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Abstract In this paper, we analyze approximation algorithms for two types of scheduling problems. The first 

is the n jobs scheduling problem with due dates on m identical machines to minimize the maximum lateness. For 

this problem n/m/I/Lmax, we propose two approximation algorithms and derive their worst case bounds. The 

second is the 2 x n flow shop scheduling problem with due dates to minimize the maximum lateness. For this 

problem n/2/F/Lmax' we first give a solvable case in the sense that the optimal schedule can be easily found. Then 

we again propose an approximation algorithm for general n/2/F/Lmax and derive its worst case bound. 

1. Introduction 

We consider two scheduling problems whose objective is to minimize maxi

mum lateness. The first is a following parallel machine scheduling problem; 

(i) a set of n independent jobs J=(J1,JZ,···,J
n

) is to be processed on a set 

of m identic'al machines M= (M
l 

,M
Z

' ••• ,Mm)' (ii) each job J i has a processing 

time t .~O and due date d .;!O, (iii) preemption is not allowed and (iv) the 
'Z- 'Z-

objective is to minimize the maximum lateness. 

The second is the following two-machine flow shop scheduling problem; 

(i) a set of n independent jobs J=(Jl,JZ,···,J
n

) is to be processed on two 

machines A and B, (ii) each job J. has two processing times a. and b.~O corre-
'Z- 'Z- 'Z-

sponding to A and B respectively, and a due date d.~O, (iii) the processing 
'Z-

order of each job J
i 

is first on A and next on B, and (iv) the objective is to 

minimize the maximum lateness. 
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Some Bounds for n/m/I/Lmax and n/2/F/Lmax 213 

Further it is assumed in both problems that no machine can simultaneously 

process two or more jobs and no job can be processed simultaneously on more 

than one machine. Hereafter, according to Lenstra et al. [6], these problems 

are compactly denoted by n/m/I/L and n/2/F/L ,respectively. 
max max 

For the maximum lateness problem 011 a single machine, Jackson [2] has 

obtained an exact algorithm which finds an optimum schedule in a polynomial 
2 

time of problem size. Furthermore, Lawler [5] has obtained o(n ) exact algo-

rithm for the related problem with arbitrary nondecreasing cost function and 

general precedence constraints where n is the number of jobs. While, both 

problems in this paper are known to be lW-complete ( Lenstra. et a1. [6] ). 

That is, they are among notoriously intractable problems and so there do not 

and perhaps will not exist any po1ynomia11y bounded exact algorithms for them. 

For these reasons, practioners are willing to accept good feasible solution. 

Indeed, for NP-comp1ete problems, many approximation algorithms and their 

bouds for the worst cases are derived. With respect to scheduling problems 

with due dates, however, very few worst case bounds have been obtained. (See 

Graham et a1. [1] for details.) Kise et a1. [4] have developed effective 

approximation algorithms and showed their worst case bounds for the maximum 

lateness problem on a single machine. 

In general, to evaluate the effectiveness of approximation algorithm, 

various measures such as the absolute deviation w-w' (IT) and the relative devi

ation (w-w'(IT»/w has been customarily llsed so far, where w denotes the value 

of optimal schedule and w'(IT) the value of approximate schedule generated by 

the approximation algorithm IT. As pointe"d out by Kise et a1. [4], how€ver, 

above measures exhibit a shortcoming that they give different values between 

two equivalent problems, where equivalence means that one is obtained by 

applying a simple transformation to the other, and the optimal and the approx

imate schedule are the same in both problems. This pathology urges us to 

employ the following modified relative deviation 

w-w' (11) 
W+d 

max 
proposed by Kise et al. [4] as the effec:tive measure of approximation algo-

rithm IT, where d = max{d.1 i=l, 2, ••• ,n}. 
max 7.-

In the sequel, first we propose two approximation algorithms for n/m/I/ 

L and derive their worst case bounds. Next for n/2/F/L ,we give the 
max max 

solvable case in the sense that the optlma1 schedule can be easily found. Then 

we propose an approximation algorithm for general n/2/F/L and again derive 
max 

its worst case bound. 
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214 T. Masuda, H. Ishii and T. Nishida 

