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SOME B O U N D A R Y  C O N D I T I O N S  FOR A M O N O T O N E  ANALYSIS 
OF S Y M M E T R I C  M A T R I C E S  

JAMES C. LINGOES* 

T H E  U N I V E R S I T Y  OF M I C H I G A N  

This paper gives a rigorous and greatly simplified proof of Guttman's 
theorem for the least upper-bound dimensionality of arbitrary real symmetric 
matrices S, where the points embedded in a real Euclidean space subtend 
distances which are strictly monotone with the off-diagonal elements of 
S. A comparable and more easily proven theorem for the vector model is 
also introduced. At most n-2 dimensions are required to reproduce the order 
information for both the distance and vector models and this is true for any 
choice of real indices, whether they define a metric space or not. If ties 
exist in the matrices to be analyzed, then greatest lower bounds are speci- 
fiable when degenerate solutions are to be avoided. These theorems have 
relevance to current developments in nonmetric techniques for the monotone 
analysis of data matrices. 

Gut tman  [1967, p. 78]; [1968, p. 477] formalized a notion having some 
currency among sealing theorists [e.g., Torgerson, 1958, pp. 270 and 278] to 
the effect that  n -- 2 dimensions was a possible least upper-bound within 
the context of nonmetric multidimensional scaling. We intend here to re- 
phrase this theorem in some minor details for the purposes of clarity and 
rigor and then later offer a simple proof of its validity. 

Guttman's n -- 2 Theorem: The off-diagonal elements {s ,}  of any real 
symmetric matrix of order n are strictly monotone with the set of interpoint 
distances {d~f} among some n points in a real Euclidean space having at  
most n - 2 dimensions. Not  only are the Euclidean distances monotone 
with the elements of S, but  the {d~i} are even linear (non-homogeneous) 
functions of the {s , } .  For non-degeneracy when {s,} = c ~ 0, n -- 1 di- 
mensions are required for a strict monotone mapping. 

By  a strict monotone mapping of S into E m is meant: 

(1) 

and 
(2) 

i f s .  < s~ then d .  < d ~ ,  

i f s .  = s~ then d ,  = d ~ ,  
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where 

(3) d,, = ~ ~ (x,. -- x,o) ~, 

for i ~ j  and k ~ l  throughout (i, j ,  k, l -- 1, 2, . . -  ,n) and m is the rank 
of X, a set of real normalized vectors. There is no qualification in the above 
theorem regarding fulfillment of the triangle inequality for a metric space 
for the {s,}.  The elements of S can be anything (positive, negative, or fail 
the triangle inequality) so long as the conditions of 

(4) s ,  = si, (symmetry) 

and 

(5) S ~ Re (real) 

are satisfied. 
In regard to the linearity of the functions relating {s,} to {d~t}, Gutb- 

man's theorem entails tha t  

(6) d~t = a(s ,  + b) (not all equal to zero) 

is the form for an arbitrary multiplieative constant a and a uniquely deter- 
mined additive constant b. 

Ra ther  than directly proceeding to a proof of Gut tman 's  theorem at  
this point, we wish to introduce a parallel theorem for scalar products, since 
the latter 's proof is far simpler and serves to illustrate the constructive princi- 
ples involved. Both constructions (for the distance and vector models) follow 
Guttman's  for a n - 1 least upper-bound [Guttman, 1965], but  go on to 
provide constant vectors as well to reduce dimensionality to n -- 2. Following 
the proofs of these two theorems, we shall deal with the t reatment  of special 
cases requiring a least upper-bound of n -- 1 when degeneracy is to be avoided. 

The Vector Model 

We now state the parallel 

Theorem: The off-diagonal elements {s,} of any real symmetric matrix 
of order n are strictly monotone with the set of scalar products {O,j} among 
some n vectors in a real Euclidean space having maximum rank of n -- 2. 
Not  only are the scalar products monotone with the elements of S, but  the 
{O,} are uniquely determined up to an additive constant of the {s,}.  For 
non-degeneracy when {s~f} = c ~ 0 and n = 2, n -- 1 dimensions are re- 
qnired for a strict monotone mapping. 

