
SOME BASIC THEOREMS IN DIFFERENTIAL ALGEBRA
(CHARACTERISTIC p, ARBITRARY)

BY

A. SEIDENBERG

J. F. Ritt [ó] has established for differential algebra of characteristic 0
a number of theorems very familiar in the abstract theory, among which are
the theorems of the primitive element, the chain theorem, and the Hubert
Nullstellensatz. Below we also consider these theorems for characteristic
p9^0, and while the case of characteristic 0 must be a guide, the definitions
cannot be taken over verbatim. This usually requires that the two cases be
discussed separately, and this has been done below. The subject is treated
ab initio, and one may consider that the proofs in the case of characteristic
0 are being offered for their simplicity. In the field theory, questions of sepa-
rability are also considered, and the theorem of S. MacLane on separating
transcendency bases [4] is established in the differential situation.

1. Definitions. By a differentiation over a ring R is meant a mapping
u—*u' from P into itself satisfying the rules (uv)' = uv' + u'v and (u+v)'
= u'+v'. A differential ring is the composite notion of a ring P and a dif-
ferentiation over R: if the ring R becomes converted into a differential ring
by means of a differentiation D, the differential ring will also be designated
simply by P, since it will always be clear which differentiation is intended. If
P is a differential ring and P is an integral domain or field, we speak of a
differential integral domain or differential field respectively. An ideal A in a
differential ring P is called a differential ideal if uÇ^A implies u'^A. The
ring {m+^4} of residue classes of the differential ring P mod a differential
ideal A is also a differential ring under the differentiation (u+A)' = u'+A.

If F is a differential field, then from (vu/v)' = v(u/v)'+v'(u/v) we ob-
tain (u/v)'= (u'v — uv')/v2. If P is a differential integral domain, then its
quotient field F becomes a differential field on setting (u/v)' = (u'v — uv')/v2:
it is this differential field which is intended when we speak of the
quotient field of P. From 1' = (1 • 1)' = 1 • l'+l'-1, it follows that l' = 0,
whence the differentiation in F coincides with the given differentiation in R.

An element u whose derivative u' is zero will be called a constant. It is
immediate that all the elements of the primitive field of a differential field
are constants.

The modifier "differential" will usually be omitted: if "differential" is not
intended, we shall refer to the modified object "in the algebraic sense."

Notation. The symbols ( ) and [ ] will be used in their usual senses of
field and ring adjunction respectively: the symbols ( ) and   {   }   will be
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used in the corresponding differential situations. The symbol ( ) is also used
in its usual ideal-theoretic sense, the symbol [ ] taking its place in the dif-
ferential case: thus, for example, [p, q] = (p, q, p', q', p", q", • • • ). The
symbol { • • • } is also used in the set-theoretic sense, to indicate the set
exhibited, and will also be used to indicate the perfect ideal (definition be-
low) generated by the elements enclosed. Subscripts are used in the usual
way, but are also used to indicate derivatives: thus u, Mi, u2, ■ • ■ may indi-
cate the successive derivatives of u; but also «i, u2, ■ ■ • , un may indicate
several quantities not particularly related, in which case a second subscript
is used to indicate the derivative.

2. Field extensions. Let K be a differential field and P a subfield of K;
i.e., F is understood to be a differential field under a differentiation in-
duced in it by the given differentiation in K. Let P{ u} designate the smallest
differential ring containing P and an element «Gif; F(u) designates the
smallest differential field containing P and u.

Let now K be of characteristic 0. We shall say that the element m£JÍ is alge-
braic over F if there is a nontrivial polynomial relation H(u, u', u", ■ ■ ■ , wCi>)
= 0 satisfied by u and its first * derivatives (for some i); that is, if
U, Ui, U2, • • • is a sequence of indeterminates (in the usual algebraic sense),
there should be an element H(U, Ui, ■ ■ • , U¡)(E.F[U, Ui, ■ • • ],
H(U, Ui, ■ ■ ■ , Ui)^0, such that H(u, u', u", ■ ■ ■ , w«>)=0.

In van der Waerden's Moderne Algebra [7], the theory of linear as well
as algebraic dependence is made to rest on the following axioms:

I. Ui is dependent on ui, • • • , un.
II. If u is dependent on ui, ■ ■ ■ , un, but not on u\, • • -. , un-i, then un is

dependent on U\, ■ ■ ■ , wn_i, u.
III. If w is dependent on Vi, ■ ■ ■ , vm and each Vj is dependent on «i, • • ■, un,

then w is dependent on u\, • • ■ , un.
If, now, y dependent on Xi, • • ■ , xn is taken to mean that y is algebraic

over P(xi, ■ ■ • , xn), then the above axioms become true theorems. The first
two are trivial, and the third follows at once from the following lemma.

Lemma. // u is algebraic over F, then F(u) = F(u, u', u", ■ ■ ■) has a finite
degree of transcendency over F; in fact F(u, u', • • •) is even finite over P. On
the other hand, if u is not algebraic over F, then F(u) has infinite degree of trans-
cendency over F.

Proof. Let u be algebraic over P; then there is an r>0 such that u =«(0),
m(1), m(2), • • ■ , w(r) are algebraically dependent (in the algebraic sense) over
P, while u, u™, ■ • • , M(r-W are not. Let G(U, U(1\ ■ ■ ■ , UM) be a poly-
nomial of least degree in UM which is satisfied by u, w(1>, • • • , «(r) over P.
Let S(U, ■ ■ ■ , U^)=dG/dU^: we see that S(u, ■ ■ ■ , u^)^0. Now S is
the coefficient of U<-r+1) in (G(U, Um, ■ • ■ , U^))', whence we see that
u(r+l)EF(u, um, ■ ■ ■ , uM), and likewise m())GP(m, • • • , uM) for j>r-\-l:
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this proves the first point. The second point is trivial.
Statement III is now immediate; for F(u, v, w) has a finite degree of

transcendency over F(u, v), F(u, v) has a finite degree of transcendency over
F(u), whence F(u, v, w) and F(u, w) have finite degrees of transcendency over
F(u).

The whole theory of degree of transcendency in the algebraic case can
therefore be carried over to the differential case, and we can speak of the
degree of differential transcendency (d.d.t.). In particular note that if u and v
are algebraic over F, then so are u + v, u-v, and u/v (if î^O).

The above results are, of course, well known, and go back to H. W.
Raudenbush [5].

For any n it is clear that we can construct a differential ring
F{Ui, ■ ■ ■ , Un] with d.d.t F{U)/F = n: then Uu ■ ■ ■ , Un will be called
differential indeterminâtes, as in the algebraic case.