2. Approximation Algorithms for n/m/I/Lmax and Their Bounds 

In this chapter, we consider the scheduling problem n/m/I/L . This 
max 

problem is characterized by the processing time vector T=(tl,···,t
n

) and the 

due date vector D=(d
l

,d
2
,···,d

n
). Here without any loss of generality, we 

assume that dl~···~d (=d ). Our first approximation algorithm EDD (Earliest 
n max 

Due Date) is a list scheduling and the second algorithm LPT (Longest Prooessing 

Time) is its refinement. A list soheduling produces a schedule of jobs based 

on a list as follows: When one of machines becomes available, first unexe

cuted job on the list is assigned to be processed on it. 

For the maximum completion time scheduling problem with n independent 

jobs and m identical machines, (n/m/I/C according to Lenstra et al. [6] and 
max 

the objective is only different from n/m/I/L ), Graham [1] obtained following 
max 

results. 

Theorem (Graham [1]). For n/m/I/C , let w' be the maximum completion 
max 

time of any list scheduling and w* that of optimal scheduling. Then 

~ < 2-.l 
w* - m 

holds. Further for the list such that the jobs are ordered in nondecreasing 

order of processing times, 

w' 4 -1 
w* ~ 3'- 3m 

holds. 

For the job set J, the maximum lateness of schedule constructed by some 

algorithm IT (approximation or exact) is defined by 

L(J;IT)= max {C.(IT)-d.}, 
l~i~n t. t. 

where C.(IT) is the completion time of job J. in a schedule constructed by 
t. t. 

algorithm IT. Especially, hereafter, L(J;EDD), L(J;LPT) and L(J;IT*) are used 

to denote their maximum latenesses by EDD, LPT and a certain optimum algorithm 

IT* respectively. 

Now we propose the approximation algorithm EDD. 

Algorithm EDD: Assign jobs on machines in an order J
l

,J
2
,···,J

n
• 

In order to analyze the worst case bound of this algorithm EDD, following 

lemma is needed. 

Lemma 2.1. For any m and certain number K, J=(Jl,···,J
n

) is the min

imal job set among ones for which modified relative deviation of EDD exceeds 
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L(JjEDD)-L(J;II*) 

L(J'II*)+d , n 

> K 

holds. Then J determines the maximum :Lateness of EDD, L(J;1!:DD). 
n 

215 

Proof: We prove this lemma by contradiction. 

determines the maximum lateness of algorithm EDD. 

We assume that job J
i

, i<n, 

Let J'=(Jl,···,J
i

) be the 

subset of J obtained by eliminating j ohs J i+1 ' ••• ,J n' Clearly 

L(J;EDD)=L(J';EDD) , 

and 

L(J;II*)~L(J' ;II*) 

d = max d.~ max d.=d. 
n l~j~n J l~j~i J ~ 

hold. These imply 

L(J;EDD)-L(J;II*) 
K< ~ 

L(J;II*)+d
n 

L(J' ;EDD)-D(J' ;II*) 

L(J' ;II*)+d. 
~ 

That is, we have a smaller job set J'. This contradicts the minimality of job 

set J. 

EDD. 

Thus job I
n 

determines the maximum lateness of algorithm EDD. 0 

Fully utilizing Lemma 2.1, we can derive a worst case bound of algorithm 

Theorem 2.1. For any job set J. 

L(J;EDD)-L(J;II*) < 1 
L(J;II*)+d

n 
- 1- m 

holds. Moreover this bound is best possible. 

Proof: Since the first half of our proof will be a proof by contradic

tion, it is necessary to develop relationship only for the smallest n for which 

the theorem may be violated. Thus we assume that J defines a minimal job set 

for which the theorem does not hold. 

Now by Lemma 2.1, job J determines the maximum lateness of algorithm 
n 

EDD, 1. e., 

(2.1) L (J ;EDD) = C (EDD) - d , 
n n 

where C (EDD) is the completion time of job J in a schedule constructed by n . n 
algorithm EDD. Since algorithm EDD is the list scheduling, Graham's theorem 

shows 
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(2.2) 

C (EDD) 
n 

T. Masuda, H. Ishii and T. Nishida 

~ 2-
1 

m, 

where n* is a certain exact algorithm minimizing maximum completion time and 

C(n*) is its maximum completion time. 

