings of E". 
Finally we show that under suitable assumptions it is possible to evaluate dp(K) 
and d,.(K) if d_~(K ') and d~(K') are given, where K' consists of the appropriately 
defined limit e(ements of K. Since dp and d, ~. are usually much easier to deal with 
than d e and d,., this theorem has several remarkable consequences. 

An indexed infinite collection of convex bodies in E" will often be referred 
to as a supply set (since it supplies the convex bodies for our packings and 
coverings). 
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2. Theorems and Corollaries 

Existence Theorem. I f  K = (K~ } is a supply set in E"  such that the set of the 
diameters of  the convex bodies K.  is bounded, then there exist a K-packing P, a 
K~-packing P*, a K-covering C (provided that there is at least one K-covering), and 
a K~-covering C* such that the densities of P, P*, C, and C* exist and 
8(P) = dp(K), 8(P*) = d~(K), 8(C) = d~.(K), and 6(C*) = d;(K). 

These statements are true with respect to any given group G of isometrics of 
E"  that contains the translation group T. The packing and covering constants are, 
of course, taken with respect to this G. 

The Existence Theorem shows that in the definition of the packing and 
covering constants one may replace 8 and 8 by 8, and restrict the attention to 
packings and coverings whose densities exist. 

To formulate our second theorem we let h(M,  N )  denote the Hausdorff 
distance between two convex bodies M and N. Furthermore, if K = (K~) and 
L = { L~ ) are two supply sets with equal index set, say J, we extend the definition 
of.h by setting 

h(K,L)  = suph (K , ,L~) .  
v E J  

Continuity Theorem. Let K = ( K.  } and L = ( L.  } be two supply sets in E" with 
equal index set. Assume that there are two constants a, b such that 0 < a < b < oo 
and every K .  and L.  has inradius at least a and circumradius at most b. Further- 
more, let ~ be a number with 0 < E < a. Then, the condition h(K,L) < ~ implies 

*(4"-1), I d p ( K ) -  dp(L) ]-< a 

ld;(K)- d;(L) ] _<_ -~(4"- 1), 

and 

l d , . (K ) -  dc(L) [ < -~ ( 4 " -  l )max{ dc(K), d~,(L) ) ,  

r r < I d . ( K ) -  de(L) 1 _ a*- (4" - 1)max(d~5(K), d~(L) }. 

We note that max(d~(K), d~(L)} < max(d,.(K), de(L)} < (b/a)"f l , ,  where fl,, 
is the covering constant for congruent balls. 

As an application of this theorem we consider filings of E". By a K~-tiling of 
E"  (with respect to G) we mean a K'-packing that is at the same time a 
Kr-covering (both with respect to G). If there exists such a tiling, we call K a tiling 
set (with respect to G). Let now K i be a sequence of tiling sets that converges to 
some supply set K in the sense that limi_,o~h(K~,K ) --0, and assume that there 
are constants a, b such that 0 < a _< b < oo and every K~ E K has inradius at least 
a and circumradius at most b. Since d~(Ki)=1 (for all i) it follows from the 
Continuity Theorem that d~(K)= 1. If G is a closed subgroup of I, then the 
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closure of K, say K, is also a tiling set. If K c B b for all K ~ B, and G = T a proof 
of this fact is given in__[4]. The general situation can be reduced to this case by 
considering instead of K the set (,/K~ + p: K, ~ K, ~, ~ G, p ~ E", K, + p c Bh}. 
Thus, we obtain the following corollary. 

Corollary 1. For i =1,2 , . . .  let K i be a tiling set in E" (with respect to a given 
dosed group G), such that l i m , ~ h ( K , , K )  = 0, where K is a supply set with the 
property that the set of the inradii of the members of K has a positive lower bound 
and the set of circumradii a finite upper bound. Then, K is again a tiling set (with 
respect to G). In particular, if for i = 1, 2,. . .  each K, = { K 1, . . . . .  K,"' } consists of m 
convex bodies and if f o r j  = 1, 2 . . . . .  m each of the sequences K{, K~ . . . .  converges to 
a convex body K j, then ( K  1 . . . . .  K ' }  is again a tiling set (always with respect to 
the same closed group). 

