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SOME BROWNIAN FUNCTIONALS AND THEIR LAWS

By C. Donati-Martin and M. Yor

Université Paris VI

We develop some topics about Brownian motion with a particular em-
phasis on the study of principal values of Brownian local times. We show
some links between principal values and Doob’s h-transforms of Brownian
motion, for nonpositive harmonic functions h. We also give a survey and
complement some martingale approaches to Ray–Knight theorems for local
times.
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0. Introduction. The contents of this paper were presented by the second
author, in a much less advanced form, at the IMS Conference in Montreal
(July 1995). Our aim is to develop a number of topics found in [65] and in [66]
(throughout this paper, Chapter 1 in [65] will be referred to as Chapter 1∗,
Chapter 12 in [66] as Chapter 12∗, and so on). However, to a large extent we
do not assume that the reader is familiar with [65] and [66].

The main objective of [65] was to derive explicitly the laws of more and
more complicated Brownian functionals, essentially using stochastic calculus
and excursion theory. Here, although our aim is somewhat similar, we took
a different direction; in fact, we drifted strongly, as we shall now explain,
towards the study of principal values of Brownian local times.

In Section 1, we recall some quite well-known links between space–time
harmonic functions h and the set of laws of processes which admit the same
bridges as Brownian motion, that is, Doob’s h-transforms of Brownian motion.

More generally, one may also look for some definition of h-transforms, when
h is not necessarily positive. This topic was first suggested by P. A. Meyer to
Ruiz de Chavez [52], in order to obtain a more general martingale charac-
terization of Brownian motion, possibly involving signed measures. This may
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1012 C. DONATI-MARTIN AND M. YOR

seem somewhat exotic but, in fact, appears to be quite natural in the context
of Girsanov’s theorem and in some studies in mathematical finance.

Indeed, an interpretation of Girsanov’s theorem is that it gives a formula
for a bounded variation process A such that, if Dt = dQ/dP��t

is the Radon–
Nikodym derivative of Q with respect to P, P and Q being two probabilities
on a filtered space �	
� 
 ��t��, and if �Mt� is a �P
 ��t�� local martingale,
then

�Mt −At�Dt is also a �P
 ��t�� local martingale.

With this formulation, the probability Q does not appear any more, and one
could start with any pair �Dt
Mt� of �P
 ��t�� local martingales.

Formally, Girsanov’s formula is dAt = d�M
D�t/Dt, which, in case �Dt� is
not necessarily positive, leads naturally to the study of principal values, that
is, limits of ∫ t

0

d�M
D�s
Ds

1��Ds�≥ε� as ε→ 0�

In the original study [7] of such quantities for Dt = Bt, and particularly for
Mt = Dt = Bt, in which case one obtains

At = p�v�
∫ t

0

ds

Bs




it was found that the study of this additive functional is closely related to that
of
∫ t

0 dsB2
s .

This brings us naturally to the presentation in Section 2 below of some
developments of Chapter 2∗, which was devoted to the study of the laws of
some quadratic functionals of Brownian motion, and more generally, Bessel
processes.

In Section 3, we survey and develop martingale approaches for a number
of Ray–Knight theorems about local times, which, as is now well known, may
be described in terms of squares of Bessel processes.

In Section 4, we get back to principal values of Brownian local times to
discuss a striking result of Alili [1, 2, 3] concerning the law of

p�v�
∫ u

0
ds coth�λBs�
 u ≥ 0


taken at the inverse local time of B.
In Section 5, we consider one of the consequences of Alili’s result, namely:∫ T1�R2�

0

ds

1− �R2�s��2
�law�= Tπ/2�R3�


where Rδ denotes the δ-dimensional Bessel process starting from 0 and
Ta�Rδ� is its first hitting time of a > 0. We discuss a number of extensions of
this result, leading us in particular to the porous medium equation [4].

In Section 6, we study exponential functionals of the normalized Brownian
excursion.
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1. Around the Gaussian space of Brownian motion. Chapter 1∗ con-
tains a description of all probability measures on �C�R+
R�
�∞�, where Xt =
ω�t�, t ≥ 0, denotes the canonical process, and �t = σ�Xs
 s ≤ t� (t ≤ ∞)
such that, for each finite t, �Xu − �u/t�Xt
 u ≤ t� is a standard Brownian
bridge (of duration t), independent of Xt. This topic led naturally to various
computations involving the first Wiener chaos, that is, the Gaussian space of
Brownian motion.

1.1. Relationship with space–time harmonic functions. Let W denote the
Wiener measure on �C�R+
R�
�∞�. We give a description of � , the set of all
probabilities Wh on 	 such that

Wh
∣∣
�t
= h�t
Xt�W

∣∣
�t

for a positive function h, which is therefore a space–time harmonic function
with h�0
0� = 1. Assuming the integral representation of positive space–time
harmonic functions (see, e.g., [59]), there exists a unique probability measure
ν on R such that

h�x
 t� =
∫
ν�dy� exp�xy− y2t/2��(1.1)

We have the following characterization of � .

Proposition 1.1. Under Wh, the process �Xt
 t ≥ 0� satisfies

Xt = Bt + tY
 t ≥ 0
(1.2)

where Y �= limt→∞�Xt/t�, and �Bt� is a Brownian motion independent of Y.
Moreover, the law of Y is ν, h and ν being related by (1.1).

Proof. This is elementary and relies mainly on Fubini’s theorem. Let T >
0, and ϕ ∈ L2��0
T��; then,

Wh

[
exp i

∫ T

0
ϕ�s�dXs

]

=W

[
h�T
XT� exp i

∫ T

0
ϕ�s�dXs

]

=
∫
ν�dy�W

[
exp

(
i
∫ T

0
ϕ�s�dXs + yXT

)]
exp

(
−y

2

2
T

)

=
∫
ν�dy� exp

(
−y

2

2
T

)
exp

(
1
2
E

[(
i
∫ T

0
ϕ�s�dBs + yBT

)2])

=
∫
ν�dy� exp

(
iy
∫ T

0
ϕ�s�ds− 1

2

∫ T

0
ϕ2�s�ds

)

= E

[
exp i

∫ T

0
ϕ�s�d�Bs + sY�

]
� ✷
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Remarks. (i) Equation (1.2) is a noncanonical representation of the diffu-
sion process with infinitesimal generator

Gh = 1
2
d2

dx2
+ h′x�x
 t�

h�x
 t�
d

dx
�

(ii) Note that, in general, Gh is inhomogeneous; that is, h′x�x
 t�/h�x
 t�
depends on t; however, for the space–time harmonic function hλ�t
 x� =
cosh�λx� exp�−λ2t/2� (λ �= 0), h′x�x
 t�/h�x
 t� does not depend on t and the
generator Gh takes the form

Gh = 1
2
d2

dx2
+ λ tanh�λx� d

dx
�

More generally, Benjamini and Lee [5] remark that for the two parameter
family of drifts µ�x� = k tanh�kx+ c�, the bridge of the diffusion with drift µ
is a Brownian bridge.

(iii) In Theorem 1�3∗, a more complete description of the set � is given and
in particular, the integral representation (1.1) is not assumed, but, in fact, is
obtained as the consequence of the proof of the theorem.

(iv) These results admit some partial generalizations to infinite dimensions,
that is, when the original Brownian motion is replaced by a Brownian sheet
(see [10], [19]).

1.2. Extensions to Gaussian–Markov and other processes.

Extension a. Proposition 1.1 is still valid when we replace Brownian mo-
tion �Bt
 t ≥ 0� by a continuous Gaussian–Markov process Ut. It is well known
[41] that U can be expressed in terms of B by Ut = u�t�Bv�t�, where u, v are
continuous, strictly positive and v is nondecreasing. In this case, Proposition
1.1 generalizes as follows (and the proof is quite analogous).

Proposition 1.2. We denote by � the set of probabilities PU
k on 	 such
that

PU
k
∣∣
�t
= k�t
Xt�PU

∣∣
�t



where PU is the law of the Gaussian process U on 	 and k is U-harmonic in
the sense that k�t
Ut� is a martingale with mean 1.

Under PU
k, Xt = Ut + u�t�v�t�Y, where Y is a random variable with law
ν, independent of �Ut�t≥0 and ν and k are linked by the formula

k�x
 t� =
∫
ν�dy� exp

(
xy

u�t� −
y2

2
v�t�

)
�(1.3)

In particular, when U is the standard Brownian bridge b�t� on �0
1�, then
under Pk, Xt = b�t� + tY; when U is the Ornstein–Uhlenbeck process Uλ

t of
parameter λ (i.e., the solution of dUt = dBt+λUtdt), Xt = Uλ

t+�sinh�λt�/λ�Y.



SOME BROWNIAN FUNCTIONALS AND THEIR LAWS 1015

For the Brownian bridge b, u�t� = 1− t; v�t� = t/�1− t�, but the statement
of Proposition 1.2 must be slightly modified with 	 changed into C��0
1�
R�;
details are left to the reader.

For the Ornstein–Uhlenbeck process Uλ, u�t� = exp�λt�; v�t� = �1 −
exp�−2λt��/2λ.

Applications. (1) From the absolute continuity relation

Pb
∣∣
�t
= 1√

1− t
exp

( −X2
t

2�1− t�
)
W
∣∣
�t

 t < 1


we recover that the function k�x
 t� = √
1− t exp�x2/�2�1− t��� is b-harmonic

and the corresponding measure ν associated by (1.3) is the Gaussian standard
density.