(2.2) , 

holds 

(2.3) 

C (EDD)~(2 - 1.. )C(n*) 
n m 

from (2.2). Substituting: (2.2)' into (2.1), 

L(J;EDD) ~ (2 - ; )c(TI*) - d
n 

results. 

(2.4) 

Hence 

(2.5) 

While we have 

L(J;rr*) 2: C(rr*) - d • 
n 

(2.3) and (2.4) imply 

1 - -
L(J;EDD) - L(J;I1*) ~ (2 - rn)C(rr*) - d

n 
- (C(II*) - dn) 

=(1 -l..)C(n*). 
m 

Since d =d, (2.4) and (2.5) together show 
max n 

1 -
L(J;EDD) -L(J;rr*) ~ (l-rn)C(rr*) =l-l.. 

L(J;rr*) +dmax C(n*) m. 

This contradicts our assumption. Thus we have the desired worst case bound. 

To see that this bound is best possible, consider three cases depending 

on m (mod4). (This example is almost the same as the example of Graham's 

theorem. ) 

Case 1. When m=2p, let the processing times and due dates be given by 

t =t ={p+(i-l) 
2i-l 2i 4p - (i + 1) 

for l~i~p, 
for p+l~i~2p 

and t
4
P+l=4p, and di=d(=const.) for 1~i~n=2m+l. Since all the due dates are 

equal, we may assume that the i-th job assigned by algorithm EDD, 1~i~2m+l, 

is job J
i

. Then we obtain the schedule shown in Fig.2.la. Since the optimal 

schedule by some exact algorithm rr* becomes as shown in Fig.2.lb, and L(J;I1*) 

is 2m-d, we have 

L(JiEDD) - L(Ji l1*) -1 1 _ 1 1 
L(Jil1*)+d - -z;-- -rn. 

max 

Case 2. When m=4P+l, let the processing times and the due dates be given 

by 
i 

2P+2l4'J -1 for 1~i~4p 

4p for i=4p+l 

t.= 
i-I 

'Z-
8r-2lTl + 1 for 4p+2~i~8p+l 

4p for i=8P+2 

8p+2 for i=8P+3 
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d d 

l' I 31' - 2 41' l' 1:1'+1 I 21' - 1 

1'J1'+l 1 21' - 1 

21' I 21' 
1'J 31' - 2 

1'+1 31' - 3 

1'+1 31' - 3 21' - 1 21' + 1 

21' - 1 21' + 1 

<P 

21' - 2 I 21' 

21' - 2 I 21' 1'+2 31' - 2 

21' - 1 21' - 1 l' +2 31' - 2 

21' - 1 21' - 1 41' 

(a) approximate schedule (b) optimal schedule 

Fig. 2.1 An example giving the tight bound of Theorem 2.1 in case m=21'. 

and d.=d for 1$i$n=2m+l. Similarly to Case 1, we obtain L(J;EDD)=16r+2-d and 
'Z-

L(J;IT*)=8r+2-d. Thus we have 

L(J;EDD) -L(J;IT*) =~=1-1. 
L(J;II*) +d.. 8r+2 m. 

maA 
Case 3. When m=4r+3, let the processing times and the due dates be given 

by 

r+[i..] 
4 

for 1:$i$4 

t.= 
2r+1 for i=4r+1, 4r+2, 4r+3, 8r+4, 8r+5, 8r+6 

'Z- i 4r+4$i$8r>+3 4r+2-[4] for 

4r+3 for i=8r+7, 

and d.=d for 1$i$n=2m+l. Again similarly to Case 1 and Case 2, we have 
'Z-

L(J;EDD)=8r+5-d and L(J;II*)=4r+3-d. Hence we prove 

L(J;EDD) -L(J;II*) _4r+2 -1 1 
L(J;IT*) +d - 4r+3 - - m. 