3. The theorem of the primitive element. This theorem is entirely parallel
to the algebraic theorem. It asserts that if u, v are algebraic over F, then
under certain conditions F(u, v) = F(9). The proofs in the algebraic case de-
pend on the fact that if G(Xi, • • • , Xn) is a polynomial different from 0
and F is an infinite field, then there exist x¿GF, i = l, ■ ■ ■ , n, such that
G(xi, • • • , xn)9i0. If we consider the differential polynomial X', then it be-
comes clear that a like fact could obtain over a differential field P only if P
contains nonconstant elements. Conversely, if F does contain nonconstants,
and G(Xi, ■ ■ • , X„)^0 is a differential polynomial, then there exist
XiÇiF, i=l, ■ ■ ■ , n, such that G(xi, • • • , xn)r^0: we refer to Ritt [6, p. 35]
for the proof. Moreover, the theorem of the primitive element could not hold,
in general, if all elements of P were constants: for let u, v be two inde-
terminates in the algebraic sense and convert F(u, v) into a differential
field by setting every derivative equal to 0. Then F(u, v) = F(u, v), P(0) = F(6),
and F(u, v) = F(0) is clearly impossible. Subject to these necessary conditions,
the theorem holds.

Theorem 1. Let F contain nonconstant elements. If u, v are algebraic over
F, then there exists a X£F such that F(u, v) = F(u+\v). (Note that F is for the
present of characteristic 0.)

Proof. Construct F(u, v)(A), where A is a differential indeterminate. Since
u, v, A are algebraic over F(A), we have that u+Av is algebraic over F(A),
and hence we have a nontrivial polynomial relation :

G(\, A(I\ • • • , A(i), (u + Av), (u + Av)w, ■ ■ ■ , (u + Ac)<*>) = 0.

Here we are supposing that s is as small as possible and that G is of least
possible degree in (u+Av)M. Let u+Av = w: note that dw(i)/dAM =0 if i<s,
and =v if i = s. Taking the partial of the above relation with respect to A(,)
we obtain:
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dG dG
-i-v = 0.
ôACs)        dwM

Because of the minimal conditions placed on G, we have dG/dwM = S(A, u + Ax)
9^0, whence v(E.F(A)(u-\-Av): we now specialize, appropriately, A—->X£F;
some care has to be exercised, as we cannot suppose (as in the algebraic
theorem) that v can be written with a denominator free of w. By the lemma
of Ritt mentioned we could specialize A to X£P(íí, v) so that S(X, m+Xp) ?¿0:
actually, the proof of the lemma shows that if £ is a nonconstant, then one
can specialize A to a polynomial in £ with rational numbers as coefficients
(the main point of this proof will have to be considered explicitly below in
discussing the case of characteristic pj^O). Thus we may take X£F, whence
ü£F(tt+Xz/) and F(u-\-\v) = F(u, v). (Or one can apply the lemma directly
by writing 1/S(A, u-\-Av) in the form C(A, u, v)/D(A, u, v), where C, D are
polynomials and in D occur only m¿ and v¡ in some selected transcendency
basis of F(u, v)/F: one would then have only to specialize A so that some
one coefficient of D does not vanish.)

For a previous treatment of the above theorem, see E. R. Kolchin [2].
4. The Hubert Nullstellensatz. Let R = F{ Ui, ■ ■ ■ , Un) be a poly-

nomial ring in « differential indeterminates. By a point one means a system
ui, ■ ■ ■ , un of differential quantities in an extension field of P; by a zero of
an ideal A one means a point annihilating all the elements of A. By the
variety V(A) of an ideal A one means the set of zeros of A. The Hubert
Nullstellensatz says that if G£P vanishes over V(A), then G"ÇlA for some
p. Another possible definition of V(A) restricts V(A) to consist of the 0-di-
mensional points, i.e., points («i, • • • , «„) such that d.d.t. F(ui, ■ ■ ■ , u„)/F
= 0. According as one takes the first or second definition one speaks of
the weak or strong form of the theorem : initially we are concerned only with
the weak form. Another remark must be made: exception can be taken to
the above definition of V(A) since no bound has been placed on the cardinal
number of V(A). This quite valid objection is easily overcome as it is suffi-
cient to have a field P¡3p which contains for every prime P in R the co-
ordinates of a general point of P, i.e., a point u%* • • • , un, u^K, such that
R/P=F{ui, ■ ■ ■ , un), and one will then define point to have coordinates in
K. It would be easy to construct K, but we need not be detained over this
matter, since Hubert's Theorem has an obviously equivalent form stated
directly in terms of P, namely, that the set {g\G"ElA } =flP over the prime
ideals P in P which contain A.

By a perfect ideal A one means an ideal such that G"Ç:A implies G(EA.
One consequence of Hubert's Theorem is that if A is an ideal, then the set
{G\ G"C¡lA ] is an ideal. Hence it is clear that Hubert's Theorem cannot hold
without some modification if P is of characteristic pj^O, since, e.g., for « = 1,
we have u'p($.[up]=A, i.e.,  {G|G''E[mp]} is not an ideal. This possibility
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does not arise in the case of ordinary polynomial rings, and in fact it is well
known that {G\G"^A } is an ideal if A is; neither does it arise in the dif-
ferential case if the characteristic is 0, since one shows by a simple calculation,
which depends upon the characteristic, however, that (G')2p_1G [Gp]. Wé
may thus say that Hilbert's Theorem consists of two parts, the first says that
{g\ G*(ElA } is an ideal, in which case it is obviously perfect, and the second
says that a perfect ideal is the intersection of prime ideals. This second part
is true in general, and deserves the name of Hubert.

Hilbert's Nullstellensatz (weak form). A perfect ideal in the poly-
nomial ring F{Ui, • • • , Un] is the intersection of prime ideals (F of arbitrary
characteristic).

Proof. Let A be the given perfect ideal, and let a£P, a(£A. We have to
show the existence of a prime ideal P containing A but not containing a.
Let then 5 be the set of perfect ideals containing A but not meeting the
multiplicatively closed system {a"|p = l, 2, • • • }. Partially ordering 5 by
inclusion, we see by Zorn's Lemma that there is maximal element P in 5,
and this we claim is prime. In fact, let u, v£zR, m£P, fl£P, but wz>GP-
Let {P, u], {P,v\ be the smallest perfect ideals containing [P, u], [P, v]
respectively. Some power of a lies in {P, u}, and some power in {P, v}, by
the maximality of P. In the case of characteristic 0, by the remark that
{B} = {G] GpG [B]}, one would even have that a power of a is in [P, u],
and a power in [P, v]. Now uvÇ^P implies (u'v+uv')u'vÇzP, whence (w'»)2GP,
u'vÇlP, and more generally ii(i)«fflGP. Hence [P, «]• [P, »]ÇP, so a power
of a is in P, contradiction. In the case of arbitrary characteristic it remains
to prove the following lemma. Kolchin [3, §3] has this result, but it is well,
for later purposes, to have a proof before our eyes.