Similar to (1), (2), (3), and (6) above, we have the definitions: 

(la) i f s ,  > s,~ then 0 ,  :> 0k, 
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and 

(2a) 

where 

(3a) 

i f s ,  = sks then 0,~ = Ok,, 

a - I  

for i ~ j and k ~ ¢ throughout  (i, j, k, ¢ = 1, 2, . . .  , n) and m is the rank 
of X, a set of real normalized vectors, and, of course, (4) and (5) are fulfilled. 

In  regard to 0 being equivalent to S up to a translation, we have the form 

(6a) 0 ,  = s,t "F b, 

where b is a uniquely determined additive constant. 

f - ~  8,~ (i  = 31 
kml (7) v,~ = ~., 

s .  (i  ~ 9 

V is a singular matrix because 

(8) ~ v , i  --- 0 (j = 1 ,2 ,  . - -  ,n ) .  
iml 

From a theorem on real symmetric matrices having row (column) sums equal 
to a constant c, V has at  least one root equal to e = 0 and at  most one eigen- 
vector of constant components paired with a root equal to c. The unit  length 
vector defined by  

(9) y = n-l/21, 

where l is a n-element column vector of unities, is such a vector. 
Now set 

(10) W = V -  X/, 

where I is the order n identi ty matrix and k is the smallest root algebraically 
of V not associated with y of (9). Subtracting a scalar ~ from the diagonal of V 
yields roots for W which are those of V minus the scalar, i.e., #(W) -- X, -- X, 

I f  ), = 0 (or, zero is a multiple root of V), then, of course, m < n -- 2 
and we are through. If  k <2 0, then W is Gramian; and, if k > 0, then the 
constant vector y of W has an associated negative but  real root. In  any event 
when X ~ 0, we can reduce the rank of W by one by  constructing a unit  rank 
matrix of constant elements 

Prool: Set 
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(11) U = ),n-Ill ' 

and subtracting it  from W, yielding the matrix 

(12) Z = W-{- U, 

which is Gramian and of rank m < n -- 2. We can, therefore, write (12) 
in scalar notation as 

(12a) z .  = s .  + Xn -I  (i ~ j) ,  

since the off-diagonal elements of S have been altered by  (12) only. 
F rom a familiar theorem on Gramian matrices, there exists an X of 

order n X m such tha t  

(13) Z = Z Z ' ,  

or, again in scalar notation, 

(13a) z,i = ~ x,axto , 
a = l  

(15) 

and 

which satisfies the definition of the {0 . }  in (3a). Combining (3a) with (13a), 
on the one hand, with (12a), on the other, we see immediately that  

(14) z .  = ~ x,oxio = 0,~ = s .  A- Xn -1 ff ~ 33 
a - 1  

satisfies (6a) and a ]ortiori (la) and (2a) in m < n - 2 dimensions, as we set 
out to prove. 

The theorem for the vector  model is relevant to the algorithm developed 
by  Lingoes and Gu t tman  (1967) for the nonmetrie factor analysis of arbi- 
t r a r y  indices of relationship, in general, and eorrelations/eovariances, in 
particular. 

The Distance Model  

For the proof of Gut tman 's  theorem, let us define 

= -  s , i  ( i  = 1 ,  2 ,  . . . , n )  
n I-I 

1 ~-~ ~ , 
(16) s = n ,-1 

from which we construct 

(17) t ,  = ~i + ~ - -  ~ - -  s ,  ( i , j  = 1,2,  . . - , n ) .  

T* is a double-centering of - - 8  and the rank of T _< n -- 1 by  reason of 

* The reader will recognize the similarity of T to Torgerson's (1958, Eq. 16, p. 258) 
B* matrix. Our proof, however, does not rely in any way upon Torgerson's treatment of B*. 
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the constant row sums of zero. Associated with a zero root is a constant 
vector y as was the case for the vector model. 

Define the scalar ), to be the smallest root algebraically of T not  associated 
with y, the constant vector, and set 

(18) R = T - -  k/.  

The construction in (18) ensures that  R will have at  most one negative root. 
Using the present definition of X we cau use U, as in (11), to construct 

(19) G = R + U, 

where G is Gramian and of rank m < n - 2, thus eliminating the constant 
vector. Expressing G in terms of T, we have in scalar notation 

(20) g .  = t .  - k  + ~n -~, 

because of (18) and (19), while 

(20a) g .  = t,i --~ ~,~ + ~n -~ (i ~ j),  

because of (19) and symmetry with (20), where 5,i is Kronecker's delta. 
Invoking our theorem on the decomposition of Gramian matrices and 

substituting the fight member of (17) in (20) and (20a) yields 

x,. = 2 ~ , -  ( ~ + s . ) -  X +  hn -~ (i = ~) (21) 

and 

(21a) • x,oxi.  = ~, + ~ - (~ + s . )  - X~.  + ~n -1 (i ~ 39. 