max 
This completes the proof of Theorem 2.1. D 

Above worst case examples show that when the number of distinct due dates 

is small, this algorithm EDD is not so effective. In such a case, the maximum 

lateness may be greatly influenced on the maximum completion time rather than 

the due date. Now we propose another algorithm LFT which is more effective 

in such a situation. The algorithm LFT is a hybrid algorithm which consists 

of LFT rule and EDD rule. 
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Algorithm LPT : 

Step 1. Assign the jobs to each machine according to the list such 

that the jobs are ordered in nondecreasing order of the proc

essing times. (LPT rule part) 

Step 2. On each machine, reorder the assigned jobs according to nonde

creasing order the due dates. (EDD rule part) 

Next Theorem 2.2 gives a worst case bound of algorithm LPT. But probably 

algorithm LPT has a better worst case bound than that of Theorem 2.2 in most 

cases. 

Theorem 2.2. Let L(J;LPT) and L(J;H*) be the maximum lateness of sched

ule constructed by the algorithm LPT and some exact algorithm TI* for the job 

set J respectively. Then 

mtmin 
-p-

L(J;LPT) - L(J;TI*) 

L(J;TI*) +d
n 

smin 
I I m(dn -dl ) 

"3-3m- P 

holds, where t . = min t. and P=L~ It .. 
m1n lsisn ~ ~= ~ 

Proof: Let TI* be any exact algorithm minimizing the maximum completion 

time for job set J and C(ll*) the maximum completion time of ll*. 

(2.6) 

It is clear that 

L(J;TI*) ~ C(ll*) - d 
n 

holds. Also we have 

(2.7) L(J;LPT) s C(LPT) - d
l

, 

where C(LPT) is the maximum completion time of schedule constructed by algo

rithm LPT. From (2.6) and (2.7), we have 

(2.8) 

Since 

(2.9) 

L(J;LPT) - L(J;TI*) < C(LPT) - C(rr*) 

L(J;TI*) +dn - c(ii*) 

C (LPT) <..i _ .2:.... 
C(TI*) - 3 3m 

d -d 
+.2!.......2 

C(rr*) 

by Graham's theorem and C(H*)~/m, it holds that 

(2.10) L(J;LPT) -L(J;TI*) <1..-.2:....+!!..(d -d). 
L(J;TI*) +d - 3 3m P n 1 

n 
Further, let L(J;LPT)=Ck-d

k
, where C

k 
is the completion time of job J

k 
in the 

schedule obtained by algorithm LPT. It is clear that 

(2.11) L(J;TI*) ~ tmin - d
k

• 
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Since Ck$C(LPT), (2.9) and (2.11) imply that 

L(J;LPT)-L(J;II*)$Ck-dk-(t. -dk)$C(LPT)-t. 
mJ.u mJ.n 

4 1 -
$ ("3-3iii)C(IIf<) -t

min
, 

From (2.6), we obtain 

4 1 -
L(J;LPT) - L(J;II*) < ("3 - 3iii)C(rr'f<) - tmin =.i _....!... _ tmin 

L(J;II*) +dmax - C(n*) 3 3m C(n*) 

4 1 tmin 
<- -- ----- 3 3m P. 

Thus we prove Theorem 2.2. 0 

3. n/2/F/Lmax Problem 

219 

In this section, we consider the n/2/F/L scheduling problem. A set of 
max 

n independent jobs J=(J
1
,···,J

n
) is to be processed on two machines A and B. 

Each job J. has the processing times a. and b. on machines A and B respectively 
~ ~ ~ 

and the due date d
i

• Again we assume that d
1

$d
2
$···$d

n
• Each job J

i 
is to be 

processed on machine A and next on machine B after the processing on machine A. 

The objective is again to the maximum 1a.teness. 