Lemma. // uv is in the perfect ideal P, then \P, u\ ■ \P, v) ÇP.

Proof. Let Ao= [P, u], let ^4i = the differential ideal generated by the ele-
ments G such that G^G^o for some p, and let A, be defined recursively as
the ideal generated by the G such that G"G^4¿-i for somep; define B0= [P, v],
Pi, P2, • • • similarly. We have A0Cl{P, u\, whence also AiÇl{P, u\, and
now inductively that AicZ.{P, u). Hence \JAiQ{P, u\. Conversely, let
G'GU^í; then CG^i, for some i, so G£^4<+i, whence GGUtI,, i.e., IL4,- is
a perfect ideal, so {P, u} Ç2\JA{. Hence {P, u\ =IL4; and similarly {P, v}
= UPj. We have seen already that Ao-BoÇ^P; the proof will be complete
upon showing that AiBiQP. We use induction. The ideal Ai is generated
by G's such that GpG^4¿-i', let G be such a generator with GpG-<4i-i, and let
H similarly be a generator of B¡, say FPGP.-i- Then (GFfF'G^L-iPi-i^P,
so GHGP, and also GCi)Pí(í) by a previous calculation. Hence AiB(QP, and
the proof is complete.

The following theorem, taken in conjunction with the above, amounts to
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the strong Nullstellensatz. Since dimension has so far been considered only
for characteristic 0, the theorem is at this point necessarily subject to that
restriction.

Hilbert's Nullstellensatz (strong form). Let P be an r-dimensional
prime ideal in R = F{Ui, ■ ■ • , Un\, r>0; i.e., d.d.t. F(ui, • • • , un)/F = r,
where F{uu ■• • , un\ =R/P. Let a£P, a(£P. Then there exists an (r — 1)-
dimensional prime ideal Q, PCZQ, such that a(£Q.

Below, in §8, we offer a very brief proof of this theorem. The following
proof introduces two points not strictly necessary for a proof. One is the fol-
lowing lemma. In the case « = 1, if P is a proper prime ideal, then R/P
= F{u], and F(u) = F(u, u\, ■ • ■ , ur) is a field of algebraic functions of r
variables, u, ux, ■ ■ ■ , ur-i algebraically independent over P. The lemma is
the converse.

Lemma. Let F(u, Ui, • ■ • , ur) be afield of algebraic functions of r variables,
with uT algebraic and separable over F(u, «i, • • • , wr_i) ; P, a differential field.
Then there is one and only one way to convert F(u, ■ ■ ■ , ur) into a differential

field so that u' = Ui, u[ =u2, ■ ■ ■ , u',_x — ur.

This is a well known result; see for example [8, chap. I, Prop. 15, p. 12].
Proof of the theorem. We may suppose that u%, • • • , Ur are algebraically

independent over P. Since r>0, F(ui, ■ • -, ur) contains nonconstant elements,
so there exists a w such that F(ui, ■ • ■, ur, w) = F(ui, ■ ■ -, un). The element w
satisfies an equation G(Ui, ■ ■ ■ , Ur; W, Wi, • ■ ■ , Wt+i) =0, where t is as
small as possible and G is irreducible in p{ Ui, ■ ■ ■ , Ur] [W, ■ ■ ■ , Wt+i].
Note that if H(U; IF) is in this last ring and H(u; w)=0, then
H is divisible by G in that ring. Let S = dG/dWt+i. We have wr+1
-Mui, ■ ■ ■ ,ur; w)/d(ui, ■ ■ ■ ,ur;w, ■ ■ ■, wt), where fit d£F{ Uh ■ ■ ■, Ur; W].
Let 1/S(m; w) =g(ui, ■ ■ ■ , ur; w, ■ • ■ , wt+i)/e(ui, ■ ■ ■ , ur; w, ■ ■ ■ , wt) and
let l/a(«i, • • • , u„) —h(ui, • ■ ■ , ur; w)/ei(uu ■ ■ ■ , ur; w, ■ ■ ■ , w¡), where
g, h, e, eiGP{ ¿Pi, • • • , Ur; W\, and, moreover, we may write d = e = ex;
note that Sg — e is divisible by G. We now define a differential field by bind-
ing Ui, ■ ■ ■ , Ur, but in such manner that not all the coefficients of
d(Ui, ■ ■ ■ , UT; W), regarded as a polynomial in IF, ■ • • , Wt, become equal
to zero, i.e., we have a field F(«i, ■ • • , wr), of d.d.t. r—1 over P, and such
that d(üi, ■ • • , ûr; W)¿¿0; moreover, we can also require, and do, that
G(üi, ■ ■ ■ , ür; W, ■ ■ ■ , Wt+i) he of positive degree in Wt+i- Then
G(ûi, ■ ■ ■ , ûr; W, • • ■ , IFí+i) will have an irreducible factor over
F(üi, ■ ■ • , ür) of positive degree in Wt+i, and through it we define, in the
canonical manner, a differential field F(u~i, ■ ■ ■ , ür; w); it will then be so
that d—d(üi, ■ ■ ■ , úr; w)^0 and S = S(ûi, ■ ■ ■ , ür; w)j¿0. Define
ür+i=fi(ü, w)/d(û, w). We now prove that H(ui, ■ ■ ■ , u„; w)=0 implies
H(üi, ■ ■ • ,   ün;   w)=0;   in   particular   it   will   therefore   be   true   that
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a(üi, • • • , ün)p¡0. Let (d(U, W))"H(Ui, ■ ■ ■ , Un; W)-+Hi(Ui, ■ ■ ■ ,Ur;W)
under the substitution Ur+i-+fi(U\, ■ ■ • , Ur; W)/d, where p is chosen suffi-
ciently high that Hi be a polynomial. Further, let (S(U, W))"Hi
=Hi(Ui, • ■ ■ , Ur; W, • • • , IF(+i) mod [G]. It is sufficient to prove
H2(ûi, ■ ■ ■ , ür; w) =0, and we have P2(wi, • • • , ur; w) =0. But P/2(w; w) =0
implies Hi(U, W)=A(U, W)-G(U, IF), whence H2(ü, w)=A(ü, w)-G(ü, w)
= 0. If «i, • • ■ , ün determine Q in F\ Ui, • • • , Un\, then Q is a prime ideal
of the type sought. Q.E.D.

