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SOME BIORTHOGONAL POLYNOMIALS SUGGESTED
BY THE LAGUERRE POLYNOMIALS

H. M. SRIVASTAVA

Joseph D.E. Konhauser discussed two polynomial sets
{Y*(x; k)} and {Z2(x; k)}, which are biorthogonal with respect
to the weight function x%¢* over the interval (0, c0), where
a>—1 and & is a positive integer. The present paper
attempts at exploring certain novel approaches to these
biorthogonal polynomials in simple derivations of their
several interesting properties. Many of the results obtained
here are believed to be new; others were proven in the
literature by employing markedly different techniques.

1. Introduction. Konhauser ([10]; see also [9]) has considered
two classes of polynomials Y?2(x; k) and Z%(x; k), where YX(x; k) is a
polynomial in z, while Z%(x; %) is a polynomial in z*, @ > —1 and
k=1,2,8,.--. Fork =1, these polynomials reduce to the Laguerre
polynomials L!”(x), and their special cases when k = 2 were encoun-
tered earlier by Spencer and Fano [19] in certain calculations
involving the penetration of gamma rays through matter, and were
subsequently discussed by Preiser [16]. Furthermore, we have [10,
p. 303]
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(1.1)

which exhibits the fact that the polynomial sets {Y%(x;k)} and
{Z%(x; k)} are biorthogonal with respect to the weight function x%*
over the interval (0, =), it being understood that @ > —1, k is a
positive integer, and 4,; is the Kronecker delta.

An explicit expression for the polynomials Z2(x; k) was given by
Konhauser in the form [10, p. 304, Eq. (5)]
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(1.2)  Zi(w; k) = o 2D <j>r(kj+a+1)'

As for the polynomials Y2%(x; k), Carlitz [3] subsequently showed that
[op. cit., p. 427, Eq. (9)]
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where (A), is the Pochhammer symbol defined by
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The object of the present paper is to show that several inter-
esting properties of the biorthogonal polynomials Yi(x; k) and Zi(x; k)
follow fairly readily from relatively more familiar results by applying
explicit expressions (1.2) and (1.3). A number of properties thus the
derived are believed to be new, and others were proven in the
literature by employing markedly different techniques.

2. The biorthogonal polynomials Y3(z; k). We begin by recal-
ling the polynomials G!*(x, », p, k) which were introduced by Srivastava
and Singhal [24] in an attempt to provide an elegant unification of
the various known generalizations of the classical Hermite and
Laguerre polynomials. These polynomials are defined by the gener-
alized Rodrigues formula [op. cit., p. 75, Eq. (1.3)]

@Y 6,7, p, ) = TR BE) g el exp(—pan))

where D, = d/dx, and the parameters «, k, p and + are unrestricted,
in general. We also have the explicit polynomial expression [24,
p. 77, Eq. (2.1)]
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On comparing (2.2) with Carlitz’s result (1.3), we at once get the
known relationship [23, p. 315, Eq. (83)]

@2.3)  Yea; k) = k"G, 1,1,k), a>—1, k=1,28,---,

which evidently enables us to derive the following properties of the
Konhauser biorthogonal polynomials Y2(xz; k) by suitably specializing
those of the Srivastava-Singhal polynomials G®(x, r, , k).

1. Rodrigues’ formula. In (2.1) we set p = » = 1, replace a by
a + 1, and appeal to the relationship (2.3). We thus obtain
x-—lm—-a—lex _
(2.4) Yi(w; k) = ———————(@""D,)"{x" e},
k™ n!
where, by definition, @« > —1 and k is now restricted to be a posi-

tive integer.
Alternatively, we may recall that [15, p. 802, Eq. (2.6)]
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k—a~—1,x
(2.5) Y(x; k) = x — (4 Dr{sn= 1@ vk gxp (— gk} ,
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which indeed is equivalent to

k—a—1,x
(26)  Yilw; h) = TS5 D) s exp (=8 )t

since
(2.7) @D, )"g(®)} = x*MDp{x"'g(x)}

for every non-negative integer n.