(2) Let us denote by X the Ornstein–Uhlenbeck process of parameter − 1
2 ,

starting from 0. Breiman’s formula [9],

E�exp�−αTc�� =
1

ϕα�c�

(1.4)

where Tc is the first hitting time of level c by �X� and

ϕα�x� =
1

/�α/2�2α/2−1

∫ ∞
0

dzzα−1 exp
(
−z

2

2

)
cosh�xz�


may be recovered from Proposition 1.2, by checking that

k�x
 t� = ϕα�x� exp�−αt�
 α > 0

is a particular solution of (1.3).

Extension b. We now present a generalization of Proposition 1.1 to signed
measures (or to nonpositive space–time harmonic functions). Let ν be a signed
measure on R satisfying

∫ �ν��dy� <∞, and define Qν =W⊗ ν a signed mea-
sure on 	̃ = C�R+
R�×R. For �ω
y� ∈ 	̃, let Yt�ω
y� = ω�t� and Y�ω
y� = y,
and define Zt = Yt + tY.

Proposition 1.3. The law of the process Z under Qν is Wh, the law of the
process of coordinates X on 	, where Wh is the signed measure on 	 defined
by

Wh
∣∣
�t
= h�t
Xt�W

∣∣
�t

and

h�x
 t� =
∫
ν�dy� exp�xy− y2t/2�(1.5)

is a space–time harmonic function (not necessarily positive).

The proof of Proposition 1.3 is the same as that of Proposition 1.1.
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Example 1. Let hλ�x
 t� = sinh�λx� exp�−�λ2/2�t� be the space–time har-
monic function corresponding to the measure ν = 1

2�δλ−δ−λ� where δα denotes
the Dirac measure at α. In this case, the function h′x/h does not depend on t
and under Whλ ,

X̂t �=Xt − λ
∫ t

0
coth�λXs�ds

is a local martingale; that is, X̂thλ�t
Xt� is a W local martingale. The study
of Hλ

t �= v.p.
∫ t

0 ds coth�λBs� has been made by Alili [1] in his thesis; we shall
study the process Hλ in Section 4.

Example 2. Let h0 be the harmonic function h0�x
 t� = x. Under Wh0 ,

X̂t =Xt −
∫ t

0

ds

Xs

is a local martingale. We refer to Biane and Yor [7] for the study of
p�v�

∫ t
0 �ds/Bs�. Note that h0 is not of the form (1.5) but

h0�x
 t� = lim
λ→0

hλ�x
 t�
λ

�

Extension c. We now give an analogue of Proposition 1.1 when we replace
Brownian motion by a particular Lévy process, namely the gamma process /,
which is the subordinator (that is, a Lévy process valued in R+) with Lévy
measure µ�dx� = ��exp−x�/x�dx on R+. The Laplace exponent of /,3, defined
by

E�exp�−λ/t�� = exp−t3�λ�
 λ ≥ 0

is 3�λ� = ln�λ+ 1�.
We set P∗ the law of / on D = D�R+
R+� the space of positive cadlag

functions. Let ν be a probability measure on R+ and Q∗
ν = P∗ ⊗ ν on 	̂ =

D�R+
R+� × R+. For �ω
y� ∈ 	̂, let Yt�ω
y� = ω�t� and Y�ω
y� = y and
define Zt = YYt.

Proposition 1.4 ([58]). The law of Z on 	̂, under Q∗
ν is the law of the

canonical process X on D under P∗
 h, the probability measure on D defined by

P∗
 h∣∣
�t
= h�t
Xt�P∗∣∣

�t

with

h�x
 t� =
∫
ν�dy� exp

(
−
(

1
y
− 1

)
x− t lny

)
�

1.3. Loss of information. We now discuss a relationship between space–
time harmonic functions and the phenomenon of loss of information for Brown-
ian motion.
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1. Let h� R×R+ → R be a space–time harmonic function such that h�0
0� = 0
and h′x�x
 t� �= 0 for every t and x (this is the case in Examples 1 and 2).
Then we can define the process �Bh

t 
 t ≥ 0� (see Example 5.a in Chapter
17∗) by

Bh
t = Bt − p�v�

∫ t

0
ds

h′x�Bs
 s�
h�Bs
 s�

�

We denote by � h
t (resp., �t) the natural filtration of Bh (resp., B); then we

have � h
t �⊆ �t (see [7], Appendix A and [66]).

More generally, let (Dt) denote a Brownian martingale such that D0 = 0,
�Dt
 t ≥ 0� �≡ 0 and such that∫ t

0

d�B
D�s
Ds

def= lim
ε→0

∫ t

0
1��Bs�≥ε�

d�B
D�s
Ds

exists. Then if we denote BD
t = Bt−

∫ t
0 �d�B
D�s�/Ds, Ruiz de Chavez [52]

proves that

E
(
Dt/B

D
s 
 s ≤ t

) = 0


implying that the natural filtration of BD is strictly smaller than that of B.
2. We recall another much simpler example of loss of information taken from

[30] (see also Theorem 1�1∗ and Nagasawa and Domenig [40] for recent
developments).

Proposition 1.5. (i) The process βt = Bt−
∫ t

0�ds/s�Bs is a one-dimensional
Brownian motion.

(ii) For every t > 0, �
β
t = σ�Bu − �u/t�Bt
 u ≤ t� �⊆ �t; in particular, for

fixed t > 0, Bt is independent of �
β
t .

We note that, in this case,

βt = Bt −
∫ t

0
ds

h′x�Bs
 s�
h�Bs
 s�

for the positive space–time harmonic function defined on R× R
∗
+ by

h�x
 t� = 1√
t

exp
(
x2

2t

)
�

We refer to Chapter 17∗ for other examples of loss of information, in par-
ticular Tsirel’son’s equation (see also [64]).

To conclude Section 1.3, we ask the following.
Question. Under the hypothesis made in point 1 above, is the filtration

�D
t ≡ σ�BD

s 
 s ≤ t� generated by a Brownian motion?
The answer to this question, even for Example 2 above, and a fortiori for Ex-

ample 1, is unknown. One does not even know whether all ��D
t � martingales

are continuous.
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2. Quadratic functionals of Brownian motion. We refer to [21] and
[22] for studies of Brownian quadratic functionals in the recent literature.

2.1. Lévy’s formula. We consider �Bt
 t ≥ 0� a δ-dimensional Brownian
motion, starting from 0. Then,

E

(
exp

(
−α�Bt�2 −

b2

2

∫ t

0
ds�Bs�2

))
=
(

cosh�bt� + 2
α

b
sinh�bt�

)−δ/2
�(2.1)

A well-known method to prove this formula is to consider a new probability
P�b� defined by

P�b�∣∣
�t
= exp

(
−b

2
��Bt�2 − δt� − b2

2

∫ t

0
ds�Bs�2

)
P
∣∣
�t



in order to “take care” of the quadratic functional integral and reduce the
problem to the computation of the mean and variance of the Gaussian process
�Bt
 t ≥ 0� under P�b�, where it becomes a Ornstein–Uhlenbeck process.

From formula (2.1), we deduce the conditional formula

E

(
exp

(
−b

2

2

∫ t

0
ds�Bs�2

)∣∣∣∣Bt = a

)

=
(

bt

sinh�bt�
)δ/2

exp
(
−�a�

2

2t
�bt coth�bt� − 1�

)



(2.2)

which, in the case a = 0, gives

E

(
exp

(
−b

2

2

∫ t

0
ds�Bs�2

)∣∣∣∣Bt = 0
)
=
(

bt

sinh�bt�
)δ/2

�(2.3)

Lévy’s formula (δ = 2) for the stochastic area of Bs = �Xs
Ys�, s ≤ t,

E

(
exp

(
ib
∫ t

0
�XsdYs −YsdXs�

)∣∣∣∣�Xt
Yt� = a

)

=
(

bt

sinh�bt�
)

exp
(
−�a�

2

2t
�bt coth�bt� − 1�

)



follows from (2.2), using the rotational invariance of Brownian motion.

2.2. Integrating out: some consequences of a path decomposition of Brown-
ian motion. We first recall an elementary path decomposition of Brownian
motion up to time 1. For a process X and two random times a, b, with 0 ≤
a < b, we denote

X�a
 b� =
(

1√
b− a

Xa+t�b−a�� 0 ≤ t ≤ 1
)
�
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Then, if g1 denotes the last zero of B before time 1 (g1 is arc-sine distributed),
we have (see [6], [7], [50]) the following:

1. b �= B�0
 g1� is a Brownian bridge;
2. m �= �B��g1
1� is a Brownian meander;
3. g1, b and m are independent.

Our aim here is to check partially and to look at some consequences of the
following identity in law:

4. m2 �law�= b̃2 + R2, where b̃ is a Brownian bridge independent of a two-
dimensional Bessel process R (see Corollary 3�9�1∗).