While Ritt has not explicitly stated, in [ó] at any rate, the strong form
of Hilbert's Theorem, he does have, in a special case, a theorem much stronger
than the weak form. In the case in question, F is the field of functions
meromorphic throughout a given open set A of the complex plane. A point is
then defined as the composite notion of an open set B, BÇZA, and a system of
functions Ui(x), • • • , un(x), m,-(x) analytic in B. Hilbert's Theorem continues
to hold. Applying the strong form of the theorem, one could prove this
theorem using a minimum amount of analysis.

5. The chain theorem. Let F be a differential field, Ui, ■ ■ • , Un dif-
ferential indeterminates. The ascending chain condition does not hold in
S = F{ Ui, ■ ■ ■ , Un} for ideals in general, but it does hold for the perfect
ideals. We give a new proof, first establishing the following (for ground-fields
of characteristic 0).

Theorem 2. (A) The ascending chain condition holds for prime ideals.

(B) Every perfect ideal is a finite intersection of primes.

We may remark that (A) can be proved very simply using the theory of
transcendency, both differential and ordinary. We shall want Theorem 2 in a
slightly more general situation, however, as in the following lemma.

Lemma. Let R be an integral domain (in the algebraic sense, and of arbitrary
characteristic). If the conditions (A) and (B) hold in R, then they also hold in
R[U], where U is a single algebraic indeterminate. If R is a differential domain
containing the rational numbers, then the like is true of R and R { U}, where U
is a differential indeterminate.

Proof. Let A=f)Pa be a perfect ideal in 5 = P[i/]. The ideal A' = Rf)A
contains some prime ideals, for example, (0) : let P' be a maximal prime ideal
in P contained in A'. Since the ascending chain condition holds for prime
ideals in P, we may assume, inductively, that any perfect 5-ideal whose
contraction to R contains a prime ideal properly containing P' is a finite
intersection. Now A' is clearly perfect, so by induction A' =P{ C\ ■ ■ ■ C\P¿ .
If A' 9±P', then each P.- DP' properly. Let Ai = f\Pa over those Pa containing
Pi ; then each Ai is a finite intersection, whence A =Aif~^ ■ ■ ■ C\Ak is also.
Thus we may assume A' —P'. We now consider polynomials G(U) = J^c.-i/*
E.A. Let G( U) =^Ci U\ where the c< are the residues of the a mod P'. If all
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G(U) =0, one sees easily that A is prime, and is the extension of P' to S. We
may suppose, then, that there are G(U)(E.A such that G(U)^0, and of these
we choose one, G(U), to be of minimal degree d. For each perfect S-ideal A
contracting to P' we have then defined an integer d=d(A), and may assume in-
ductively that any perfect S-ideal contracting to P' and having a degree less
than d.is a finite intersection. Factor G(U) in S[i/], where S = quotient-field of
R/P': JG = Gi ■ ■ ■ G*,jvhere Gt(U) is irreducible in S[P], and AER/P' has
been so selected that Gi has coefficients in R/P'. Let Ai = f)Pa over those Pa
containing Gi(U): if s>l, then either Ai contracts in P to something con-
taining P' properly or the degree of Ai is less than d; in either case Ai is a
finite intersection, and hence so is A =AiC\ • ■ • f~\Aa. Thus we may assume
that s = l, or that G is irreducible. Let/ be the leading coefficient of G: IE.P'
by the minimal condition placed on G. Let Ai = HP,, over those Pa containing
/, A2 = C\Pa over those Pa not containing /. The ideal ^4i is a finite intersec-
tion, so we may suppose A =A2, i.e., that I^Pa for every a. Hence in particular
F HE A implies HE:A. Under these circumstances, however, A is even prime.
In fact, let PP(U)H2( U) EA. Reduce the degrees of Hh H2: PHi = H{ ( U) (G),
PH2=Hi(U) (G), where deg Hi (U) <d, i=l, 2. We have HiHiEA, and
from Hi EA follows HtEA. Let I*H{H{ =R(U) (G), where deg R(U)<d.
Then PHI HI is divisible by G in 2 [U], and this implies Hi =0 or Hi =0,
whence Hi EA or HI EA. Thus A is prime, and the proof that a perfect ideal
is a finite intersection is complete. The proof that the ascending chain condi-
tion holds for prime ideals in S follows in quite the same way: in fact, one
shows easily that if S-P'C(?i£(?2, where Ci, Q2 are prime ideals contracting
to P' and QiDSP' properly, then Qi = Q2.

The proof of the second point is almost the same, and could easily be
carried through without the introduction of any further general remark.
The following corollary, which will be useful below, may, however, also be
used here. Let M be a set of prime ideals in a ring P and define an Af-perfect
ideal as an intersection of M-prime ideals.

Corollary. If conditions (A) and (B) hold for the M-prime and M-perfect
ideals in an (algebraic) ring R, and (0) E M, then they also hold for any set
N of prime ideals in R[U] and their N-perfect ideals, provided that the con-
traction of an N-prime ideal is an M-prime ideal and that an N-perfect ideal
which is prime is an N-prime ideal.

To apply the corollary to R and S = R{u}, introduce the rings S<
= R[U, Ui, • • ■ , Ui], and let the Mi-prime ideals be those prime ideals
which are contractions of prime or perfect differential ideals in P{ U\ ; in R,
the Af-prime ideals are the differential prime ideals. Then one sees that con-
ditions (A) and (B) hold in S¿ for the il/j-ideals. Let now A = f\Pa he a per-
fect ideal in P{ U] : as before we suppose that Ar\R = P' is prime, that the
theorem holds for any perfect ideal whose contraction  to R contains P'
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properly, and that A^R{ U}P'. Let G(U, Uu ■ ■ ■ )EA, with coefficients
not all in P', and of minimal total degree in U, Ui, ■ ■ ■ ; we may, and shall,
also suppose that none of the coefficients of G is in P'. Let G = G(U, ■ ■ ■ , Ur)
effectively involve Ur, but not Us, s>r, say deg G in Ur is d. The leading
coefficient of G, i.e., the coefficient of Udr, is not in P{ U] P', hence also the
leading coefficient of S = dG/dUr is not in P{ U\ P'. Hence 5 is not in A,
being of too small degree. Thus 5 is not in every Pa, and separating off
those Pa containing 5, we may suppose 5GP«, every a: in particular, then,
S"HEA implies HE:A. We can now further suppose that Ar\R\U, ■ ■ ■ , Ur]
= Pr' is prime. Under these circumstances, A is prime. In fact, let HiH2EA.
Noting that 5 is the coefficient of Ur+i in G(i), we see that for some p, a,
S"Hi=Hl (A), S"H2=m (A), where HI, IIIER[U, • • -, Ur]. Since
Hi HI El A, also Hi HI EPr , Hi or III is in P'r, hence in A, and H_ or H2
is in A. This completes the proof for (A), and (B) follows similarly.