On the other hand, squaring and expanding (3) we have 

a = l  a= l  a = l  

Substituting (21) and (21a) into (22) results in 

(23) d~i = [2~, - -  (~ -F s,,) --  X + Xn -~] 

+ [2~; - (~ + s . )  - x + Xn-']. 

The fight member of (23) reduces to 

(24) d~ t = 2 s .  -- (s,, 7 u s . )  -- 2~,(1 -- ~,i). 

If  the diagonal elements { s . }  are constant (and we can set them so, 
since our theorem is concerned solely with the off-diagonal elements of S), 
then the right member of (24) differs from the semi-metric on the left by  an 
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additive constant and a multiplicative factor of 2* only, i.e., 

(24a) ~ t  -- 2[s ,  - (c + X)] (i # i and diagonal constant), 

which has the form of (6) and, therefore, satisfies (1) and (2) as well in 
m < n -- 2 dimensions. Taking the square roots of (24a) yields the Euclidean 
metric (where (1) and (2) are also satisfied), which was to be proven. 

Although we were free to set the {s,} = c in our construction, actually 
a weaker condition suffices for strict monotonicity for i # i. If s,~ < s**(i # i 
and k # t), then it is sufficient that 

(25) ½[(s~ + s , , )  - ( s , ,  + s . ) ]  < s .  - s,, 

satisfies (1); or, if s ,  = s~, (i ~ j and k # ~), then 

(26) s,, ~- s ,  = s~ + s, ,  

must satisfy (2), for all i, i, k, and L Setting {s,,} to c (and zero has the 
virtue of simplicity) insures that the semi-metric be a linear transformation 
of S( i  ~ 1), whereas permitting the weaker condition above of unequal di- 
agonal elements, fulfilling conditions (25) and (26), makes {d~f} a monotonic 
(but, nevertheless, strict) transformation of S( i  # i) .  

The above theorem for the distance model is pertinent to those tech- 
niques which perform a monotone distance analysis on symmetric matrices 
(i # i), e.g., those by de Leeuw, Guttman & Lingoes, Kruskal, McGee, 
Roskam & Lingoes, Shepard, Torgerson, and Young. Some of the more 
familiar "brand" names of computer programs for such analyses are: M-D- 
SCAL, TORSCA, SSA-I, to name but a few. 

Properly speaking, of course, our theorem is not concerned with the 
diagonal elements of S at all and, therefore, they can be set to any convenient 
value in the construction. Indeed, in many experimental settings estimates of 
self-distances are not even determined. The {s,,} are, however, relevant to 
the qualification of a given index as a measure of distance or dissimilarity. 
Since some programs (most notably Kruskal's M-D-SCAL) permit inclusion 
of the diagonal of S, it is germane to consider the limits of our theorem in 
such cases. 

If the diagonal is to be included, then it is necessary that 

(27) {s,,} = c, 

otherwise (1) would be violated, i.e., we would have a degenerate solution, 
since untied {s,,} would map into tied {d,}. Furthermore, the constant must 
satisfy 

* The ½ in defining Torgerson's B* matrix would absorb the 2 associated with a~ t and 
divide the sum of the diagonals, but, for our purposes, this fact is of no consequence (other 
than motivating the particular form that (6) assumes), since the rank of T and B* are 
identical and they have the same unit length vectors. 
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(2S) c < s , t . , .  (i ~ j), 

because d . , ,  = 0 and all d ,  = O. 

Obviously, when the inequality is valid in (28) we have satisfied (1) 
and (2) for strict monotonicity. When, however, the equality holds in (28), 
then it  must  also be true tha t  

(29) s,k = sih (k = 1, 2, . . .  , n )  

be satisfied (yielding zero off-diagonal distances for all s,~ = c) for strict 
monotonicity between all elements of S and D. If  (29) is not  met for all k 
for equality in (28), then we have what  Gut tman  [1968] refers to as "semi- 
strong" monotonicity, i.e., (1) is fulfilled, but  we are free to map unequal 
distances into equal dissimilarities in (2). 