Now, putting together 1 through 4, we obtain∫ 1

0
duB2

u

�law�= g2
1

∫ 1

0
dub2

u + �1− g1�2
∫ 1

0
du�b̃2

u +R2
u�(2.4)

with b, b̃, R, g1 independent. Since the Laplace transforms of
∫ 1

0 X
2
s ds for X

a Brownian bridge and for X = R are given in particular by (2.3) and (2.1),
the identity in law in (2.4) implies the following relation:

1
�coshµ�1/2 =

1
π

∫ µ

0

da

�sinha�1/2�sinh�µ− a��1/2�cosh�µ− a�� �(2.5)

More generally, from the identity

E

(
exp

(
−µ

2

2

∫ 1

0
duB2

u

)
f�B2

1�
)

= E

(
exp

(
−µ

2

2

{
g2

1

∫ 1

0
dub2

u+�1−g1�2
∫ 1

0
du�b̃2

u+R2
u�
})

f��1−g1�R2
1�
)



we obtain
1√
z

1
�sinhµ�1/2 exp

(
−z

2
cothµ

)

= 1√
2π

∫ µ

0

da

�sinha�1/2�sinh�µ− a��3/2 exp
(
−z

2
coth�µ− a�

)
�

(2.6)

We note that (2.5) is obtained from (2.6) by integrating with respect to dz.
Taking the Laplace transform in λ (with respect to z) in the above identity,
we obtain

1
�coshµ+ λ sinhµ�1/2

= 1
π

∫ µ

0

da

�sinha�1/2�sinh�µ− a��1/2�cosh�µ− a� + λ sinh�µ− a�� �
(2.7)

We briefly indicate an elementary proof of this identity. We denote by L (resp.,
R) the left-hand side (resp., right-hand side) of (2.7). We set a = sinh�µ�; then,

L = 1

�√1+ a2 + λa�1/2 �
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πR =
∫ µ

0
dx

�sinhx�−1/2�a coshx−√
1+ a2 sinhx�−1/2

��√1+ a2 + λa� coshx− �a+ λ
√

1+ a2� sinhx�

=
∫ a

0
dy

�1+ y2�−1/2�ay
√

1+ y2 −√
1+ a2y2�−1/2

��√1+ a2 + λa�
√

1+ y2 − �a+ λ
√

1+ a2�y�
�taking y = sinh�x��

=
∫ b

0

dv

�av−√
1+ a2v2�1/2��√1+ a2 + λa� − �a+ λ

√
1+ a2�v�(

taking v = y√
1+ y2

and b = a√
1+ a2

)

= 2�1+ a2�1/4
∫ π

0

dϕ

�2+ a2 + λa
√

1+ a2� − �a2 + λa
√

1+ a2� cosϕ(
taking v− a

2
√

1+ a2
= − a

2
√

1+ a2
cosϕ

)

= 2�1+ a2�1/4
∫ ∞

0

dt

1+ �1+ a2 + λa
√

1+ a2�t2

(
taking t = tan

(
ϕ

2

))

= 1

�√1+ a2 + λa�1/2π = πL

as desired.

2.3. Identities in law between two quadratic functionals. We present a sim-
ple proof of the identity in law:∫ 1

0
dt�Bt −G�2 �law�=

∫ 1

0
dt b2

t 
(2.8)

where B is a standard Brownian motion, G = ∫ 1
0 Bs ds and b is a Brownian

bridge on �0
1�. The identity in law (2.8) has been obtained independently by
Chiang, Chow and Lee [14] and Chan, Dean, Jansons and Rogers [12], using
a diagonalization procedure; in [15], we prove this identity as a consequence
of a Fubini type theorem.

Here, we shall give a new variant, involving a Brownian sheet, of our proof
of (2.8). First, we introduce the following notation. Let X and Y denote two
r.v.’s; we write X ∼L→F Y, and also Y ∼F→L X if

E�exp�iλY�� = E

(
exp

(
−λ

2

2
X

))
∀ λ ∈ R�

Now we note that the left-hand side of (2.8) equals
∫ 1

0 du
∫ u

0 ds�Bu − Bs�2;
moreover, ∫ 1

0
du

∫ u

0
ds�Bu −Bs�2 �

L→F

∫ 1

0

∫ 1

0
dWs
u�Bu −Bs�1�s<u�
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where �Ws
u� s
 u ≤ 1� denotes a Brownian sheet independent of B. Using
Fubini’s theorem,∫ 1

0

∫ 1

0
dWs
u�Bu −Bs�1�s<u� =

∫ 1

0
dBt

∫ 1

0

∫ 1

0
dWs
u1�s<t<u��

Below, we use the notation W�A� for
∫
A dWs
u and we recall that

E�W�A�W�C�� = m�A ∩ C�, where m is Lebesgue measure on R
2
+, and

A and C are two Borel sets.
Now, consider the rectangles Tt = ��s
 u�� 0 ≤ s < t < u ≤ 1�, 0 ≤ t ≤ 1.

The process �W�Tt�� t ≤ 1� is a centered Gaussian process with covariance

E�W�Tt�W�Tt0
�� =m�Tt ∩Tt0

� = t0�1− t� for t0 ≤ t.

That is, �W�Tt�
 t ≤ 1� is a Brownian bridge. Thus,

∫ 1

0
dt�Bt −G�2 �

L→F

∫ 1

0
dBtW�Tt� �

F→L

∫ 1

0
dt�W�Tt��2

proving (2.8).
Note. Clearly, this type of argument may be applied to more general

quadratic functionals of Brownian motion; for example, the reader may give
a proof of Exercise 2�4∗ along the preceding lines.

We give a second example which originates from Chan and Jansons [13].
The authors are interested in the law of∫ 1

0
�Xt − X̄�2 dt


where {
dXt = αUtdt


dUt = dBt − αUtdt

α > 0

and X̄ = ∫ 1
0 Xs ds; U is an Ornstein–Uhlenbeck process. Then,

∫ 1

0
�Xt − X̄�2 dt =

∫ 1

0
ds
∫ s

0
du �Xu −Xs�2

�
L→F

∫ 1

0
dWs
u

(∫ u

s
dXt

)
1�s<u�

=
∫ 1

0
dXtW�Tt� = α

∫ 1

0
dtUtW�Tt�


where bt �=W�Tt� is a Brownian bridge independent of U;

E

(
exp

(
−λ

2

2

∫ 1

0
�Xt − X̄�2 dt

))
= Eb

(
exp−λ

2

2
α2EU

({∫ 1

0
dtUt bt

}2))



where the second expectation is taken with respect to U, b being fixed.
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We assume that U0 ∼ N�0
1/2α� so that Ut is stationary and E�UtUs� =
�exp�−α�t− s���/2α. Finally, we obtain

E

(
exp

(
−λ

2

2

∫ 1

0
�Xt − X̄�2 dt

))

= E

(
exp

(
−λ

2

2
α
∫ 1

0
dt

∫ t

0
ds exp�−α�t− s��bsbt

))

proving the identity in law:∫ 1

0
�Xt − X̄�2 dt �law�= α

∫ 1

0
dt

∫ t

0
ds exp�−α�t− s��bsbt�(2.9)

3. A martingale approach to Ray–Knight theorems. The results of
this section are a continuation of Chapter 3∗. On one hand, we prove again
Theorems 3.3∗ and 3.4∗ without using excursion theory. On the other hand,
we give some complements to Theorem 3.3∗ in studying the two parameter
process �La

∞��B� + �2/δ�l�� a ≥ 0
 δ > 0�, where �lt� t ≥ 0� denotes the local
time at 0 of B. We also include well-known Ray–Knight theorems for Bessel
processes.

To prove these results, we use stochastic calculus; this approach has al-
ready been used by McGill [38, 39], Jeulin [27, 28] and by Jeulin and Yor [29]
to study some functionals of Brownian motion. In Chapter 3∗, Ray–Knight
theorems are proved with the tools of excursion theory and Lévy–Khintchine
representation of squares of Bessel processes.

We refer to [51], [17], [56], [36], [45], [54] for other Ray–Knight theorems
and other approaches (among which are excursion theory and Dynkin’s isomor-
phism theorem). From the classical Ray–Knight theorems (at time Ta and τt),
one can obtain the Ray–Knight theorem for local times taken at an indepen-
dent exponential time (see [8]). For recent simplifications of the Ray–Knight
theorem at a fixed time [44], [28], we refer to [37], [57].

First, let us introduce some notation. We set <=�t� = �Bt� + =−1�2lt� where
=� R+ → R+ is a C1 function, strictly increasing, with =�0� = 0 and =�∞� = ∞.

We define the squared Bessel process with generalized dimension =′ as a
R+-valued process, which is solution of the SDE

Xt = x+ 2
∫ t

0

√
Xs dβs + =�t�
(3.1)

and Q=′
x denotes the law on C�R+
R+� of a process which satisfies (3.1). The

law of the squared Bessel process of dimension δ (δ ≥ 0) corresponding to
=�t� = δt is Qδ

x.
We now introduce some notation about the solutions of the Sturm–Liouville

equation

�SL� >′′ = f>

associated with a measurable locally integrable function f� R+ → R+. >f and
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3f are the solutions of (SL) which satisfy the following:

�i� >f�0� = 1
 >f ≥ 0 and >f is decreasing;

�ii� 3f�0� = 0
 3′
f�0� = 1�

The functions >f and 3f are linked by

3f�t� = >f�t�
∫ t

0

ds

>2
f�s�

�(3.2)

We recall that the Laplace transform of the law Qδ
x can be expressed in terms

of solutions of the Sturm–Liouville equation (SL).