The chain theorem follows readily from (A) and (B), without reference to
any special differential concept. For let AiÇlA2çZ • • • be a chain of perfect
ideals, and let each Ai be written as an irredundant intersection of a finite
number of prime ideals. Let PiÇP2C • • ■ be a chain of prime ideals, where P,
occurs in Ai. Each such chain involves only a finite number, say n, of prime
ideals. Then n must be bounded. For if not, then there is some prime Pi of
Ai which initiates, for any n, chains of length ~¿.n. Take chains of length
n^.1,2, • ■ • and beginning with Pi. In all these we may have Pi = P2= ■ ■ ■
= Pi, but there is some i such that P»CP>+i for some, and hence every,
such chain (because Ai+i has been written irredundantly). There are only a
finite number of possibilities for P,-+i, so what has been said for Pi also goes
for some P,-+i containing Pi properly. In this way we get a proper ascending
chain of prime ideals: impossible. So n is bounded. Let there be chains of
length N, but none of length greater than N. We make an induction on N.
Each Pi+i contains some P„ and if AíC.Aí+í properly, then either at least
one Pi+i contains some P,- properly, or Ai+i has less primes than At: if N= 1,
then the first possibility is excluded, and the chain AiQAiQ • • • is finite.
Suppose now that Pi = P2= • • • =PíCP¿+i£ ■ • ■ is a chain of length A^> 1 :
call the pair (P¿, i) an initiator. If (P,-, i), (P¡, j) are initiators and i^j, say
j>i, then also Pi^Pj, for otherwise Pj( = Pj) would be a prime ideal of ^4,-+i,
and that is not so. Each P, of an initiator is a prime ideal of Ai, so there are
at most a finite number of initiators. Let i be maximal over the indices of
the initiators. Then the theorem follows by induction on A <+i Ç^A ,-+2 Ç • ■ • .

6. The case of characteristic p^O. To extend the results of §2 one must
first decide what one shall mean by the element u being algebraic over a
differential field. Let w be the prime field of ch. p9í0, x an indeterminate in
the algebraic sense. Convert F = t(x) into a differential field by setting each
derivative equal to zero. In the polynomial ring S = F{U}, consider the ideal
P = S-(Up — x), generated in the algebraic sense. One sees that P is a prime
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differential ideal, that the residue u of U in S/P is algebraic in the previous
sense, but that u' is not algebraic in that sense. Here S/P has infinite degree
of transcendence (in the algebraic sense) over P. One ought at least to re-
quire of an algebraic quantity u that F(u) be of finite degree of transcendence
over P, but this is not sufficient, as axiom II would fail.

Example. Let ir be the prime field of ch. p^O. Let x, Xi, ■ • ■ be a se-
quence of indeterminates in the algebraic sense, and convert P = ît(x, Xi, • • •)
into a differential field by setting every derivative equal to zero. In the ring
S = F{ V], consider the ideal P = S(V"Xi- Ffx, V¡x3- V¡x2, ■ • •) generated
in the algebraic sense (Fi=F', V2=V", ■ ■ ■ )■ One verifies immediately
that P is a prime differential ideal: in fact, if t, t2, tit ■ ■ ■ is a sequence of
indeterminates (in the algebraic sense), then (t, t(xi/x)1,p, t2, t2(x3/x2)1,p, ■ ■ ■)
is a "general point" of P. If v, Vi, • ■ ■ are the residues of F, Vi, • • ■ in S/P,
one sees that F(v) is not of finite degree of transcendence over P. In P
= F(v){ U], let Q = T(xUp — vv, x2Ul~vv2, ■ ■ ■ ), generated in the algebraic
sense. Here also Q is a differential prime ideal in P, and if u is the residue of
U in T/Q, then F(v, u) is of infinite degree of transcendence over F(v). On
the other hand, each p< is algebraic over F(u).

We therefore propose the following definition.
Definition. The element u is said to be algebraic over P if F(u) is a

finite extension of P.
The results of §2 then continue to hold. Axiom I is trivially verified; III

follows from the fact that if K, L, M are fields, KQLQM, and M/K is finite,
then so is L/K. As for II, adjoining Ui, ■ ■ ■ , m„._i to P, and calling the
other two elements u, v, we have to see that if v is algebraic over F(u) but not
over F, then u is algebraic over F(v). Let, then, F(u, v) = F(u)(v, vi, ■ ■ ■ , vr).
We have vr+i=P(u, ui, ■ ■ ■ , ut, v, ■ ■ ■ , vr)/Q(u, ■ ■ ■ , ut, v, ■ ■ ■ , vr), P, Q
polynomials. Let us use this relation to compute vr+2, vr+3, • • • , the de-
nominators being always powers of Q. In computing vr+2, iv+i and ut+i may
arise in the numerator: eliminating vT+i by the above relation, we have
iv+2 = Pi(m, ■ ■ ■ , Ut, ut+i, v, ■ • ■ , vr)/Q", and the degree of Pi in ut+i is at
most 1. Here Pi may not actually involve ut+i, but at any rate one sees that
the order of the highest order derivative of u appearing in the numerator
increases by 0 or 1 (or possibly decreases); and the like is true in passing
successively to vr+3, vT+i, ■ ■ ■ . Now the order of this highest derivative can
not be bounded, as otherwise F(v) would be finite over P. And since this
order increases by either 0 or 1, one sees that it takes on all the values t,t-\-l,
t-\-2, • • • . The increase from us to w8+i gives a linear relation in m,+i, and so
we have that F(v, u) is a finite extension of F(v), i.e., u is algebraic over F(v).

To extend the results of §3 one might think, keeping in mind the abstract
algebraic results, that the first thing is to define separable quantity. It turns
out, however, that the theorem of the primitive element has nothing to do
with questions of separability, at_least subject to the definition of algebraic
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quantity given above. In fact, if u and v are each algebraic over P, then
F(u, v)/F as well as F{A)(u, v)/F(A) are finite. Now any subfield of a finite
extension is also finite, and from any system of generators, a finite subsystem
of generators can be selected. Hence u+Av is algebraic over F(A) and for some
r, (u+Av)w EF(A)(u+Av, (u+Av)', ■ ■ ■ , (u+Av)<-r-l)). As before, taking a
partial with respect to A(r), one obtains F(A)(u+Av) = F(A)(u, v).

The results of §3 would now carry over provided we have the theorem
on satisfying polynomial inequalities. Here again the theorem depends on
the nature of the base field, but it is not sufficient to have a nonconstant
element.

Example. Let it be the prime field of ch. 2, 7r(£) a differential field with
¿' = 1. Then A" is a nonzero polynomial which vanishes for every AGt(£).