If K is a given supply set we let K' denote the set of all limit elements of K. 
Thus, g , = K U K '  and a set is in K' exactly if it is the limit of a sequence of 
distinct members of K. (Since K is always assumed to be an indexed collection of 
convex bodies, "distinct" means that the pertinent subscripts are distinct.) K will 
be said to be bounded if the set of the inradii of the members of K has a positive 
lower bound and there is a ball that contains all members of K Using these 
definitions we can formulate our third theorem. 

Transterence Theorem. Let K be a bounded supply set in E", and let K' be the 
set of limit elements of K. Then, 

d. (K)  = d;(rV) 

and 

= 

(with respect to any group of isometries containing T). 
The following corollary is an immediate consequence of this theorem. 

Corollary 2. I f  the bounded supply set K has only one limit element, say K, then 
dp(K) = d~(( K }) and d,.(K) = d,'.(( K }). 

Hence, when dealing with a bounded supply set which has only one limit 
dement  one achieves essentially the same packing or covering effect if only one 
set (and the same group) is used. But even if K has more than one limit dement, it 
is still possible to obtain some information on de(K) and de(K), provided that 
estimates of  the packing or covering constants for copies of single convex bodies 
are available. The following corollary is useful for this purpose. 

Corollary 3. Let k , (G)  be a constant such that for every convex body M either 
dr.(( M }, G) >_ k , (G)  or dr(( M }, G) < k,,(G). Then, for every bounded supply set 
K r the corresponding inequality de(K, G) > kn(G) or d~.(K, G) < k~(G) holds. 

For explicit values of k , (G)  that can be used in this corollary see the 
pertinent sections in Rogers [9], L. Fejes T6th [3], and G. Fejes T t th  [2]. As an 



188 H. Groemer 

example consider packings and coverings in E 2 with respect to the translation 
group T. In this case one may take k, ,(T) to be ~ in the case of packings and ) 
for coverings (see [3], p. 100). Hence, for every bounded supply set K in E 2 we 
have 

dp(K, T)  > 

and 

d,(K, T) __ 

These inequalities are best possible; equality holds when K consists of translates 
of a triangle. Without the assumption of bondedness of the supply set, inequali- 
ties of this kind (with respect to T) are rather difficult to prove and practically 
unknown when n > 2 (see Groemer [7, 8]). 

If the Transference Theorem is applied to ellipsoids, it yields immediately the 
following result. 

Corollary 4. I f  K is a bounded supply set in E ~ consisting of (solid) ellipsoids, then 
dp(K, T)  > a n and d,.(K, T)  < ft,, where a n and ft, are, respectively, the packing 
and covering constants for congruent balls. 

If K is a supply set consisting of (not necessarily congruent) simplexes, it will, 
in general, not be possible to find K-packings or K-coverings with respect to I of 
density 1. However, the following corollary shows that after an affine transforma- 
tion of the members of K (the same transformation for all members) such 
packings and coverings are possible. Since K' will also consist of simplexes, this is 
a consequence of the Transference Theorem and the fact that there are simplexes 
that permit tilings of E n (cf. Danzer [1]). 

Corollary 5. I f  K is a bounded supply set of simplexes in E n, there is an affine 
transformation o of E n such that dp(oK, I ) = 1  and d,.(oK, I ) = 1 ,  where oK = 
( o K /  K~ ~ K} and I denotes the group of isometrics of E n. 

Finally, we consider G-tiles, i.e., convex bodies K such that ( K } is a tiling 
set with respect to the group G (T c G c I).  If K = ( K~ } is a collection of such 
tiles, for example a set of (not necessarily congruent) parallelotopes, it is an 
interesting question whether some of these K~ can be rearranged (by the applica- 
tion of isometrics from G) so that they form a packing or covering of density 1. If 
K is bounded the following corollary gives an affirmative answer to this question; 
it follows immediately from the Transference Theorem and Corollary 1. 