Lemma 3.1. Let f� R+ → R+ be a measurable function with compact sup-
port. Then

Q=′
x

(
exp−1

2

∫ ∞
0

Xtf�t�dt
)
= exp

(
1
2

∫ ∞
0

>′
f�t�

>f�t�
=′�t�dt

)
exp

(
x

2
>′
f�0�

)

(3.3)

which, in the case =′�t� = δ, becomes

Qδ
x

(
exp−1

2

∫ ∞
0

Xtf�t�dt
)
= �>f�∞��δ/2 exp

(
x

2
>′
f�0�

)
�(3.4)

3.1. The Ray–Knight theorem for the process <=. We can now state the
Ray–Knight theorem for the family of local times of the process <=.

Theorem 3.1 ([35], Theorem 3.3∗). The law of the process �La
∞�<=��, the

family of local times of the process <=, isQ=′
0 . In particular, the law of the family

of local times of �<δ�t� ≡ �Bt� + �2/δ�lt� t ≥ 0� is Qδ
0.

The proof of this theorem given in [35], Chapter 3∗, is based on excursion
theory. See also [43] for some extensions. Doney, Warren and Yor [16] show
that Qδ

0 is also the law of the family of local times of R3
 α, where R3
 α is
an α-perturbed Bessel process of dimension 3 with δ = 2�1 − α� and, relying
partly on [34], they explain the relationships between the two processes <δ
and R3
 α.

We shall obtain Theorem 3.1 as a consequence of the following general
result.

Proposition 3.1. We denote Xt = �Bt� + lt. Let f be a measurable function
on ��x
 l�� x ≥ l ≥ 0�, positive with compact support. Then,

E

(
exp− 1

2

∫ ∞
0

f�Xs
 ls�ds
)
= exp

(∫ ∞
0

F′
x�u
u�du

)

(3.5)

where

F�x
 l� = ln�>f�·
l��x��
 x ≥ l(3.6)

and >f�·
l� is the positive decreasing solution of the (SL) equation associated
with the function x #→ f�x
 l�
 x ≥ l, satisfying >f�·
l��l� = 1.
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Proof. Let F satisfy (3.6); then F (or rather F′
x) solves the Riccati differ-

ential equation

F′′
x2�x
 l� + �F′

x�x
 l��2 = f�x
 l��
Define

M
f
t = exp

{
F�Xt
 lt� −

∫ lt

0
F′
x�u
u�du− 1

2

∫ t

0
f�Xs
 ls�ds

}
�(3.7)

Using the decomposition Xt = βt+ 2lt, with the help of Itô’s formula, one can
easily prove that �Mf

t � is a �t �= σ��Bs�
 s ≤ t� local martingale. Moreover,
since f has compact support in ��x
 l�� x ≥ l ≥ 0�, this martingale is bounded
(F′

x has compact support). Equality (3.5) then follows from the optional stop-
ping theorem. ✷

Proof of Theorem 3.1. We apply (3.5) to the function f�x
 l� = g�x −
l + =−1�2l��. Then F�x
 l� = ln>g�x − l + =−1�2l�� − ln>g�=−1�2l�� and (3.5)
becomes

E

(
exp−1

2

∫ ∞
0

g�<=�s��ds
)
= exp

(
1
2

∫ ∞
0

>′
g�t�

>g�t�
=′�t�dt

)
�

That is,

E

(
exp− 1

2

∫ ∞
0

g�a�La
∞�<=�da

)
= Q=′

0

(
exp− 1

2

∫ ∞
0

Xt g�t�dt
)

by (3.3). Note that, in the case =′�t� = δ, the martingale Mf takes the form

Mg�t� = exp
{
Gg�<δ�t�� − �1+ �δ/2��Gg

(
2
δ
lt

)
− 1

2

∫ t

0
g�<δ�s��ds

}

(3.8)

where Gg�x� = ln>g�x�. ✷

Some comments on Proposition 3.1. (1) According to Pitman’s represen-
tation of Bes(3), we have the following equality in law:

�Xt
 lt� t ≥ 0� �law�= �Rt
Jt� t ≥ 0�
(3.9)

where �Rt
 t ≥ 0� is a Bes(3) process and Jt = inf s≥t Rs. Thus, (3.5) is equiva-
lent to

E

(
exp− 1

2

∫ ∞
0

f�Rs
Js�ds
)
= exp

(∫ ∞
0

F′
x�u
u�du

)

(3.10)

where F satisfies (3.6).
(2) We now consider the process <δ�t� in the case δ = 2, that is, for local

times of a Bessel process of dimension 3 (beware: not 2!). We note R = <2; the
martingale Mf

t defined by (3.8) takes the form

Mf�t� = exp
{
Gf�R�t�� − 2Gf�lt� − 1

2

∫ t

0
f�R�s��ds

}

(3.11)
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where Gf�x� = ln>f�x�; Mf is a martingale with respect to the natural filtra-
tion �t of �B�. The natural filtration �t of the process Rt = �Bt� + lt is strictly
smaller than �t (see [18]). A natural question arises: what is the projection of
the martingale Mf on the filtration �t? Here is the solution:

We set Nf
t = E�Mf

t /�t�. To calculate Nf
t , we use the following fact: for fixed

t, the conditional law of lt is the uniform law on �0
Rt�; thus

N
f
t = exp

{
Gf�R�t�� −

1
2

∫ t

0
f�R�s��ds

}
1
Rt

∫ Rt

0
exp�−2Gf�u��du

= 1
Rt

>f�Rt�
∫ Rt

0

du

>2
f�u�

exp
{
−1

2

∫ t

0
f�R�s��ds

}

= 1
Rt

3f�Rt� exp
{
−1

2

∫ t

0
f�R�s��ds

}



(3.12)

using (3.2). Formula (3.12) yields another proof of the Ray–Knight theorem for
the family of local times of Bes(3). Indeed, we can apply the optional stopping
theorem to the bounded martingale Nf and then use

3f�x�
x

→
x→∞

1
>f�∞� �

We can also obtain the Ray–Knight theorem for the family of local times at
time T1, the hitting time of 1 by R. The optional stopping theorem applied to
(3.12) at time T1 gives

E

[
exp−1

2

∫ T1

0
f�R�s��ds

]
= 1
3f�1�

= Q2
0→0

[
exp−1

2

∫ 1

0
f�x�Xx dx

]

using a result of Pitman and Yor [47], where Q2
0→0 is the law of the squared

two-dimensional Bessel bridge. In other words,

�La
T1
�R�
 0 ≤ a ≤ 1� �law�= ��Z̃t�2
 0 ≤ t ≤ 1�
(3.13)

where Z̃ is a Brownian bridge in R
2.

3.2. A second Ray–Knight theorem for the process <δ. The martingale Mf

introduced in the proof of Proposition 3.1 enables us to obtain the law of the
family of local times up to τx, the inverse local time.

Theorem 3.2 (Theorem 3.4∗). Let x > 0 and consider τx = inf�t ≥ 0
 lt >
x�. The process �La

τx
�<δ�
 a ≥ 0� is an inhomogeneous Markov process, starting

at 0, which is the square of a δ-dimensional Bessel process for a ≤ 2x/δ, and
the square of a 0-dimensional Bessel process for a ≥ 2x/δ.
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Proof. The optional stopping theorem E�Mf
0 � = E�Mf

τx� shows

E

[
exp−1

2

∫ ∞
0

f�a�La
τx
da

]
= E

[
exp−1

2

∫ τx

0
f�<δ�s��ds

]

=
{
>f

(
2x
δ

)}δ/2
�

Let �Ya
 a ≥ 0� be an inhomogeneous Markov process as specified in the
above theorem. Then,

E

[
exp−1

2

∫ ∞
0

f�a�Ya da

]

= E

[
exp

(
−1

2

∫ b

0
f�a�Ya da

)
exp−1

2

∫ ∞
0

fb�a�Ya+b da
]

with b �= 2x
δ

and fb�a� = f�a+ b�

= Qδ
0

[
exp

(
−1

2

∫ b

0
f�a�Xa da

)
Q0

Xb

(
exp

(
−1

2

∫ ∞
0

fb�a�Xa da

))]

from the Markov property. Now, by (3.3),

Q0
Xb

(
exp

(
−1

2

∫ ∞
0

fb�a�Xa da

))
= exp

{
Xb

2
>′
fb
�0�
}



>fb
�x� = >�x+ b�/>�b� and >′

fb
�0� = >′�b�/>�b�. Then,

E

[
exp−1

2

∫ ∞
0

f�a�Ya da

]

= Qδ
0

[
exp

(
−1

2

∫ b

0
f�a�Xa da+

1
2
>′�b�
>�b�Xb

)]

=
{

1
3′
f�b� − �>′�b�/>�b��3f�b�

}δ/2
(by [47], Equation (1.h))

= �>f�b��δ/2 using (3.2).

This proves the equality in law between the processes �La
τx
�<δ�
 a ≥ 0� and

�Ya
 a ≥ 0�.

3.3. Relation between the local times �La
∞�<δ�
 a ≥ 0�. For δ > 0, we

denote Cδ
a the local time at level a and at time ∞ for the process <δ�t� =

�Bt�+�2/δ�lt. One can prove [35] that there exists a jointly continuous version
of the process �Cδ

a� a ≥ 0
 δ > 0�. In Section 3.1 above, we have obtained the
law of Cδ = �Cδ

a� a ≥ 0�, namely Qδ
0. We are now interested in the joint law

of the processes �Cδ� δ > 0� and we show the following theorem.