If F is a differential field, then the constants in F form a field F0, the
constant field. If an element £ in F is separable over Po (in the algebraic sense),
then one sees immediately that £GF0. In the case of ch. 0, if £ is nonconstant,
then this shows that £ is transcendental over P0, in particular F/Fo has no
finite linear basis. This is the main condition that the theorem on satisfying
polynomial inequalities hold.

Theorem 3. The theorem on satisfying polynomial inequalities over F holds
if and only if F has no finite linear basis over its constant field Po.

Proof. By a lemma of Ritt [6, p. 34], the proof of which is a simple in-
duction and in no way depends on the characteristic, elements vu ■ ■ ■ , r¡,EF
are linearly dependent over Fo if and only if

Vi       ■ • • V*

v.      • ; • »'        = o

(J-1)       ■ (s-l)
Vi        ■■■■>!-

Let F/Fo be finite, and let s> [F:F0]. Form a polynomial P(A) by replacing
in the above determinant Aci) for rji. Then P(A)p=0, but P(A) =0 for every
A £ P. Conversely, let G(U, • ■ ■ , Uj)9i0 be a given polynomial, and let
¿fo, • • • , £sGF be linearly independent over F0: we propose to show that G 9^0
is satisfied for some l7 = Co£o + ■ ■ • +c£s, the dEFo. In doing so, we may as-
sume inductively that the theorem holds for any polynomial (involving only
U, ■ ■ ■ , Us) of total degree (in U, ■ • ■ , U3) less than the total degree of G:
the theorem being trivial for total degree zero, we shall suppose G to have
positive degree. Suppose, then, that G were also a polynomial in Up, • • • , Uf.
Let Wi, w2, ■ ■ ■ be a (possibly infinite) linear basis of F/Fp. Then G = GxWi
+GiWi+ ■ ■ ■ .where GiEF*[Up, ■ ■ ■ , Uf]. Let Gi(U)^0 and P = c„£0
+ • • • +£«£» such that Gj/p(co£o+ ■ • ■ +c£s)9£0: such an element exists by
induction, and also does not annihilate G. We may suppose, then, that G is

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1952] SOME BASIC THEOREMS IN DIFFERENTIAL ALGEBRA 185

not a polynomial in Up, • • • , Pf, which we can express by saying that
some dG/dUi7¿0. The proof is now parallel to Ritt's, where he has written
1» £» • • • > ?* instead of £o, • • ■ , £». In fact, suppose G(c0£o + ■ • • +£»£») =0
for all (co, C\, ■ • ■ , c„), CiGPo- Let -k he the prime field of P, and ££F, ^EFo-
Then £ is not algebraic over w (in the algebraic sense): in fact, suppose for a
moment it were, and let f(X) =0 be an equation of least degree satisfied by £
over ir. Then/(A) is separable, since ir is perfect, so/'(£) -£' = 0 yields £' = 0,
a contradiction. Hence in particular Po contains infinitely many elements,
all the elements of ir(£p) for example. Hence taking the partials of
G(c0£o+ " " - +cs£s) =0 with respect to the c,- yields true relations. Thus we
get:

dG dG      . dG      (s)
—- So + —— & + ••• + —- £o   = 0,au       au i au,
dG dG    , dG

dG dG     , dG     ta)
au       au i au,

whence, since dG/dUi^0 for an appropriate choice of the c¿, we get that the
determinant of these equations equals zero, and hence that £o, • • • , £< are
linearly dependent over Po, by the lemma of Ritt already referred to above:
this is a contradiction.

Hence, the theorem of §3 on the primitive element also holds more generally,
with a condition on the base field F, but without restriction on the characteristic.

As for the chain theorem, we must first settle on the definition of prime
ideal: the old definition is certainly not sufficient.

Example. Let ir = the prime field of ch. p ^ 0, x, x\, ■ ■ -a sequence of (alge-
braic) indeterminates, and F = ir(x, Xi, ■ ■ ■ ) a differential field in which
every derivative is zero. In S=F{u], let Pi = S(Up — x, ■ ■ ■ , Uf — Xi),
generated in the algebraic sense: one sees that also P¿ is differential and
prime. On the other hand PCPiC • ■ • is an infinite ascending chain of prime
ideals.

In this example, S/P is of infinite degree of transcendence over P. Even
requiring S/P to be finite is not sufficient, however. The chain theorem for
prime ideals would, indeed, obtain, but the finite intersection property
fails.

Example. Let S be as above; let P( = S- (Up — x, • • • , U?_1 — x,_i, Ui,
Ui+i, ■ ■ ■ ) (i= 1, 2, ■ ■ ■ ; co) in the algebraic sense. One verifies immediately
that Pi is a differential prime ideal. On the other hand, A= DP, is not a
finite intersection. In fact, A =S- [U(UP — x), Ui(Ul-Xi), ■ ■ • ], generated
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in the differential sense, i.e., these generators and their various derivatives
generate A in the algebraic sense. The minimal prime ideals of A are just
the Pi, so A cannot be a finite intersection.

Thus it becomes fairly clear that at least in S=F{U} it should be re-
quired of an allowable proper prime ideal that F(u)/F, where u is the residue
of U mod P, satisfy some separability condition, in addition to the require-
ment that it be finite. We take the following definition, which is the current
one in the algebraic theory (see [l, p. 68]), and which appears to be suitable
for the differential theory as well.

Definition. Let KQL, K, L, be fields (of ch. p^O). L/Kis said to be sep-
arable if elements in L linearly independent over K are still such over Kllp.

We define allowable prime ideal accordingly.
Definition. A differential prime ideal P in S = F{ Ui, ■ ■ ■ , U„} will be

said to be allowable if F(mi, • • • , u„)/F is separable, where F\ui, ■ • ■ , un\
= S/P.

In 5 = F{ Ui, ■ ■ • , Un}, we define an allowable perfect ideal as the intersec-
tion of allowable prime ideals, but it is not immediately clear that an allowable
perfect ideal which is prime is an allowable prime ideal. We need an ideal-
theoretic or ring-theoretic criterion for an allowable ideal. Let Zi, z2, • • ■ EF
he a /'-basis for F/Fv, i.e., every element of F can be written uniquely as a
polynomial in the zs-, with no exponent exceeding p — 1, and with coefficients
in Fp. One easily defines differentiations d/dz,- over Fp such that dz,-/dz,- = 1,
dzj/dzi = 0 iijpsi, and dt/j-/dz,- = 0.

Theorem 4. Let P be a prime ideal in S = F{ Ui, • ■ ■ , U„}. Then P is
allowable if and only if Pi~^F[Ui, U'i, ■ ■ ■ , U"n, U'np, ■ ■ ■] is closed under all
the differentiations d/dz,.