Corollary 6. Let K be a bounded supply set with the property that each member of 
K is a G-tile. Then, d p ( K , G ) = l  and d c ( K , G ) = l .  In particular, if  K is a 
countable bounded supply set of parallelotopes, then one can rearrange these 
parallelotopes by the application of translations so that they form a packing of 
density 1 or a covering of density 1. 

The very last statement of this corollary is also proved in [6]. In the case 
n = 2, or when all isometries are permitted one can prove an analogous result for 
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packings and coverings by orthogonat parallelotopes without the assumption that 
the set of the inradii of these parallelotopes have a positive lower bound (see 
Groemer [7]). 

3. Proofs of the Theorems 

Proof of the Existence Theorem. First we consider K-packings in E". Because of 
the condition on the diameters of the members of K there is a number b such that 
the circumradius of every K, ~ K is at most b. We let W~ denote the cube 
( (x  I . . . .  x , ) :  -½s<_x~<_ ½s}, and F the set of all points of E"  with integral 
coordinates. Using standard notational conventions we can state that W~ + sF is a 
tiling of E". For m =1,2  . . . .  we set 

s., = 2% 

t., = 2 (m2), 

and consider the sequence of balls B I c B, c B, c . . . .  Let Q~" . . . . .  Q~. be 
0 .  1 2 • m 

those cubes of W. + s..F that are contained m B, \ m r  B t . We show that for 
m m , o 1 - 1  

each QT' there is a finite (possibly empty) collecuon S ' =  {L~l, L['2 . . . .  } of 
convex bodies so that the following conditions are satisfied: 

(i) Each L~m: is of the form g.K.  with g. ~ G, K. ~ K; 
(ii) L " .  c ,n -,,s Qi for all j ;  

(iii) (int L,,~) N (int Li~t) = 0 unless j = l; 
(iv) all L~' i originate from different members of K; 
(v )  -' m (1/sm)~.jv(Li,:) >_ h~, where h., = ((sm - 4 b ) / s . , ) ~ ( d p ( K ) - l / m )  (or 

0 if one of the two factors is negative). 
If m =1,  then h,. = 0 and we take $7' = 0  (as we do in all other cases when 

h,. = 0). Assuming that all the collections S m- 1 have already been found, we 
determine for i = 1 . . . . .  k m the collection S/~ by the following procedure. 

There exists a K-packing, say { K q  }, of upper density at least ds,(K)- 
( 1 / ( m  + 1)). Since the removal of finitely many sets from { K~'} does not change 
the upper density, we may assume that { Kq  } does not contain any element that 
has already been used previously to define one of the sets associated with Qt*, 
where k __< rn - 1, or k = rn and 1 < i - 1. There must exist a cube W~._4h + g 
from the tiling W.._4b + ( s . , - 4 b ) F  such that 

( s . , - 4 b ) "  E ¢q dp(K) 1 m 
q 

(otherwise the upper density of { K~  } would be at most dp (K) -  1 / m  < dp (K) -  
. . " v  " " m " r a  1/ (m + 1), in contra&cUon to our assumption). Since the sets Kq with gq N 

(W.._4h + g) =~ 0 are contained in W~+ g, we have 

1 E v (KqA(W~m+g))  > dp(K) 1 
(s m - 4 b ) "  " c  Kq W~+ g 
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If Q," = W, .+  gi, we take as the sets Lira: the translates KY + g, - g of all K m 
with Kg' c IV,., + g. Then, (v) is obviously true. Since it is also clear that for th~s 
choice of the sets L,~/conditions (i), (ii), (iii), and (iv) are satisfied, it follows that 
the class of all L "  forms a K-packing, say L. Setting { L,': } = { M k } we prove 

t ,J 
now that 

1 Ev(Mk N Bs) >_ dp(K). li__m ~ k (1) 

If s > 2 is given, let m be determined by t m < s N t,,+X. Collecting for each 
cube Q~' the sets M k which are contained in it, and using (v) and the fact that 

t l  v(Q~') = s,, we find 

1 y , v ( M k A B t  ..... ) 1 E v ( M k n B , )  = v--(~s) ~ .( BD 

+ 1 .  Ev(Mkn(B,., , \B,. , ,)  ) 
v(B,) 

h., E .(e;') 
> o(B,) Q,'c B,..\B, .... 