Theorem 3.3. Define Mδ
a = 1

2�Cδ
a − aδ�; then Mδ

a is a two-parameter mar-
tingale with respect to the filtration � δ

a = σ�Cγ
b � b ≤ a
 0 < γ ≤ δ�; its



SOME BROWNIAN FUNCTIONALS AND THEIR LAWS 1027

increasing process is given by

�M�δa =
∫ a

0
dxCδ

x�(3.14)

Moreover, �M� is C1 and

∂

∂δ
�M�δa =

2
δ2

∫ ∞
0

du
(
Cδ
a −Cδ

a�τu�
)

= 2
δ2

∫ ∞
0

dls
(
Cδ
a −Cδ

a�s�
)



(3.15)

where τ is the inverse of the local time l.

Proof. From Tanaka’s formula,

1
2
�Cδ

a�t� − aδ� =
∫ t

0
1��Bs�+�2/δ�ls<a� sgn�Bs�dBs

+
(
�Bt� +

2
δ
lt − a

)−
−
(

1+ 2
δ

)(
lt −

δ

2
a

)−



(3.16)

where Cδ
a�t� is the local time at level a at time t of the process <δ. For t = ∞,

(3.16) simplifies to

1
2�Cδ

a − aδ� =
∫ ∞

0
1��Bs�+�2/δ�ls<a� sgn�Bs�dBs

$=Mδ
a�

(3.17)

Now, we shall use a representation of the square integrable random variables
measurable with respect to � δ

a .

Lemma 3.2. Any r.v. H of L2�� δ
a � may be written

H = E�H� +
∫ ∞

0
hs1��Bs�+�2/δ�ls<a� dBs
(3.18)

where h is predictable w.r.t the filtration of B and

E

[∫ ∞
0

h2
s1��Bs�+�2/δ�ls<a� ds

]
<∞�(3.19)

Proof. It is enough to prove (3.18) for a r.v. H of the form

H = exp
{
−

n∑
i=1

∫ a

0
gi�b�Cγi

b db

}

= exp
{
−

n∑
i=1

∫ ∞
0

gi�<i�s��ds
}

= exp
{
−

n∑
i=1

∫ ∞
0

gi�<i�s��1�ls≤�aδ/2�� ds
}

with gi ≥ 0 with support in �0
 a�, γi ≤ δ and <i�s� �= �Bs� + �2/γi�ls.
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Clearly, H can be written as exp�− ∫∞0 f�Xt
 lt�dt� with Xt = �Bt� + lt and

f�x
 l� =
n∑
i=1

gi

(
x− l+ 2

γi
l

)
1�l≤�aδ/2���

Let us consider the martingale Mf associated with the function f introduced
in the proof of Proposition 3.1. Then

M
f
t = 1+

∫ t

0
Mf

sF
′
x�Xs
 ls� sgn�Bs�dBs


where F is defined by (3.6). Since suppgi ∈ �0
 a� and γi ≤ δ, f�x
 l� = 0 for
x ≥ a+ l− �2/δ�l. Now, we easily verify that suppf�·
 l� ⊂ �l
 a+ l− �2/δ�l�,
(l ≤ �aδ/2�) implies suppF′

x�·
 l� ⊂ �l
 a+ l− �2/δ�l� and therefore

M
f
t = 1+

∫ t

0
Mf

sF
′
x�Xs
 ls�1�Xs≤a+ls−�2/δ�ls� sgn�Bs�dBs

= 1+
∫ t

0
Mf

sF
′
x�Xs
 ls�1��Bs�+�2/δ�ls≤a� sgn�Bs�dBs�

Since H =M
f
∞ exp�∫∞0 F′

x�u
u�du�, H can be written

H = C+
∫ ∞

0
h�s�1��Bs�+�2/δ�ls≤a� dBs� ✷

It is now easy to prove that Mδ
a is a � δ

a martingale. By (3.16), we can see that
E�Cδ

a� = aδ when we take t→∞, which implies E�Mδ
a� = 0. Let H be a �

γ
b

measurable r.v. with γ ≤ δ and b ≤ a. By the lemma, we can write

H = E�H� +
∫ ∞

0
h�s�1��Bs�+�2/γ�ls≤b� dBs

and

E�Mδ
aH� = E

(∫ ∞
0

h�s�1��Bs�+�2/γ�ls≤b�1��Bs�+�2/δ�ls≤a� sgn�Bs�ds
)

�using (3.17)),

= E�Mγ
bH�


proving the martingale property of Mδ
a.

Following Wong and Zakai [61] (see also [41]), we say that a two-parameter
continuous martingale �Mz
�z
 z ∈ R

2
+� is path-independent if for every con-

tinuous increasing path γ from �0
1� to R
2
+, Mγ�t� is a one-parameter martin-

gale with increasing process At such that A1 is the same for all increasing
paths γ having the same endpoints γ�0� and γ�1�. For a path-independent
martingale, one can define a function �M
M�z, called the increasing process,
as the increasing function A1 for all paths γ connecting γ�0� and γ�1� = z.

We shall verify that Mδ
a is path-independent. Let γ be an increasing path

connecting γ�0� = 0 and γ�1� = �a
 δ� and =n a sequence of subdivisions �ti� of
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�0
1� such that �=n� → 0. We set �ai
 δi� = γ�ti�. Let At denote the increasing
process of the martingale Mγ�t�. Then,

A1 = lim
n→∞

∑
=n

(
M

δi+1
ai+1 −Mδi

ai

)2
�

SetMδ
a�t� =

∫ t
0 1��Bs�+�2/δ�ls≤a� sgn�Bs�dBs and apply Itô’s formula to �Mδi+1

ai+1�t�−
M

δi
ai�t��2 to obtain, by letting t→∞,

(
M

δi+1
ai+1 −Mδi

ai

)2 = 2
∫ ∞

0

(
M

δi+1
ai+1�s� −Mδi

ai
�s�)

× (1��Bs�+�2/δi+1�ls≤ai+1� − 1��Bs�+�2/δi�ls≤ai�
)

sgn�Bs�dBs

+
∫ ∞

0

(
1��Bs�
 ls�∈/i+1

− 1��Bs�
 ls�∈/i
)2
ds


where /i = ��b
 l� ∈ �R+�2 � b+ �2/δi�l ≤ ai�. We note that /i ⊂ /i+1 since
ai ≤ ai+1 and δi ≤ δi+1. Hence

∑
=n

(
M

δi+1
ai+1 −Mδi

ai

)2 =∑
=n

2
∫ ∞

0

(
M

δi+1
ai+1�s� −Mδi

ai
�s�)1/i+1\/i��Bs�
 ls� sgn�Bs�dBs

+
∫ ∞

0
1��Bs�
 ls�∈∪�/i+1\/i� ds�

Now, ∫ ∞
0

1��Bs�
ls�∈∪�/i+1\/i� ds =
∫ ∞

0
1��Bs�+�2/δ�ls≤a� ds

=
∫ a

0
Cδ
b db�

It remains to prove that limn→∞Mn�∞� = 0 in probability, where

Mn�t� =
∑
=n

∫ t

0

(
M

δi+1
ai+1�s� −Mδi

ai
�s�)1/i+1\/i��Bs�
 ls� sgn�Bs�dBs�

This follows from

�Mn�∞ =∑
=n

∫ ∞
0

(
M

δi+1
ai+1�s� −Mδi

ai
�s�)21/i+1\/i��Bs�
 ls�ds

≤
∫ ∞

0
sup
i

(
M

δi+1
ai+1�s� −Mδi

ai
�s�)21��Bs�+�2/δ�ls≤a� ds

≤ sup
s
 i

(
M

δi+1
ai+1�s� −Mδi

ai
�s�)2 ∫ ∞

0
1��Bs�+�2/δ�ls≤a� ds

−→
n→∞0


using the continuity of the map �a
 δ� #→ Mδ
a�·�, whose proof will be given in

Section 3.5. This proves that A1 =
∫ a

0 C
δ
b db, which is independent of the path
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γ with endpoint �a
 δ�. Thus,

�M�δa =
∫ a

0
Cδ
b db�

To prove (3.15), we write

�M�δa =
∫ a

0
dxCδ

x

=
∫ a

0
dx

(
xδ+ 2

∫ ∞
0

1��Bs�+�2/δ�ls≤x� sgn�Bs�dBs

)

= δ
a2

2
+ 2

∫ ∞
0

(
a− �Bs� −

2
δ
ls

)+
sgn�Bs�dBs�

Then,

∂

∂δ
�M�δa =

a2

2
+ 2

∫ ∞
0

1��Bs�+�2/δ�ls≤a�ls sgn�Bs�dBs


and we easily verify that this expression is the same as (3.15). ✷

Some comments on Theorem 3.3.