Now we set s = z* and s2D, = k~'2*"'D, in (2.6), and the Rodrigues
formula (24.) follows at once.

Incidentally, the Rodrigues type representation (2.4) is due to
Calvez et Génin [2, p. A4l, Eq. (1)]; it is stated erromeously in a
recent paper by Patil and Thakare [12, p. 921, Eq. (1.2)].

II. Recurrence relations. In view of the relationship (2.3), the
known results [24, p. 80, Eq. (4.3), (4.4), (4.5) and (4.6)] readily yield
2.8) kn -+ 1)Y5 (k) =2D,Ya; k) + (kn +a — 2+ DYx; k),
(2.9) DY (w; k) = Yi(o; B)Y s k)

210) (@ —k + 1DY2x; k) = aYeta; k) + (n + DEYS Xa; k)
and
2.11)  kn + 1)Y5 (k) = (bn + a + 1)Y3(x; k) — 2Y i (2 k) -

The recurrence relation (2.8) was given earlier by Konhauser
[10, p. 308, Eq. (16)], while (2.9), (2.10) and (2.11) are believed to
be new. Notice, however, that by eliminating the term 2Y*"(x; k)
between (2.10) and (2.11) we obtain

(2.12) Yisi(w k) = Yiu(os k) — Yo k),

which is equivalent to the familiar generalization (cf. [10], p. 311)
of a well-known recurrence relation for the Laguerre polynomials
[18, p. 203, Eq. (8)].

III. Operational formulas. Making use of the relationship (2.3),
we can specialize the Srivastava-Singhal results [24, p. 85, Eq. (7.5)
and (7.6)] to obtain the following operational formulas involving the
biorthogonal polynomials Y2(x; k):

@13) 6 +a+ib—o+ D=k 30y e,y
§=0 =0 j !
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and

-

1 &

2.14 Yi(x; k) =
(2.14) (w; k) ol 2

G+a+jbk—-oc+1)1,

where ¢ = zD,.

IV. Generating functions. From the known results [24, p. T8,
Eq. (8.2); p. 79, Eq. (3.4) and (3.6)], due to Srivastava and Singhal
[24], it readily follows on appealing to (2.3) that

oo

215) XN Y@ kit =1 — )" rexp@[l — 1 — 7)),

7=0
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(2.16) 3 Yt = (1 + O exp e[l — (L + ))

and
o (m + N
Yo (e b
(2.17) %( n ) #ol5 )

. (1 . t)~m—(a+l)/k exp(w[l . (1 . t)‘”"])Y‘;(x(l _ t)'l/k; k) ,

where m is a non-negative integer.

Furthermore, by using the definition (2.1) and the aformentioned
result [24, p. 79, Eq. (3.4)} it is not difficult to derive the generating
function

%=

‘m
S RN

n
(2.18) = (1 + kt)(“‘m/k] exp (px[l — (1 + E)*])
X GP@L + k) v, 0, k), k=0,

which, for p = 7 = 1, yields a generalization of (2.16) in the form:
>
=0

(2.19) = (1 + )% exp (@[l — (1 + £)"*])
XYool + 6" k), vme(0,1,2,---},

" i ”) Vet Ryt
n

where, by definition, k& is a positive integer.

The generating function (2.15) was derived earlier by Carlitz [3,
p- 426, Eq. (8)], while (2.16), (2.17) and (2.19) are due to Calvez et
Génin [2]. In fact, (2.15) and (2.17) were also given independently
by Prabhakar {15, p. 801, Eq. (2.3); p. 803, Eq. (3.3)].