Proof. Let «i, • • • , un be the residues of Pi, • • • , £/„. F(ui, • • ■ , un)/F
is separable if and only if Fp(u\, u'jf, • • • , uvn, u'£', ■ ■ ■ )/Fp is separable,
and this will be the case if and only if GiWi + G2w2+ • • • =0 implies
that each G¿ = 0, where GiEFp(u\, ■ ■ •) and wi, w2, ■ ■ • is a linear basis of
F/Fp. We may suppose that GiEFv\u\, ■ ■ ■ ], and the íd¡ to be the power
products of the z¿ with exponents not exceeding p — 1. The differentiations
d/dz, are introduced merely as a convenient device for deducing G¿ = 0 from
G\Wi+G2w2+ ■ ■ ■ =0.

Corollary. An allowable perfect ideal which is prime is an allowable prime
ideal.

Remark. The above ought, no doubt, to be the basis of defining an allow-
able ideal in general. If we do take this definition in general, then we recover
Hilbert's Nullstellensatz (weak form) as a theorem. In fact, the leading state-
ments in the above proof are still true if [ ] and { } are taken in the (present)
narrower sense, but these do require some further substantiation. Let A, P
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be as before, except that now they are allowable. Let ^40 be exactly as before,
i.e., generated in the (previous) wider sense by P and u; and similarly for P0.
As before we have A0BoQP. Let ^40' be generated in the wider sense by ^40
and the partíais with respect to the z,- of the elements in A 0r\F[U', UI, ■ ■ ■ ];
and similarly for P0'. Let CEA0r\F[UÏ, U\, • ■ • ], DEB0. Then d(CD")/dzi
= Dp-dC/dZiEP, whence (DdC/dz-)pEP and DdC/dziEP. Using the cal-
culation proving Ao-BoÇ^P, we see that ^40' -Po£P; and repeating the argu-
ment, that .4o' -Po' £P. Let ^4i be the ideal generated in the wider sense by
the G such that GPEA¿ for some p; and similarly for Pi. As before we get
Ai-BiÇ^P. Defining Ai, P¿, Ai, Bi recursively, and repeating the above
argument an infinite number of times, we get {P, u\ ■ {P, v\ Ç.P.

We are now in position to prove the chain theorem.

Theorem 5. In the case of ch. py^O, conditions (A) and (B) continue to hold
for the allowable prime and perfect ideals.

Proof. Let A =flPa be an allowable perfect ideal in S = F{ Ui, ■ ■ • , Un\ ;
we may suppose A 5^(0). Let GEA, G¿¿0, G of minimal degree in Ui, ■ • ■, Un
and its derivatives: this degree may, trivially, be supposed positive, and
further, we may assume inductively that every allowable perfect ideal con-
taining an element of smaller degree is a finite intersection. Now G
EF[Ul, U'i", ■ • ■ , UI, U'nv, ■ ■ ■]. Forif it were, then G = G>i+G2w2 +
where Wi, w2, ■ ■ ■ is a linear basis of F/Fp, and GiEFp\U\, • ■ ■ ]. Since A is
allowable, all the G,EA, hence G]/pEA and not all Gj = 0; this contradicts
the minimum condition on G. So at least one of the variables in G occurs with
exponent not divisible by p, say Unr, the rth but no higher derivative of Un,
occurs with such exponent t: Un¡, s>r, may occur, but with exponent di-
visible by p. It is convenient, and we may assume, that no such terms
Une, s>r, occur; namely, adjoining (for a moment) UW, s>r, to the ground-
field, we see that the coefficient of Un,r+i in G' is dG/dUnr, in particular then
G'^O, and Pn,r+i occurs with exponent not divisible by p; deg G'=deg G,
and we replace G by G'. Replacing G by a still higher derivative if necessary,
we may assume that deg G = 0 in Pns, s>r. The coefficient of U'nn being of
too small degree, is not in A ; it may be in some of the P„, but separating
these off, we may suppose that it is not in any P„. As in the ch. 0 case, we
may suppose the theorem to hold for « —1 variables, and even that the
contraction of A to P{ Ui, ■ ■ ■ , Un-i\ [Un, • • • , Unr] is prime; here we
make use of the corollary to §5 just as in the proof of the second point of the
lemma. Under these circumstances, A is prime, and the proof for (A) is com-
plete; (B) follows similarly.

For an allied discussion of the above, see Kolchin [3].
7. Separable extensions. According to our definition of an algebraic

quantity, it is quite possible for an element u to be nonalgebraic over P and
yet each «, be algebraic (in the algebraic sense) over P.
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Example. Let F = w(x, Xi, • ■ ■), 7r = prime field of ch. p9ú0, x, x\, ■ ■ -a
sequence of (algebraic) indeterminates, and let a'= 0 for every aEF. In
S = F{U}, let P = S-(Up-x, U\~xi, ■ ■ ■). Then the residue of U mod P
has the desired properties.

This pathological feature does not appear in the case of separable exten-
sions. For explicitness we write out the definition of separable quantity.

Definition. The algebraic differential quantity u is said to be separable
over F if F(u)/F is separable.

Theorem 6. If u is transcendental over F and F(u)/F is separable, then
u, «i, m2, • ■ • are algebraically independent (in the algebraic sense) over F.

Proof. Suppose there were a nontrivial relation G(mi, • • • , ur) =0; then let
G(U, ■ ■ ■ , Ur) he of minimal total degree. If GEF[UP, U\, • • • ], then one
sees that we may assume G to have a term with Ur occurring with exponent
not divisible by p (by replacing G by a derivative, as in the proof of Theorem
5). In that event, however, F(u) = F(u, ■ ■ ■ , ur, ur+i). Suppose then that
GEF[Up, UI, ■ ■ ■ J.LetWi.w,, • • ■ be a basis of F/F". Then G(U) =d(U)wi
+ G2(U)w2+ • • • =0, with GiEF?{Up, U{, ■ ■ ■ ], not all G,-(P)=0, whence
also not all G,(m) =0. On the other hand, F^m*, u\, ■ ■ ■ )/Fp is also clearly
separable, so wu w2, ■ ■ ■ are also linearly independent over Fp(up, u\, ■ ■ ■),
a contradiction.

In precisely the same way one can establish the following.

Corollary. If d.d.t. F(mi, • ■ • , un)/F=n and F(ui, ■ ■ ■ , u„)/F is
separable, then the u,j are algebraically independent over F.

The situation for a separable algebraic quantity parallels the case of char-
acteristic 0.

Theorem 7. Let u be separable over F, and let d.t. F(u)/F = r. Then
m, Mi, • • ■ , Mr_i are algebraically independent (in the algebraic sense) over F, ur
is separable over F(u, ■ ■ ■ , ur^j), and F(u) = F(u, Ui, ■ ■ ■ , uT).