1. The two-parameter filtration � δ
a does not satisfy the important (F.4) prop-

erty for two-parameter processes (see [11]); that is, �∞
a = ∨γ>0�

γ
a and

� δ
∞ = ∨b≥0�

δ
b are not conditionally independent given � δ

a .
Indeed, let a0 ≤ a and δ0 ≤ δ and compute E�Mδ

a0
M

δ0
a �. By (3.17),

E�Mδ
a0
Mδ0

a � = E

(∫ ∞
0

1��Bs�+�2/δ0�ls<a�1��Bs�+�2/δ�ls<a0� ds
)

= E

[
min

(
a2

��B1� + �2/δ0�l1�2



a2
0

��B1� + �2/δ�l1�2
)]

(by scaling)

= E

[
min

(
a2

�U+ �2/δ0��1−U��2 

a2

0

�U+ �2/δ��1−U��2
)]



where U is an uniform r.v. on �0
1� and the last equality follows from

the identity in law ��B1�
 l1�
�law�= R1�U
1 − U� with R1, a Bes(3) at time

1, independent of U. For example, in the case �a0/δ0� − �a/δ� < 0 and
�a0/δ0� − �a/δ� + a− a0 > 0 , we find E�Mδ

a0
M

δ0
a � = δ�a2

0/2�.
On the other hand, if (F.4) were satisfied, then E�Mδ

a0
M

δ0
a � would be

equal to

E��Mδ0
a0
�2� = E

(∫ a0

0
C
δ0
b db

)
=
∫ a0

0
�δ0b�db = δ0

a2
0

2
�

2. Another way to find the increasing process �M� would be to prove directly
that

�Mδ
a�2 − �M�δa is a � δ

a martingale.
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We can see that

�Mδ
a�2 −

∫ a

0
Cδ
bdb = 2

∫ ∞
0

Mδ
a�s�1��Bs�+�2/δ�ls<a� sgn�Bs�dBs


but we do not know how to prove directly that the right hand side is a � δ
a

martingale.

Infinite divisibility of the law of the process C. We recall another
property of the law of the process C = �Cδ

a� a ≥ 0
 δ > 0� proved by Le Gall
and Yor [35]: if C̃ is an independent copy of C, then for p > 0
 q > 0,

(
Cpδ
a + C̃qδ

a � a ≥ 0
 δ > 0
) �law�= (

C
�p+q�δ
a � a ≥ 0
 δ > 0

)

(3.20)

which proves the infinite divisibility of the law (on C�R+ × R
∗
+
R+�) of C. We

can describe the Lévy–Khintchine representation of the law of C as follows:

E

[
exp

{
−

n∑
i=1

∫ ∞
0

fi�a�Cδi
a da

}]

= exp
{
−
∫
ν�dω̃�

(
1− exp−

n∑
i=1

∫ ∞
0

fi�a�ω̃�a
 δi�da
)}




(3.21)

where ν is the image of the measure M�dω� ⊗ ds under the mapping

C�R+
R+� × R+ → C�R+ × R
∗
+
R+�

�ω
 s� #→ �ω̃�a
 δ� = ω��a− s/δ�+�
 a ≥ 0
 δ > 0�
and M is the image of the Itô measure n+ of positive excursions under the
mapping which associates with an excursion e its family of local times �laV�e�

a ≥ 0� (see [35], [65] and another description of M in [45]). Equation (3.21) is
a consequence of master formulas of excursion theory ([50], Chapter XII).

3.4. Some extensions to Bessel processes. In this subsection, we shall ex-
tend Proposition 3.1, or more precisely equation (3.10), to a Bessel process
of dimension d for d > 2. Let R denote a d-dimensional Bessel process and
Jt = inf s≥t Rs. We denote by �t = σ�Rs
 s ≤ t� and �̃t = �t ∨ σ�Jt�. The
decomposition of the semimartingale R in the filtration �̃t is the following
(Corollary 12�7�1∗, as well as [53], [55], [49]):

Rt = r+ βt + 2Jt −
d− 3

2

∫ t

0

du

Ru


(3.22)

where β is an ��̃t� Brownian motion. We can now state the theorem.

Theorem 3.4. Let f be a measurable function on ��x
 l�� x ≥ l ≥ 0�, posi-
tive with compact support. Then

E

(
exp− 1

2

∫ ∞
0

f�Rs
Js�ds
)
= exp

(∫ ∞
0

G′
x�u
u�du

)

(3.23)
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where G satisfies

G�x
 l� = ln>g�α��·
l��xα�(3.24)

and the function g�α� is defined on the set ��x
 l�� x ≥ lα ≥ 0� by

g�α��x
 l� = 1
α2
x�2/α�−2f�x1/α
 l�(3.25)

with α �= d− 2 and as before >gα�·
l� is the positive, decreasing solution of the
(SL) equation with initial value >gα�·
l��lα� = 1.

Proof. As in the proof of Proposition 3.1, we are looking for an �̃t mar-
tingale of the form

M
f
t = exp

{
G�Rt
Jt� + ϕ�Jt� − 1

2

∫ t

0
f�Rs
Js�ds

}
�(3.26)

Using the decomposition (3.22) and Itô’s formula, one sees that G and ϕ should
satisfy 


f�x
 l� = G′′

x2�x
 l� − d− 3
x

G′
x�x
 l� + �G′

x�x
 l��2


ϕ�l� = −G�l
 l� −
∫ l

0
G′
x�u
u�du�

(3.27)

Now, to solve the differential equation

y′′ − α− 1
x

y′ + �y′�2 = f�x�


we use the change of variable z�x� = y�x1/α�; then z satisfies a standard
Ricatti equation

z′′ + �z′�2 = g�α��x�
with

g�α��x� = 1
α2
x�2/α�−2f�x1/α��(3.28)

Now z�x� = ln>g�α� �x� solves the preceding Ricatti equation, and G�x
 l� =
ln>g�α��·
l��xα� is a solution of (3.27) such that the martingale defined by (3.26)
is bounded. Then the end of the proof is the same as in Proposition 3.1. ✷

Note that when f�x
 l� does not depend on l, the martingale Mf is

M
f
t = exp

{
G�Rt� − 2G�Jt� − 1

2

∫ t

0
f�Rs�ds

}



where G�x� = ln>g�α� �xα� with g�α� satisfying (3.28) and >g�α� �0� = 1.
As in Section 2.1, we can compute the projection of the martingale Mf on

the filtration �t. To do this, we need the conditional law of Jt given �t. Using
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the Markov property of R and the local martingale �1/Rα
t � (see, e.g., Lemma

12.1∗), one can prove that

P
(
Jt ≤ y

∣∣�t

) = yα

Rα
t


 y ≤ Rt�

Then,

M̂
f
l

def= E
(
M

f
t

∣∣�t

)
= exp

{
G�Rt� −

1
2

∫ t

0
f�Rs�ds

}
1
Rα
t

∫ Rt

0
exp�−2G�u��αuα−1 du

= >g�α� �Rα
t � exp

{
−1

2

∫ t

0
f�Rs�ds

}
1
Rα
t

∫ Rt

0

1

>2
g�α� �uα�

αuα−1 du

= 1
Rα
t

>g�α� �Rα
t �
∫ Rα

t

0

1

>2
g�α� �v�

dv exp
{
−1

2

∫ t

0
f�Rs�ds

}

= 1
Rα
t

3g�α� �Rα
t � exp

{
−1

2

∫ t

0
f�Rs�ds

}
�

(3.29)

Corollary 3.4.1 (Ray–Knight theorem for local times of Bessel processes for
d > 2). Let d > 2 and α = d−2
 we denote by Z �resp., Z̃� a two-dimensional
Brownian motion �resp., Brownian bridge�. Then:

�i� �La
∞�Rd�� a ≥ 0� �law�=

(
1

αaα−1
�Zaα �2� a ≥ 0

)



�ii� �La
T1
�Rd�� 0 < a ≤ 1� �law�=

(
1

αaα−1
�Z̃aα �2� 0 < a ≤ 1

)



where Rd denotes a d-dimensional Bessel process and T1 is the hitting time of
1 by Rd.

The assertions of the corollary are well known: they are obtained from the
classical Ray–Knight theorem for Bes(3) by time change (see [34], [63]). Here,
we give another proof, using the expression (3.29) of the martingale M̂f. We
apply the optional stopping theorem to the bounded martingale M̂f:

E

[
exp

{
−1

2

∫ ∞
0

f�Rd�s��ds
}]

= lim
x→∞

x

3g�α� �x�
= >g�α� �∞�

= Q2
0

[
exp

{
−1

2

∫ ∞
0

g�α��x�Xx dx

}]

= E

[
exp

{
−1

2

∫ ∞
0

g�α��x��Zx�2 dx
}]

= E

[
exp

{
−1

2

∫ ∞
0

f�x� 1
αxα−1

�Zxα �2 dx
}]
�
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Part (ii) is obtained in the same way, using

1
3g�α� �1�

= Q2
0→0

[
exp

{
−1

2

∫ 1

0
g�α��x�Xx dx

}]

= E

[
exp

{
−1

2

∫ 1

0
g�α��x��Z̃x�2 dx

}]
�

Corollary 3.4.2 (Ray–Knight theorem for local times of Bessel processes
for d < 2). Let d < 2 and β = 2 − d. Assume Rd is a d-dimensional Bessel
process with Rd�0� = r > 0 and T0 is the hitting time of 0 by Rd. Then

�La
T0
�Rd�� a ≥ 0� �law�=

(
1

βaβ−1
Yaβ � a ≥ 0

)

(3.30)

where �Ya
a ≥ 0� is an inhomogeneous Markov process, starting at 0, which
is the square of a two-dimensional Bessel process for a ≤ rβ
 and the square
of a 0-dimensional Bessel process for a ≥ rβ.

The identity (3.30) is obtained in a similar way as above. Note that there
exists a version of (3.22) for a Bessel process of dimension d < 2; that is,

Rt = r+ γt + 2Kt −
d− 3

2

∫ t

0

du

Ru


 t ≤ T0
(3.31)

where Kt = supt≤u≤T0
Ru, and γ is an ��̂t� Brownian motion, ��̂t� being the

filtration �t ∨ σ�Kt�.
The decomposition (3.31) leads, as might be expected, to the same result as

above:

1
Rα
t

3g�α� �Rα
t � exp

{
−1

2

∫ t

0
f�Rs�ds

}

is an ��t� martingale, where α = d− 2 = −β and g�α� is defined by (3.28).
Note also that by time reversal, we can partially recover Corollary 3.4.2

from (i) of Corollary 3.4.1.