Incidentally, in view of the known generating function [24,
p. 78, Eq. (3.2)] and Lagrange’s expansion in the form [13, p. 146,
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Problem 207]:

fQO &t . e
(2.20) To0® 2 p DAf@ls@I)
where
(2.21) £ =1(0), $0) = 0,

it is fairly easy to show that

i;o G;otﬂ-ﬂ%)([xr + ,n/y'r]l/'r, /r’ p, k)t”‘
(2.22) _ (A —wexp(pal — 1 — w) ) k=0
1 k@ — w(g — oy — w7’ ’

or equivalently,

i G;N*Fﬂn)([x‘r + ,},Ly'r]l/'r’ ,'.’ p’ k)t’n
(2.23) =
_ 0 oexpall — A+ o) 4L
1 —Ek[p —roy@d + v)*] ’

where u and v are functions of ¢ defined by

(2.24) u =kt — w)y " exployl — A —uw)"*]), w0 =0
and

(2.25) v = kt(l + v)*0% exp(py [l — (1 + v)7*]), »0)=0.

In their special cases when p = » = 1, (2.22) and (2.23) obviously
yield the following generating functions for the Konhauser poly-
nomials Y(x; k):

_ (A —9 M exp(a[l — (1~
1—k761 —97e —yd — 9™’

where & is a function of ¢ defined by
(2.27) g=1t1 —& "expy[l — A -8, £0) =0;

A + peFexp (@[l — A + DY)
1 —Ek[p — y@ + 9]

(2.26) 3 Yitm(e + ay; Bt

’

(2.28) 3 Y&E(w + my; bt =

where 7 is a function of ¢ given by
(2.29) =11+ NP expy[l — A + N, 70)=0.

For y = 0, the generating functions (2.26) and (2.28) are essen-
tially equivalent to the Calvez-Génin result [2, p. A4l, Eq. (2)].
{Indeed, their reductions to (2.15) when 8 = y = 0 and to (2.16) when
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B8 = —k and y = 0 are immediate.}] On the other hand, their special
cases when k = 1, involving Laguerre polynomials, were given re-
cenlty by Carlitz [4, p. 525, Eq. (5.2) and (5.5)].

From the Srivastava-Singhal result [24, p. 78, Eq. (8.2)] we fur-

ther have
(2.30) (@D, )y™{exp(—px )G (x, 7, p, k)}
' = (""/rp)m exp(_pxr)G;‘a+mr)(x, T, p; k) ’ m ; 0 ’

and
k3

(2.31) Geo(z + vy, v, 0, k) = >, G (x, r, p, K)GP (y, 7, D, k),

=0

which, for p = r = 1, yield the known results

(2.32) DMeYe(w; )} = (—L)me—*Ye+"(a; k), m =0

and

(2.33) Yersi(n 4+ y k) = 3, Yo(a; BY2_ (w3 k)
§=0

due to Génin et Calvez [8, p. A34, Eq. (6); p. A33, Eq. (2)]. {For
(2.33) see also [15, p. 803, Eq. (3.2)].}

Applying (2.80) in conjunction with Taylor’s theorem, we obtain
yet another new generating function in the form:

7n=0

231 3 GEa, 7, p, Bl = eGE (e — Upl k), m 20,
uz

which, in view of the relationship (2.3), reduces at once to the
Génin-Calvez result [8, p. A34, Eq. (7)]

(2.35) S Y k) = ¢ Vi@ — k), mZ 0.

We conclude this part by recoding the following special case of a
known result given by Srivastava and Singhal [24, p. 84, Eq. (7.3)];

(2.36) Vi k) = 3, (j -1 ;_a — B)/k

which is due to Prabhakar [15, p. 802, Eq. (3.1)]; for k =1, (2.36)
yields a well-known property of the Laguerre polynomialg [18, p. 209,
Eq. (2)].

Incidentally, the well-known special case y = 0 of (2.28) [with g
replaced trivially by kb], and an erromeous version of the Génin-
Calvez result (2.85), were rederived in a recent paper by B.K.
Karande and K.R. Patil [Indian J. Pure Appl. Math. 12 (1981),

> Yﬁ—a(x; k) ’
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222-225; especially p. 224, Eq. (12), and p. 223, Eq. (6)] without any
reference to the relevant earlier papers [2], [7] and [8].