I t  remains to t reat  the degenerate or special cases for our two models 
as well as to indicate greatest lower bounds. 

Degenerate Cases 

Certainly, when n = 2 our constructions for both models insure that  
the two implied vectors of V and T vanish, yielding m -- 0 and 0,i = d, t  = O. 

If  this result is to be disallowed for s , t  ~ O, then n -- 1 dimensions are re- 
quired for strict monotonicity. The construction of both V and T guarantees 
a t  most n - 1 dimensions by  virtue of zero row (column) sums. The null 
matrix, of course, is not  a degenerate ease because its rank is properly zero. 

For  n :> 2 and all off-diagonal elements of S = e ~ 0, the construction 
of V and T will yield one zero root and n - 1 equal, non-zero roots (i.e., 

k ( V )  = - - n c  and  k ( T )  = c when {s, ,}  = 0), which, when subjected to the 
transformation implicit in (10) and (18), representing a translation of the 
origin of the eigen-solution, will vanish. As a consequence, the constant 
vector  of W will perfectly reproduce the off-diagonal elements of S if we do 
not deflate X by  removing the constant vector as in (12). Not  so, however, for 
the dSstance model. The  constant vector  of R in (18) will result in zero dis- 
tances, which is equivalent to m -- 0 (a degenerate case). Thus, if we do not  
permit  such a solution we will require n -- 1 dimensions as the least upper- 
bound for S in the case of the distance model when the off-diagonal elements 
are constant (but not zero). 

Whenever there are at least two distinct off-diagonal elements of S, 
there must be at  least two distinct eigenvalues of V or T (excluding the 
zero root associated with the constant vector).  By  selecting the algebraically 
smallest root (whether positive, negative, or zero) not  associated with the 
constant  vector  as a basis for translation, we establish the possibility of re- 
ducing the rank of V or T to n -- 2 always. 

From the above argument we have demonstrated tha t  n -- 1 is a least 
upper-bound for n = 2 ( s ,  ~ 0) for both models, while for n > 2 only the 
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distance model requires n - 1 dimensions for a non-degenerate solution when 
the off-diagonal elements of S = c ~ 0. Based on these results we can es- 
tablish greatest lower bounds for our two models. 

If p is the order of the largest principal minor containing identical values 
in S(i  ~ i), then the greatest lower-bound for the vector model is one di- 
mension and p -- 1 dimensions for the distance model when strict monotoni- 
city is insisted upon. 

For the proo]: the constant vector alone will metrically reproduce the 
off-diagonal elements of V for the vector model when p -- n (v. s.) and, there- 
fore, for p < n a constant sub-vector of p components will suffice. In the 
case of the distance model, any Euclidean representation of the p points alone 
is mathematically equivalent to a p -- I dimensional regular simplex with 
each point a vertex. This subspace, as a consequence, sets a lower limit for 
embedding the remaining points. The Guttman-Lingoes SSA-I algorithm 
prefers to break such ties in an optimal fashion for reducing dimensionality 
below this minimum (yielding a lower-bound of one dimension) by requiring 
semi-strong rather than strong (strict) monotonicity. 

Concluding Remarks 

Our constructions in the above proofs are always specifically of a Eucli- 
dean (vector or point) space (and semi-metrics which are monotone func- 
tions thereof) and underline the importance of the lack of uniqueness of a 
solution in a large space and the necessity of empirically having a small sp~ce 
for scientifically meaningful results. Additionally, these constructions also 
offer a basis for comparison of initial configurations used in these two models, 
e.g., the Guttman-Lingoes initial configuration used in SSA-I is quite similar 
to our construction of V for the vector model. A more consistent initial 
configuration for the distance model is that proposed by Lingoes and Roskam 
[1970] as embodied in 

(30) t~*~ n ,-1 n . 2n 

where p,t is the rank-order value of s,.j (i.e., p,t = 1 for s , . _  when S is a 
similarity matrix, otherwise for s,i..,, when S is a dissimilarity matrix) and 
the fractional term involving n in both the numerator and denominator 

represents the average of the first ( ; )  integers taken over the n' elements of 

the symmetric matrix of ranks having a null diagonal. The use of ranks 
rather than the given {s,i} is essentially neutral regarding the shape of the 
Shepard diagram relating the input coefficients to the distances and proxddes 
a standard way of converting similarity/dissimilarity coefficients into dis- 
tance values. 
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