3.5. Proof of Lemma 3�3. As announced, we shall now prove the following
lemma.

Lemma 3.3. There exists a continuous version of the map �a
 δ� →Mδ
a�·�.

Proof. We assume a ≤N and δ ≤ D, for arbitrary but fixed N and D. To
use Kolmogorov’s criterion, we must prove that there exist p > 0, α > 2 and
C > 0 such that, for a
 b ≤N, and δ
 γ ≤ D:

E
(

sup
s≥0

�Mδ
a�s� −M

γ
b�s��p

)
≤ C��a− b� + �δ− γ��α�(3.32)
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Let p > 0 be an even integer; then

E
(

sup
s≥0

�Mδ
a�s� −M

γ
b�s��p

)
≤ CpE

({∫ ∞
0
�1/��Bs�
 ls� − 1/̃��Bs�
 ls��2 ds

}p/2)



where

/ =
{
�x
 l�� x+ 2

δ
l ≤ a

}

 /̃ =

{
�x
 l�� x+ 2

γ
l ≤ b

}
�

Let a > 0, δ > 0 and 0 < h ≤ 1; then

E
(

sup
s≥0

�Mδ
a+h�s� −Mδ

a�s��p
)
≤ CpE

({∫ ∞
0
�1a<�Bs�+�2/δ�ls≤a+h ds

}p/2)

= CpE

({∫ a+h

a
Cδ
x dx

}p/2)

= Cph
p/2 sup

x∈�a
 a+1�
E
[�Cδ

x�p/2
]

≤ Cph
p/2E

[�Cδ
N+1�p/2

]
�

On the other hand, the estimates for increments involving the dimension pa-
rameter are more involved; first,

E
(

sup
s≥0

�Mδ+h
a �s� −Mδ

a�s��p
)
≤ CpE

({∫ ∞
0

1/\/̃��Bs�
 ls�ds
}p/2)




where

/ =
{
�x
 l�� x+ 2

δ+ h
l ≤ a

}
� /̃ =

{
�x
 l�� x+ 2

δ
l ≤ a

}
�

We now write∫ ∞
0

1/\/̃��Bs�
 ls�ds =
∫ ∞

0
1��Bs�+�2/δ+h�ls≤a<�Bs�+�2/δ�ls� ds

=
∫ ∞

0
1��a−�2/δ�ls�+<�Bs�≤�a−�2/δ+h�ls�+� ds

=
∫ a

0
dy
∫ ∞

0
1��a−�2/δ�ls�+<y≤�a−�2/δ+h�ls�+� dsL

y
s 


where �Ly
s 
 y ≥ 0� denotes the family of local times of �B�. Now, for y ∈ �0
 a�,∫ ∞

0
1��a−�2/δ�ls�+<y≤�a−�2/δ+h�ls�+� dsL

y
s =

∫ ∞
0

1��δ/2��a−y�<ls≤�δ+h/2��a−y�� dsL
y
s

=
∫ ∞

0
1�τα�y�<s≤τβ�y�� dsL

y
s

= Ly
τβ�y� −Ly

τα�y�
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where τ�u� = inf�t > 0
 lt > u� and

α�y� = δ

2
�a− y�
(3.33)

β�y� = δ+ h

2
�a− y��(3.34)

Therefore,

Z �=
∫ ∞

0
1/\/̃��Bs�
 ls�ds =

∫ a

0
dy
(
Ly
τβ�y� −Ly

τα�y�

)
�(3.35)

Now, we must estimate the moment of order p/2 of the r.v. Z. Let k ∈ N
∗,

E�Zk� = k!
∫
�0
 a�k

1�x1<x2<···<xk�
k∏
i=1

dxi E

( k∏
i=1

(
Lxi
τβ�xi�

−Lxi
τα�xi�

))
�

We note that the functions α and β defined by (3.33), (3.34) are decreasing.
We want to compute the function:

A�x1
 � � � 
 xk� = E

( k∏
i=1

(
Lxi
τβ�xi�

−Lxi
τα�xi�

))
�

To do this, we use the Markov property of B and the additive functional iden-
tity:

Lx
τC
−Lx

τA
= Lx

τC−A
◦ θτA for A < C


where θ denotes the translation operator on the Wiener space.
The computation of A�x� depends on the position between α�xi� and β�xj�

for i < j. Let us first study the easier case, that is, let x1 < x2 < · · · < xk such
that α�xi� ≥ β�xi+1� (recall that α and β are decreasing). Then

A�x� = E

( k∏
i=2

(
Lxi
τβ�xi�

−Lxi
τα�xi�

)
EBτα�x1�

(
Lx1
τβ�x1�−α�x1�

))

= E

( k∏
i=2

(
Lxi
τβ�xi�

−Lxi
τα�xi�

))
E0
(
Lx1
τβ�x1�−α�x1�

)

=
k∏
i=1

E
(
Lxi
τβ�xi�−α�xi�

)

= 2k
k∏
i=1

�β�xi� − α�xi��

= 2khk
k∏
i=1

�a− xi��
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The equality E�Lx
τA
� = 2A is a consequence of the Ray–Knight theorem for

the local times of Brownian motion at time τA; that is,

�lxτA
 x ≥ 0� �law�= Q0
A


and Lx
τA
= lxτA + l−xτA . We have thus obtained∫

1�x1<x2<···<xk�1α�xi�≥β�xi+1�A�x�dx ≤ Chk�

It remains to study the case where α�xi� ≤ β�xi+1� for some i. We shall study
the case k = 3 (which is enough to prove the continuity). Let x < y < z
and suppose that α�x� > β�y�, α�y� < β�z�. The last condition implies that z
varies in an interval I�y� of amplitude less than Ch. Now, we can prove that
in this case,

A�x
y
 z� ≤ Ch2

and ∫
I�y�

A�x
y
 z�dz ≤ Ch3�

The other cases are similar and finally, we have obtained that

E�Z3� ≤ Ch3


which proves the lemma. ✷

4. On some principal values of Brownian local times.

4.1. Distributions of principal values of Brownian local times, taken at the
inverse local time. In Section 1, we introduced the two processes

Ht = p�v�
∫ t

0

ds

Bs

and Hλ
t = p�v�

∫ t

0
ds coth�λBs�


corresponding to the space–time harmonic functions h0�x
 t�=x and hλ�x
 t�=
sinh�λx� exp�−λ2t/2�. The first process has been studied by Biane and Yor [7],
the second one by Alili [1, 2].

More generally, let f be an odd function, locally integrable on R
∗, satisfying

f�x� ∼0 �C/x�. We can define

A
f
t = p�v�

∫ t

0
f�Bs�ds �= lim

ε→0

∫ t

0
f�Bs�1��Bs�≥ε� ds

=
∫ ∞

0
f�a��lat − l−at �da�

The existence ofAf
t follows from the Hölder continuity of Brownian local times.

For a general survey of principal values of local times, see [62].
Let τ denote the inverse local time of B at 0. We present two approaches

to study the law of the r.v. Af
τt . The first one is based on excursion theory and
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gives the Lévy measure of the Lévy process �Af
τt
 t ≥ 0� in terms of n the

Itô measure of excursions. This approach has been used by Biane–Yor [7] to
describe the law of �Hτt


 τt�.

Proposition 4.1. The characteristic function of A
f
τt is given by

E
(
exp�iξAf

τt
�)

= exp
{
−t
∫

n�de�
(

1− exp
(
iξ
∫ V�e�

0
f�e�u��du

))}
(4.1)

= exp
{
−t
∫ ∞

0

dv√
2πv3

Lv

(
1− cos

(
ξ
∫ v

0
f�r�u��du

))}
�(4.2)

The identity (4.2) is a consequence of the following description of n+, the
Itô measure of positive excursions (see [50], Chapter 12):

�D�

(1) under n+, the law of the lifetime V of the excursion is
dv/2

√
2πv3;

(2) conditionally on V = v, the law of �e�s�
 s ≤ V� is the
law, denoted by Lv, of a three-dimensional Bessel bridge
over �0
 v�.

A second method (used by Alili) to obtain the law of Af
τt uses the Ray–Knight

theorem for �lxτt 
 x ∈ R� and the description of squared Bessel processes in
terms of Sturm–Liouville equations (see Section 3). Let us first introduce the
processes

A
f
+
t =

∫ 1

0
f�a��lat − l0t �da+

∫ ∞
1

f�a�lat da


A
f
−
t =

∫ 1

0
f�a��l−at − l0t �da+

∫ ∞
1

f�a�l−at da�

Remark. If
∫∞

f�a�da < ∞, we can set another definition for the pro-
cesses Af
+, Af
−; that is,

A
f
+
t =

∫ ∞
0

f�a��lat − l0t �da
 A
f
−
t =

∫ ∞
0

f�a��l−at − l0t �da�

Alili in [1] and [2] chooses this renormalization.

We assume that f/R+ ≥ 0; as in Section 3, >f denotes the decreasing solution
of the (SL) equation associated with f/R+ .

Proposition 4.2. Let θ > 0; then

E

(
exp

(
−θ

2
Af
+

τt

))
= exp

{
t

2
lim
ε→0

(
>′
θf�ε�

>θf�ε� − ε>′
θf�ε�

+ θ
∫ 1

ε
f�a�da

)}
(4.3)
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Proof.