V. Mizxed multilateral gemerating functions. The generating-
function relationships (2.17) and (2.19) enable us to apply the results
of Srivastava and Lavoie [23], and we are led rather immediately
to the following interesting variations of a general bilateral generat-
ing funetion [op. cit., p. 319, Eq. (107)]:

(2.37) “Z_‘a Yo i@ B4,y - -, Yn; 208

— (1 — t)—(km+a+1)/k exp (.’,17[1 . (1 — t)—l/k])
X Flel — 7%y, - -, yus 2871 — )]

and

(2.88) Z'o Yo B) A, (Y - - - Yws R

— (1 ’i" t)(u—k+1)/k exp(x[l . (1 + t)l/k])
X Gla(l + &%y, -+, yas 281 + 0],

where

(239> F[x, yly Ty yN’ z] = ',;I) Cnyfn+qn(x; k)An(yly Ty yN)z% *

(2.40)  Glz;y,, -, Yy 2]l = 2:_10 e, Yokin(ws k) d,(Ys, -+, Yn)Z™

¢, #= 0 are arbitrary complex constants, m = 0 and ¢ = 1 are integers,

and in terms of the non-vanishing functions 4,(y,, - -, yy) of N vari-
ables v, +++, Yy, N2> 1,

nial fm + 0 )
(2.41) Yy 0 Yn3 ) = 2 ( .\cjdj(yl, e, Y.

= \n — qj/

By assigning suitable values to the arbitrary coefficients ¢,, it
is fairly straightforward to derive, from the general formulas (2.37)
and (2.88), a considerably large variety of bilateral generating func-
tions for the polynomials Y%(x; %) and Y% **(x; k), respectively. On
the other hand, in every situation in which the multivariable func-
tion 4,(y, ---, ¥x) can be expressed as a suitable product of several
simpler functions, we shall be led to an interesting class of mixed
multilateral generating funections for the Konhauser polynomials con-
sidered and, of course, for the Laguerre polynomials when k =1,
and for the polynomial systems studied by Spencer and Fano [19]
and Preiser [16] when £k = 2.
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V1. Further finite sums. The results to be presented here are
in addition to the finite summation formulas (2.33) and (2.36) and
their general forms involving the Srivastava-Singhal polynomials
G, v, v, k). Indeed, from the known generating functions [24,
p. 78, Eq. (8.2); p. 79, Eq. (8.4)] it is readily observed that

#—1 _— 1
@42 GO, 7D, k>=2<—~k>f(” . )G“ Sy k)
= g

n—1 ’ —_ 1

243) G = Sw" )G 1, 7, )
=g

and

— 3k

@.44)  GoO@ v p k) =3 icf((“
= 7

which, on setting » = 7 = 1 and appealing to (2.8), yield the following
new results involving the Konhauser polynomials Y4(zx; k):

a1 in —1
(2.45 v b =5 (-0 v,
a1 in — 1 , .
(2.46) Vi = 5 (" paien
and
(2.47) v = 5P e,
= J

respectively.
This last formula (2.47) is analogous to the earlier result (2.36).

3. The biorthogonal polynomials Z2(x; k). Since the parameter
& in (1.2) is restricted, by definition, to take on positive integer values,
by the well-known multiplication theorem for the I'-function we have

81 I'kj+a+1l)=I(a+ 1)H<“+%),, =012 -,

where (A), is given by (1.4). From (1.2) and (3.1) we obtain the
hypergeometric representation

3.2)  Za(w; k) = {&F C Lt Dw it (@ + Dk, -, + k) /R,

which can alternatively be used to derive the following properties
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of the biorthogonal polynomials Z%(x; k) by simply speecializing those
of the generalized hypergeometric function

b= (@g)m 2™
1L (Bj)m m!