3.1. Solvable case for n/2/F/Lmax 
General n/2/F/L scheduling problem is NP-complete. Hence we first 

max 
consider the solvable case in the sense that an optimal schedule can be easily 

found. We assume that for l$i,j$n, 

(C) d.$d~min(a.,b.) $min(a.,b.). 
~ J ~ J J ~ 

EDD rule: EDD rule schedules jobs according to nonincreasing due dates, 

i.e., in the order J
l

,J
2
,···,J

n
• 

Theorem 3.1. If (C) holds, EDD rule constructs an optimal schedule for 

n/2/F/L . 
max 

Proof: The completion time of job .J~. scheduled by EDD rule, C., is given 
" ~, 

as follows; 

\ C.= max {L~ la'+L~ b.}=max{C. I'L~ 1a .}+b .. 
~ l$u$i J= J J=u J t·- J= J ~ 

(See iohnson [3].) Then the lateness of job J
i

, L
i

, becomes as follows; 

L. = C. - d. = max {C. l' L~ la.} + b. - d .. 
~ ~ ~ ~- J= J ~ ~ 

i+1 
Similarly L. I=C·+I-d. l=max{C',L' la.}+b. I-d. I 

~+ ~ ~+ ~ J =.7 ~+ ~+ 
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i i+l 
= max{max(C. 1,I· la.)+b.,<;-. la'}+b·+l-d·+l '!-- J= J '!- I.. J= J '!- '!-

= max{C. 1 +b .• <;-~ la. +b., <;-~+lla.} +b '+1 - d '+1 
'!-- 1- I.. J= J '!- I..J= J '/.. '!-

Let Li' and L
i
+

l
' be the lateness of i-th and (i+l)st jobs in the schedule 

obtained by interchanging jobs J
i 

and J
i
+

l
, (In the resulting schedule, i-th 

job is job J
i
+

l 
and (i+l)st job is job J

i
.) That is, Li' is the lateness of 

job J
i
+

l 
in the resulting schedule and L

i
+

l
' that of job J

i
. Thus we have 

<;-i-l 
L.' =max{C. 1'1..' la.+a.}+b. l-d·+l , 

'!- 1-- J= J '!- 1-+ '!-

'{ <;-i-l \i+l } 
L'+l =max C. l+b. 1'1..' la.+a·+l+b·+l,l..· la. +b. -d., 

'!- '!-- '!-+ J= J '!- '!- J= J '!- '!-

First we show that 

max(Li ,Li +l ) 5: max(L
i

' ,Li+l'). 

Since d.5:d·+
l 

and min(a.,b. l)Smin(a. l,b.), we have L.$L·+l ' and L.'5:L. I' 
'!- '/.. '!- '!-+ '!-+ '!- '!- '!- '!- '!-+ 

That is, we shall prove L
i

+
l

5:L
i
+

l
', 

Case (i) a
i

5:b
i
+

l 

Note that inequalities a.sa'+
l 

and a.5:b., also hold in this case. 
'!- '/.. '!- '!-

Subease (i-a) Li+l =Ci _l +bi +bi+l -di+l 

From d
i

5:d
i
+

l
, we have 

Li+l = Ci _l +bi +bi+l - di+l 5: Ci _l +bi +bi +l - di 5: Li +l ' , 

(i-b) Li+l = l~=laj +bi +bi+l -di +1 
Since d

i
5:d

i
+l and aisa

i
+l , we prove 

\i \i-l 
L '+1 = 1..' la. + b . + b '+1 - d. 1 5: 1..' la. + a. 1 + b. + b -1+1 - d. 5: L. 1'· 

'!- J = J 1- '!- '/..+ J = J '!-+ '!- v '!- '!-+ 

(i-c) 

By di 5:di +l 

\i+l \i-l 
Li+l = Lj=laj +b i+l - di +l 5, I..j=laj +ai +l +b i +bi+l - di 5:Li +l' • 

Hence if ~i5:bi+l' then we have Li +1SLi +l ' 

Case (ii) b
i
+

1
<a

i 

Note that b
i
+l 5:a

i
+l and bi+lsb

i 
also hold in this case. We can prove 

Li+l <L
i
+l ' by the similar manner to Case (i). 

Therefore if min(ai,bi+l)smin(ai+l,bi) and disdi +l , then max(Li ,L
i
+1)S 

max(L
i

' ,L
i

+l ')· 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Some Bounds for n/m/IILmax and n/2/F/Lmax 

Let Ck ' and Lk' be the completion time and lateness of job J k in the 

schedule obtained by interchanging jobs J i and J
i
+

l
. For k<i, it is clear 

that Ck'=Ck and Lk'=Lk . 

221 

Since for k>i+l, Ck'?,C
k 

holds by virtue of Johnson's rule, we have. L
k

'? 