hm+l E 0(Or '+1) 
+ 0(8,) e.,+,cs,,B,., 

ho, t.(s,°,_.o,) 
>o(B , ) [  

where P,. = v~s.,  + x. Hence, 

1 ( o(~.)-.(B.-o°,) 
o(B,) E O ( M k n B ' )  > h~ 1 -  ~-(-ff~) 

k 

v(B,:.m)-.(B,°,-oo,) 
o(Bs) 

.(B,m_l+O°,) .(B.) ) 
Since t,, and p,, have been chosen so that for s ~ oo the terms with v(Bs) in the 
denominator tend to 0, and since h m tends to dp(K), we obtain (1). Using the fact 
that the definition of dp(K) shows that l i m ~  oo(1/v(B,))Ekv(Mk n B~) <_ dp(K) 
we obtain that 8(( M k )) exists and equals dp(K). 

The proof for d~,(K) is practically the same, except that it is not necessary 
(and not always possible) to avoid repeated use of the members of K. In other 
words, condition (iv) should be disregarded. 
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In the case of coverings we proceed analogously but start with cubes of side 
length s m + 4b  to obtain cubes QT' of side lengths s,, so that (i) and (iv) are 
satisfied. Furthermore, instead of (ii) we can achieve that Q'f c U:L,":/, and 
instead of (iv) we can establish a similar relation with the inequality sign reversed 
and h m = ( ( s m + 4 b ) / s , , ) " ( d ? ( K ) + l / m ) .  Condition (iii) can be disregarded. 
Instead of (1) it has to be shown that lim, ~ ~ ( l / v ( B ~ ) E k o ( M  ~ t~ B,)  < d?(K). To 
prove this the necessary changes, as compared to the case of packings, are quite 
evident. Perhaps the only additional matter that deserves mentioning is that the 
term (1 /v  ( B~))~kv ( M k n B t ..... ) cannot be disregarded. However, we have 

a E .(B.)I _< . . . .  

ho 
-< ....  + , o ) ,  

and the definition of t., and Or. shows that this term tends to 0 as s ~ m. 

Proof  of  the Continuity Theorem. First we need the following auxiliary state- 
ment: If K is a convex body in E" that contains the ball B, and if e > 0, then 

K ' C  (1+  ae-)K, (2) 

where K ' denotes the parallel body of K at distance ~. To prove this we introduce 
the support function, say H ( K ,  u), of K. Because of B, c K we have H ( K ,  u) > a 
and therefore H( K ~, u) = H( K, u) + e < (1 + e / a )  H( K, u) = H((1 + e / a )  K,  u). 

We also make use of the following remark: If (X, } is a packing of convex 
bodies whose circumradii are at most b, and if each X, contains a Y, with 
v(Y,) > ~,v(X,), then 8(( Y, }) > hS({ X, }). This follows immediately from 

1 E .(r,) 
3({Y,}) = t-~lim v ( B , )  g n B , , e  

X 
>_ lira v ( B , )  ~-" v ( X i )  = X3({Xi}). 

l--,~ KcR, 

Let now (Pi}  be a K-packing and let P + =  {P,+} be the corresponding 
expanded packing defined by Pi ÷ = (1 + e / a ) P  i. Obviously, 3({ Pi ÷ }) = 8(( Pi })- 
If K~ ~ K, L~ ~ L, and h ( K , ,  L , )  < e, then, because of (2), L~ c (1 + e / a ) K ~  + p~ 
and K,  c (1 + e / a ) L ~  + G,  where p~ ~ E", q~ ~ E". Hence, there is a r~ ~ E "  so 
that (1 + e / a ) - ~ K ~  + r, c L~ - p,  c (1 + e / a ) K ~ .  For each i there are o, E G and 
a subscript v~ so that P~+ = oi((1 + e / a ) K , , ) .  It follows that for some x, ~ E",  
u I ~ E n 

( 1 + oiK~, + x i c o,L~, + u i c Pi + . (3) 



192 H. Groemer 

Setting Xi- -Pi  ÷, Y~= ( l+~/a) - to iK~ + q ,  and using the above remark we 
obtain 8(( Y, }) >__ (1 + e/a)-2"8(P + ) = ~(1 + e./a)-2"~(P). Hence, if we define iv/, 
= o~L~ + u.> then { M, } is an L-packing with Y~ c M i and therefore 8({ M~ }) >_ 
(1 + eya)-~nS(P).  It follows that dp(L) >_ (1 + e/a)-2"8(P) and, since this is true 
for every K-packing P, we have 

(1 + -~)2"dp(L) >_ dp(K). 