’

(3?’) qu[aly cey Oy By vy By Z] 2:‘1
where 3; # 0, -1, —2, -+, Vje{l, ---, ¢}.

I. Differential equations. Denoting the first member of the
preceding equation (3.3) by F, we have the well-knowu hypergeo-
metric differential equation {18, p. 77, Eq. (2)]

@9 [oflo+p-D-2ll0+a)F=0, psq+1,

where, for convenience, 6 = zD,.

In 8.4) weset p=1, g =k, z = (z/k)*, 6§ = k™'0, where § = 2D,,
and apply the hypergeometric representation (3.2). We thus obain a
differential equation satisfied by the polynomials Z%(x; k) in the form:

(3.5) {fj 6 +a—k+ g‘)}azm; k) = 25 — kn)Z%(; k) .

Recalling that (cf., e.g., [26, p. 310, Eq. 19)])
(3.6) FO + a){gl@)} = a*f(O){z*g9(@)} , o =2D,,
it is easily verified that
k
(3.7 1L 0+ a—k + Higl@)} = a**Di{zg(2)} ,
i=1
and the differential equation (3.5) obviously reduces to its equivalent
form [10, p. 306, Eq. (10)]
(3.8) DD, Z%(x; k)} = 2*(@D, — kn)Z%x; k) .
II. Recurrence relations. It is well known that (cf., e.g., [11,
p- 279, Problem 20])
Dzz’Fq[ah Tty O B o, Bq; Z]

B gl:::gpppq[a1+l,"'yap+1;61+1’""Bq+1;z]’
1 q

whence, by setting » =1, ¢ =k, z = (z/k)", D, = (k/x)*'D,, and ap-
plying (3.2), we have

(3.10) D, Z¥x; k) = —ka* " Z5 (w5 k)

3.9

or more generally,



244 H. M. SRIVASTAVA

.11) (@D Za(w; k) = (—B)"Z3i (e k), nzmz 0.

Similarly, from the known results ({18, p. 82, Eq. (12), (13) and
(15); see also {17]), involving the generalized hypergeometric function
(8.3), we readily obtain the following mixed recurrence relations:

kl(kn + a + 1) Z_(x: k)
T'kin — D) +a+1) 77777

(3.12) xD, Z%z; k) = knZix; k) —

(3.13) xD, Zx(x; k) = (kn + @) Z57(w; k) — aZy(x; k) ,

El(kn + a) 75 (i k) .

@) Zw k) — 7@ = e T e T

It is .not difficult to verify that the recurrence relation (3.14)
results from (3.12) and (3.13) by eliminating their common term
xD, Z%x; k). If, however, we eliminate this derivative term in (3.12)
or (3.13) by using (3.10) instead, we shall arrive at the recurrence
relations

(3.15) e 2wy k) = (kn + a + 1), Z%x; k) — (n + 1)22,.(x; k)

and’

(8.16) b Ze(x k) = aZs,(x; k) — (hn + a + k)Z534(x; k) .
Formulas® (8.10) and (3.12) were given earlier by Konhauser {10,

p. 306, Eq. (8); p. 305, Eq. (6)], (8.14) is due to Génin et Calvez [7,

p. A1565, Eq. (5)], while (3.15) was derived by Prabhakar [14, p.

215, Eq. (2.6)] by using a contour integral representation for Zi(xz; k).
For a direet proof of (3.15), we observe from (1.2) that

ka:-Hc(w; k)
_Ikn +1) +a+1) i (_1)j<n gD
n! = §) Th(G +1) + a + 1)
_Thn+1) +a+1) g (—1y ™ ki
nl j—1)TGj +a+1)’
and since

[ n n n+1 .
Jg—1 J J

it follows that

! The pure recurrence relation (3.16) appears erroneously in a recent paper by K. R.
Patil and N, K. Thakare [J. Mathematical Phys. 18 (1977), 1724-1726; especlally p. 1725].