Thus since (C) holds among all jobs and the relation (C) is transitive, 

we prove the theorem by repeating pairw:tse interchanging of adjacent jobs. D 

Since this problem is NP-complete, it seems Hkel:y that an efficient 

algorithm does not and will not exist for this problem. Hence enumerative 

type methods such as branch-and-bound ones may be the only available ones for 

obtaining optimal solution. 

One may suspect that we can decrease the number of enumerations by ap

plying Theorem 3.1 to a number of job pairs for some of which the relation (C) 

holds. The following example shows the case that the conjecture fails. 

Example 3.1. Let J=(J
l

,J
2

,J
3

) , 

a l =2, ~1=5, d1=55, 

a
3
=4, b

3
=lOO, and d

3
=60. 

In this example, though min(al,b3)~min(c~3,bl) and dl~d3' the optimal schedule 

is given in Fig.3.l. The maximum lateness in the optimal schedule is L* =44. 
max 

Fig. 3.1 An optimal s'c.hedule, of Example 3.1. 

3.2. Bound on approximation algorithm for n/2/F/Lmax 
In subsection 3.1, we showed the solvable case n/2/F/L • Unfortunate-

max 
ly general one is NP-complete. Therefore in this section, we give an approxi-

mation algorithm and show how it behaves on the worst case. We call the algo-

rithm for the problem n/2/F/L based on EDD rule algorithm FEDD, which as-
max 

signs the jobs according to EDD rule. We first prove Lemma 3.1 giving the 

bound of the maximum completion time when a set of jobs is scheduled by algo

rithm FEDD. 

Lemma 3.1. Let C' be the maximum eompletion time of schedule constructed 
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by algorithm FEDD and C~ that of schedule constructed by Johnson's ru1et . 

See Johnson I3J.) Then we have 

C' 
C* 75, 2. 

Proof: It is clear that 

C*~max(\~ 1a.,\~ lb.). 
£.1-== 1- £'1-== 1-

Also it follows that 

C' 75, L~==l (ai +bi ) 75, 2max(L~==lai'L~==lbi) 75, 2C*. 

Thus we prove 

C' 
?*75, 2. D 

By using this lemma, we obtain the bound on algorithm FEDD. 

Theorem 3.2. Let L' and L* be the maximum lateness of schedule con-
max max 

structed by applying algorithm FEDD and any optimal algorithm for the problem 

n/2/F/L respectively. Then we have 
max 

L' -L* 
max max 

L* +d 
max n 

Further this bound is asymptotically best possible. 

Proof: Similarly to n/m/I/L , we may consider only the case L' ==C'-d 
max max n' 

where C' is the same as defined in Lemma 3.1. Let L' ==C'-d. It is clear 

that 

Thus 

L' -L* 
max max 75, 

L* +d 
max n 

max n 

C'-d-(C*-d) , 
n n C 
c* == 7'!* - 1 • 

Since C'/C*75,2 by Lemma 3.1, we prove 

ble. 

L' -L* 
max max 
L* +d 

max n 

The following example shows that this bound is asymptotically best possi-

Let al==O, bl==K, d
1

=e(>O), a
2

=K, b
2
=s, and d

2
=O, where K is arbitrary pos

itive constant number. For this instance, the approximate and the optimal 

f 
Note that the optimal schedule of n/2/F/C ,which is in turn to seek a 

max 
schedule minimizing the maximum completion time on 2-machine flow shop, is 
obtained by applying Johnson's rule. 
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schedule are given in Fig.3.2 (a) and (b) respectively. 

2K+e:-e:=2K and L* "'K+e:-O"'K+e:. Therefore we prove 
max 

L' -L* 
max max 

A 

B 

L* +d 
max n 

d
2 

d
l 

I 

I 

J
2 

K-e: 
= 'K"+'2€ _1 (e:-+CI) 

d
2 

d1 

J
2 

J
2 

J
1 

J
l 

Then we have L' 
max 

J 2 I 
(a) approximate schedule (b) optimal schedule 

Tig. 3.2 An asymptotically tight example 

This example completes the proof of the theorem. 0 
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