Proof. Let u, U\, ■ ■ ■ , ms-i be algebraically independent, but u, ■ • • , us
algebraically dependent over F. Let G(U, • • • , Uj), G9*0, he a polynomial
of least degree satisfied by m, • • • , m„ the coefficients of G being in F. As in
the proof of the previous theorem, we may assume U, occurs with an ex-
ponent not divisible by p; i.e., we conclude that F{u) = F(u, ■ ■ ■ , uj), whence
s = r, and the proof is complete.

Before proving the theorem of MacLane, we would like to consider two
examples which are somewhat related to the point in question.

Example. In the polynomial ring S = F{U, V}, the ideal P
= [P"-Fi, V-Ui] is prime. Let 5/P = F{m, v}. Then F(u, v) = F(u, v).
This field is separable over P, but v is not separable over F(m), nor is u
separable over F(v).
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Example. The sum of separable quantities is not necessarily separable. Let
■k be the prime field of ch. p>2, a, b algebraic indeterminates, and let
F = w(a, b), with a' = 0 for every aEF, S — F{U, V], a polynomial ring. One
verifies that P=[(U+V2)p+a(U+2V2)p-b, U-Ui, V-Vi] is prime. In
the residue class ring F{u,v\ ( = F[u, v]), u is transcendental (in the algebraic
sense), over P, so is v; u is separable, satisfying U= Pi, and v also is separable.
Moreover (v2)' = 2v2, whence v2 is separable; but w = u-\-v2 is not separable.
In fact (u-\-v2)p-\-a(u-\-v2)p — b= —av2p, so w is not algebraic (in the algebraic
sense) over P. Now w satisfies the irreducible polynomial Wp-\-aWl — b; so w
is not separable over P.

Theorem ofS. MacLane. Let F(ui, • ■ • , un)/F be separable and of degree
of differential transcendency t. Then for some relettering of the Ui, F(ui, • • • , u„)
is separable over F(ui, ■ ■ ■ , ut).

Proof. If t = n, there is nothing to prove. Let t<n, so that there exist non-
trivial relations of the w,- over P. Let G(Ui, ■ ■ ■ , i/J^O be such that
G(mi, • • • , w„)=0, and let G be of minimum degree in the Uy. Because
P(mi, • • • , u„)/F is separable and G is of minimal degree, we know that at
least one Uu occurs with exponent not divisible by p; say this is Unr. Now
drop the minimal condition of the degree of G, but assume that r is minimal;
i.e., un, is separable over F(ui, ■ ■ ■ , m„_i)(m„, • ■ ■ , m„,8-i) for s=r but this
is not the case for s<r. If now there are no nontrivial relations between the
uu, i<n or i = n, j<r, then we are through, since obviously t—n — 1 and
Ui, • ■ ■ , w„_i is the required separating transcendency basis. Suppose, then,
that there are such non trivial relations, or that /<» — 1. Let G(mi, • • • , un)
= 0 be such a relation, where G(Ui, ■ ■ ■ , Un) is of minimal degree. (Inci-
dentally, a straightforward induction does not seem to work.) Again we know
that at least one Un, i<n, occurs with exponent not divisible by p; say this is
£/„_i,ri. Now drop the minimal condition on the degree of G but assume that ri
is minimal; i.e., that un-i,¡ is separable over P(«i, ■ • ■, un-2)(un, ■ ■ ■, M„,r-i)
(m„_i, • • • , wn-i,s-i) for s = ri, but this is not the case for s<ri. If now there
are no nontrivial relations between the «y, i<n — 1, or i = n — l,j<ri, or i = n,
j<r, then we are through, since obviously t = n — 2 and «i, • • • , w„_2 is the
required separating transcendency basis. If, however, t<n — 2, then the
argument is to be repeated, and the proof will be complete after n — t applica-
tions of the argument.

8. The strong Nullstellensatz for arbitrary characteristic. The strong
Nullstellensatz does not hold for arbitrary prime ideals: in fact, above (§7,
first example) we gave an example of a 1-dimensional prime ideal P in R
= P{ U\ for which R/P is a field. The theorem holds, however, for separable
prime ideals; and in fact, the previous proof also holds here, since what is
needed is a separating transcendency basis, and this we have. The following
proof, however, may also be of interest.
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Proof. Let P/P = F{wi, • • ■ ,«„}, and let u\, ■ ■ • , ur be algebraically
independent over p. Since P(mi, • • • , ur)/F is separable and of degree of
differential transcendency r, one sees that the M,-y, i=l, ■ ■ ■ , r, satisfy no
nontrivial polynomial relations over P. One can now pick from the m„-, i>r,
a transcendency basis of F(mi, ■ ■ • , un)/F(ui, • ■ ■ , u,), say Vi, v2, ■ ■ ■ , v„,
and a linear basis wu • • • , wt of F(ui, ■ ■ ■ , un)/F{ui, ■ ■ ■ , ur)(vi, ■ ■ ■ , ve)
from the power products of the «</, i>r. Then there exists a
¿GP{mi, • • • , ur} [vi, ■ • ■ , vs] such that for any GGP{mi, ■ • • , un} we
can write d"G as a linear combination of the w's with coefficients in
F{mi, • • • , Mr} [vi, ■ • • , v,]. The element d involves a number of deriva-
tives of Mr, say up to urk- Take g\^_k and also so large that ur°+1\ u, + , • • •
be algebraically independent over 5 = F{ Mi, • • -,ur^i}[vi, • • ■, v„, wu ■ • • ,wt,
ur, ■ • • , urg]; this will be so if Wi, ■ ■ ■ , wt are algebraic (in the algebraic
sense) over F{Mi, • • • , Mr_i} [vi, • ■ • , vs, ur, ■ • • , urg]. Let 5*= {a/d"\aES,
p = l, 2, • • ■ }. Then 5*{m'"+1)} is a differential subring of P(mi, • • • , m„).
Let Q* he the ideal generated in the algebraic sense in 5*{m'"+1)} by
(urg+x), ure+2), ■ ■ ■ ) ; then Q* is clearly a proper prime ideal, and moreover
is differential. Let q = Q*(^F[ui, ■ ■ ■ , un}. Then g is a proper prime ideal
in F\Ui, • ■ ■ , un}, and it determines a proper prime ideal QZ)P in
F{ Ui, • ■ • , Un} ; if g is taken sufficiently large (so that dpa(u)ES), then
clearly also a(U)EQ (<x(U)E-Pi given). The residue class ring of Q* is just
(isomorphic, in the abstract sense, to) 5*, and P{mi, ■ ■ • , un}/q can be re-
garded as a subring of 5*; the quotient field of 5* is a subfield of the separable
field F(mi, • • ■ , un), whence it is separable and Q is allowable. This com-
pletes the proof.
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