2 It may be of interest to mention here that the known results (3.10) and (3.15)
were rederived, using Prabhakar’s version [14, p. 214, Eq. (2.2)] of the generating func-
tion (8.20) of this paper, by B. Nath [Kyungpook Math. J. 14 (1974), 81-82].
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22 k)
_Tkn+ ) +a+1) &, y/n i
a n! & D <j>r(kj+a+1)
_TI'kn+1)+a+1) §1(*1y n+1 xt .
n! i=o j >F(kj +a+1)

= (kn + a + 1).25.(x; k) — (0 + DZ5(x; k),

which precisely is the pure recurrence relation (8.15).

III. Generating functions. Chaundy [5] has shown that [op.
cit., p. 62, Eq. (25)]

(3 17) "Z‘% (q),:)y’” p+1Fq['—ny oy, c v, O BI; cee 647 z]tn

= (1 - t)~21}+1Fq[7\'7 Ay o0y By Bl: Tty Bq; zt/(t — 1)] ’
1t <1.

If we replace ¢ on both sides of (3.17) by t/» and take their
limits as A — oo, we shall readily obatin Rainville’s result:

Z p+1Fq[’"n) 14 PR %4 By * e, Bq; z]_t"—
3.18) = oy

= ethq[aI’ e ap; Bl) S Bq; ._zt] .

Both (3.17) and (3.18) are stated by Erdélyi et al. [6, p. 267,
Eq. (22) and (25)], and their various generalizations have appeared
in the literature (cf., e.g., [20, p. 68, BEq. (8.9) and (3.10)].

By specializing (3.17) and (8.18) in view of the hypergeometric
representation (3.2) for Zi(x; k), we at once get the generating
functions

S M g e

31y (@ + Dy )
-1 - t)—ﬂF,,[x; @ ;: L. ¢« ;: k. G - i)k"] it <1
and
o £
(3.20) TS .
e[ Ltk (aY)),
respectively.

The generating function (3.19) is due essentially to Génin et
Calvez [7, p. A1564, Eq. (8)], while (8.20) was given by Srivastava
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[21, p. 490, Eq. (7)]; the latter appears also, with an obvious typo-
graphyecal error, in a recent paper [12, p. 922]. In fact, both (3.19)
and (8.20) were given (in disguised forms) by Prabhakar [14, p. 218,
Eq. (4.1); p. 214, Eq. (2.2)]. Notice that the so-called generalized
Mittag-Leffler function E},..(2) and the “Bessel-Maitland” function®
¢(k, @ + 1; z), occurring in Prabhakar’s results just cited, are indeed
the familiar hypergeometric functions ,F, and F,, respectively, k&
being a positive integer. More precisely, we have, fork =1,2,3, ---,

Ela — - ()")mzm
3.21) bara() m§=10 m! I'km + a + 1)
' :__L__Fb,a+1.” a+k{£Y]
F(a + 1) 1+ k y k ] ) k s k
and
k 1,2) =3 2
092 ol @+ 58 = S Thm a1

1 a+1 a+k (z "]
_—_—OF[“; y Ty Y\ ’
Fa+1)" " k k (k>

by appealing to the well-known multiplication theorem for the I'-
function.
Next we consider the double series

S 5 (") 2z )

m=0 %=0 n (a + 1)k(m+n)
e T@R) S e S a2 D
2 Ta + D, <m> 2 7 3,
g | o+l at+k  (x) ]
=er ) ol o x b (2Ve 1 p ], by @20,

— < ('—xk)“ in Y t'n-h—m m
> > z
no=0 plul (@ + L), =0\ m

=3 S ( ,
v+tyvzm

m=0

n -+ v {r—m (_wk)n _t:_
m | n! (a¢+1),, vl

and on equating the coefficients of z™, we have the generating relation

L) t%
S —_—
n=0 (a + 1)k(m+'n)

<m+n
"

)z;H(x; k)
(3.23)

co n\ grm (__xk)'n F
= — 2t Fn+1Lin—m+1;t],
’g}” <m> n! (a + 1), : ]

* Incidentally, the generalized Bessel function ¢(a, 8; 2) was introduced by E. Maitland
Wright [27, p. 72, Eq. (1.3)]; see also Erdélyi et al. [6, p. 211, Eq. (27)].
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which holds true for every non-negative integer m

Alternatively, this last generating relation (3.23) may be derived
as a special case of our earlier result [20, p. 68, Theorem 3]. Of
course, it is not difficult to develop a direct proof of (3.23) without
using the generating function (3.20).