Because of e /a  < 1 we find 

e )2~-X)dp(L)  <_ ~ ( 4 " - 1 ) ,  

and since K and L can be interchanged we obtain the desired result. For 
K r-packings the proof is essentially the same. 

If C = { C~ } is a K-covering we consider the contracted covering C,- defined 
by  C i- = (1 + e/a)- lCi  and derive in analogy to (3) 

C,- c oiL~, + v~ c l + a o~K~, + t,, 

where o i is such that (1 + e/a)- lC,  = o~K,,, and v i ~ E", t~ ~ E". Setting N, = 
oiL ~ + v i we find that (Ni} is an L-covering and we derive as in the case of 
paci~ings that 8({ N, }) < (1 + e/a)Zn~(C). As before, this yields 

d,.(L) < ( 1 +  -~)2"d,(K), 

and we find 

td , (K)-d~.(L)l<_ ( (1+  -~ )2 " - l )ma x {d , (K) ,dc (L ) } .  

The Continuity Theorem for K-coverings is an obvious consequence of this 
inequality. Essentially the same proof yields the corresponding result for KC 
coverings. 

• ~ .  r * Proof of the Transference Theorem. We first show that dp(X) _ dp(K ). Let { M, } 
be a (K')Cpacking of density d~(K'), and assume that an e > 0 is given. Since 
o~Mi ~ X' (for some o~ ~ G) there is a K~, ~ X with k(K~,  oiMi) < e. Moreover, 
the sets K~, can be selected so that no K~ is used more than once. If we define 
M = { o i M i }  and R = {K,,,}, then l ( c  K and, by  the Continuity Theorem, 

dp(X ) _> d , (K)  >_ d , ( M ) - [ d , ( M ) - d , ( K )  I >- d p ( M ) -  a ( 4 " - l ) ,  

where a > 0 For e ~ 0 this shows that d (X) > d (M) > d ~(K') • p -- p -- p • 

Let us now prove that dp(K)< d~(K'). For this purpose let {P~} be a 
K-packing of density de(X ). Then, P~ = o~K~, with oi ~ G, K,, E K, and no K,, 
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used more than once. Let L be the set of limit elements of ( K~, }. We may assume 
L ~: ~ ,  and it is obvious that L is dosed and bounded. Moreover, for any e > 0 
there is an m such that inQELh(L,  K~,) < e whenever i > m. If this were not the 
case there would exist a convergent subsequence, say K'j, of K~, such that 
h(L, if.i) >- e for all L ~ L. But this is impossible since Kj converges to some 
L 0 ~ L and therefore l imj_ .~h(L 0, K:) = 0. Thus, for each K~ with i > m there 
is an L i ~ L c K' such that h(Li, K~) < e. Using the Continuity Theorem and 
setting L' = ( L  i } we can infer that 

d; (K ' )  >_ d ; ( r )  >__ ap(r ' )  >_ 

>_ ). 

Letting e tend to 0 and noting that de( ( P, }i > ~) = dp(( Pi }) we can conclude that 
d~(K') >__ dp(( P, ), > ,,,) = dp(( Pi)) = 8({ Pi}) = dp(K), which contains the desired 
result. 

A proof for coverings is obtained from that for packings by the substitution 
of d c and d, ~. for dp and d~, and obvious reversions of inequality signs. 

Finally, we note that all three theorems could be generalized. For example, 
convexity is clearly not essential for the validity of the Existence Theorem. 
Generalizations to multiple packings and coverings are also possible. 
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