For m = 0, (3.23) evidently reduces to the familiar generating
funection (3.20). Its special case when £ = 1 leads to what is obvi-
ously contained in the following limiting form of a known result
[22, p. 152, Eq. (19)]:

t’ﬂ
()

)L;:z.m)

o+ m
=< m )e”q/rg[a+m+l;#,a+1;t, —x],

where o, is a (Humbert’s) confluent hypergeometric funetion of two
variables defined by [1, p. 126]

o

(8.25) wlase ¢, yl = 3 GO P P
;=0 (c)m(c’)n m! ,n!

Formula (3.24) follows from the known generating function [22,

p. 152, Eq. (19)] by writing ¢/ in place of ¢ and then letting » —

oo, Furthermore, if we replace ¢ in (3.24) by ¢ and let £ — o, we

shall arrive at the well-known generating function [18, p. 211, Eq.
N

>

%#=0

<m+n

)me(x)t” = =t exp (— L)
n

1—-1¢

<Le(2), m=01z .,

which follows also from (2.17) when %k = 1.
IV. Multilinear generating functioms. By making use of the

hypergeometric representation (3.2), a number of new multilinear
generating functions for the product

(8.27) Z3Ys k) - Zo(y,s k)

analogous to the Patil-Thakare result [12, p. 921, Eq. (2.1)], can be
derived by suitably specializing a general formula earlier by Srivastava
and Singhal [25, p. 1244, Eq. (24)] for a product of several generalized
hypergeometric polynomials. We omit the details involved.

V. Finite summation formulas. In view of the exponential
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generating function (3.20), Theorem 1 (p. 64) of Srivastava [20] will
apply to the biorthogonal polynomials Z%(x; k), and we thus have

3.28)  Zo(w; k) = (%)’“ 5_; (“ Zj’m)ﬁ%i(ﬂ"_;ﬁfzz_j(y; k)

or equivalently,

w1y (N (A kRN (kn — kD (yF — 2*\" .,
(8.29) Zi(w k) = (g) = (]m—-kj> (n—H1 N g* > Z5(y; o) -

The summation formula (3.28) can indeed be derived directly (ef.
[21, p. 490, §4]). It can also be rewritten in the form [op. cit., p.
491, Eq. (12)]:

(3.80)  Z(um k) = 3 (’m]:f “)%”',)—Iw-m oz (s k)
g !

§=0

which obviously provides us with an elegent multiplication formula
for the biorthogonal polynomials Zi(x; k).

V1. Laplace transforms. Employing the usual notation for
Laplace’s transform, viz

(3.31) ) 8} = S"’ e ft)dt, Re(s—o0)>0,

where f e L(0, R) for every R > 0, and f(2) = O(e”), t — o, we have

At Z(xt; k) s}
_(la+1DI'(B+1)
(8.32) - sttip)

g BFL Btk atl  atk, ﬁ)"]
><k+1Fk[ ’)?,, k ’ s k ’ IG ’ ’ k )(s ’

provided that Re (s) > 0 and Re(B) > —1.

The Laplace transform formula (3.32) can be derived fairly easily
from the hypergeometric representation (3.2) by using readily avail-
able tables. In the special case when g = «, it simplifies at once
to the elegant form [14, p. 217, Eq. (3.7)]:

(3.33) Pl gwts k)i sy = LKt D) e

slm+a+1n!

where, as before, Re (s) > 0 and (by definition) a > —1.
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