Af
+
τt

= lim
ε→0

(∫ ∞
ε

f�a�laτt da− t
∫ 1

ε
f�a�da

)
�

Set fε�x� = f�x�1�x≥ε� and denote by >fε
the solution of (SL) associated with

fε. Then, it is easy to see that

>′
θfε
�0+� =

>′
θf�ε�

>θf�ε� − ε>′
θf�ε�

�

Formula (4.3) follows then from the Ray–Knight theorem and (3.4). ✷

Denote by I�θ� the Laplace exponent of Af
+
τt which is given in (4.3); then

E

(
exp

(
i
ξ

2
Af

τt

))
= exp

{
t

2
�I�iξ� + I�−iξ��

}
�(4.4)

Applying these results to f0�x� = �1/x� and fλ�x� = coth�λx�, one obtains the
theorem. ✷

Theorem 4.1 ([2], Theorem 3). Let ξ ∈ R and µ ∈ R
+; then we have

E
(
exp�iξHλ

τt
− µτt�

) = exp
(−πt�ξ�

λ
coth

(
π

λ

√
�µ2 + ξ2�1/2 − µ

))
�(4.5)

In particular, for µ = 0,

E
(
exp�iξHλ

τt
�) = exp

(−πt�ξ�
λ

coth
(
π

λ

√
�ξ�
))

�(4.6)

Theorem 4.2 ([7]). Let ξ ∈ R and µ ∈ R
+; then we have

E
(
exp�iξHτt

− µτt�
) = exp

(
−πt�ξ� coth

(
π

�ξ�√
2µ

))
�(4.7)

The comparison of these two results implies the following puzzling identity
in law:

λHλ
τt

�law�= Hτt
+ λ

2
Cτt


(4.8)

where �Cu
 u ≥ 0� denotes a standard Cauchy process, independent of B.

4.2. An identity in law for the normalized excursion. If we rewrite (4.5)
and (4.7) using excursion theory as in Proposition 4.1, we can see (cf. [2],
Theorem 9) that (4.5) and (4.7) imply the following surprising fact: for ν ∈ R

∗,
the law of

θν �= ν2
{(∫ 1

0
ds coth�νrs�

)2

− 1
}

(4.9)
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does not depend on ν, where �rs
 s ≤ 1� is a three-dimensional Bessel bridge
of length 1. Now, we give a partial explanation of (4.9). We refer to [3] for a
more complete discussion of this identity in law.

First verification. We verify that θ0 �= limν→0 θν and θ∞ �= limν→∞ θν have
the same law. Letting ν go to 0, we find that

θ0 =
(∫ 1

0

ds

rs

)2

�(4.10)

Now, it is well known ([7], (2.g) and (5.d)) that

θ0
�law�= T�3�

π + T̂�3�
π 


where T
�3�
π and T̂

�3�
π are two independent copies of the first hitting time of π

by a three-dimensional Bessel process, so that

E

(
exp

(
−λ

2

2
θ0

))
=
(

λπ

sinh�λπ�
)2

�

On the other hand, when ν→∞,

θν ∼ 2ν2
∫ 1

0
dsf∗�νrs�


where

f∗�x� = cothx− 1 = 2
exp�2x� − 1

�

We now apply the following result (see [20], [26]): for f a bounded function,
with compact support (and in fact for a larger class of functions),

ν2
∫ 1

0
dsf�νrs�

�law�→
ν→∞

∫ ∞
0

dsf�Rs� +
∫ ∞

0
dsf�R̂s�
(4.11)

where R and R̂ are two independent three-dimensional Bessel processes. We
apply this result to f∗ even though this function does not have a compact
support. Thus, to prove the identity in law between θ0 and θ∞, we must show
that ∫ ∞

0

ds

exp�Rs� − 1
�law�= T�3�

π �

This identity is a consequence of

∫ ∞
0

ds

exp�2Rs� − 1
�law�= �i�

∫ T
�2�
1

0

ds

1− �R2�s��2
�law�= �ii� T

�3�
π/2
(4.12)

where R2 is a two-dimensional Bessel process. This identity in law (4.12) will
be proved and generalized in Section 5.
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Second verification via the scaling property. If we assume (4.9), the function
>ν�λ� = E�exp�−λθν�� does not depend on ν, hence

d

dν
>ν�λ� = 0�

This implies

E

(
dCν

dν

∣∣∣∣Cν

)
= −1

ν

(
Cν −

1
Cν

)

(4.13)

where Cν =
∫ 1

0 ds coth�νrs�. We multiply both sides of (4.13) by ν3; then, we
can write (4.13) as

E

(
ν2
∫ ∞

0
dsg∗�νrs��θν

)
= θν
Cν




where g∗�x� = x/�sinhx�2. Let ν go to ∞ and use (4.11) to obtain from the
above equation

E

(∫ ∞
0

dsg∗�Rs� +
∫ ∞

0
dsg∗�R̂s�

∣∣∣∣
∫ ∞

0
dsf∗�Rs� +

∫ ∞
0

dsf∗�R̂s�
)

= 2
(∫ ∞

0
dsf∗�Rs� +

∫ ∞
0

dsf∗�R̂s�
)
�

Thus, we must show that

E

(∫ ∞
0

dsg∗�Rs�
∣∣∣∣
∫ ∞

0
dsf∗�Rs�

)
= 2

∫ ∞
0

dsf∗�Rs��(4.14)

The identity (4.14) is just a consequence of the scaling property of Bes(3). More
generally, for any C1 function f, and t ≥ 0,

E

(
tf�Rt� − 1

2

∫ t

0
dsRsf

′�Rs�
∣∣∣∣
∫ t

0
dsf�Rs�

)
=
∫ t

0
dsf�Rs��(4.15)

Proof of (4.15). For λ ≥ 0, we can write, using the scaling property,

E

(
exp

(
−λµ2

∫ t

0
dsf�µRs�

))
= E

(
exp

(
−λ

∫ µ2t

0
dsf�Rs�

))
�

We then differentiate the two sides of the above equality with respect to µ
and take µ = 1 in the resulting formula. This yields (4.15). ✷

4.3. An explicit computation. We come back to Section 4.1. We shall com-
pute the Laplace transform of the functional Af1
+

τt for the function f1�x� =
1/�exp�2x� − 1�. The choice of this function is motivated by the identity in
law (4.12). The computation of >f1

, the solution of the (SL) equation asso-

ciated with f1, gives both the Laplace transform of Af
+
τt [see (4.3)] and the
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Laplace transform of
∫∞

0 �ds/ exp�2Rs� − 1�, proving directly the identity in

law between this functional and T
�3�
π/2. Indeed,

E

(
exp

(
−θ

2

2

∫ ∞
0

ds

exp�2Rs� − 1

))
= Q2

0

(
exp

(
−θ

2

2

∫ ∞
0

dt

exp�2t� − 1
Xt

))

= >θ2f1
�∞�

where >θ2f1
is the positive, decreasing solution of

>′′�x� = θ2

exp�2x� − 1
>�x�
 >�0� = 1�(4.16)

To solve (4.16), we set3�x� = >�ln�1/x��, 0 < x < 1;3 satisfies the differential
equation

3′′�x� + 3′�x�
x

= θ2

1− x2
3�x��

A solution of this equation is given by

3�x� = 2F1

(
iθ

2


−iθ

2
�1�x2

)



where 2F1�α
β�γ� z� denotes the hypergeometric function, defined for �z� < 1
by the series

2F1�α
β�γ� z� =
∞∑
n=0

�α�n�β�n
�γ�nn!

zn

with �λ�n = λ�λ+ 1� · · · �λ+ n− 1�.
Clearly, 3 is increasing on �0
1�. Thus, the solution >θ2f1

is given by

>θ2f1
�x� =

∣∣∣∣/
(

1+ iθ

2

)∣∣∣∣
2

2F1

(
iθ

2


−iθ

2
�1� exp�−2x�

)
(4.17)

and

>θ2f1
�∞� =

∣∣∣∣/
(

1+ iθ

2

)∣∣∣∣
2

= π�θ/2�
sinh�π�θ/2�� = E

(
exp

(
−θ

2

2
T
�3�
π/2

))

(4.18)

which proves the identity in law between the two extreme terms of (4.12).
We now proceed to the study of the law of Af1
+

τt or more generally to Kλ
τt

where we denote

Kλ
t �= p�v�

∫ t

0

ds

exp�2λBs� − 1
1�Bs≥0�
 λ > 0


=
∫ ∞

0

da

exp�2λa� − 1
�lat − l0t ��
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Theorem 4.3. Let λ > 0; then,

E

(
exp

(
−θ

2

2
Kλ

τt

))
= exp

(
−tθ

2

4λ

{
−2γ −3

(
1+ iθ

2

)
−3

(
1− iθ

2

)})

(4.19)

where γ denotes Euler’s constant and 3�x� = /′�x�//�x�.

Proof. We apply (4.3) with the function fλ�x� = 1/�exp�2λx� − 1�. Now,

>θ2fλ
�x� = >�θ/λ�2f1

�λx�

=
∣∣∣∣/
(

1+ iθ

2λ

)∣∣∣∣
2

2F1

(
iθ

2λ


−iθ
2λ

�1� exp�−2λx�
)

using (4.17)�

According to Lebedev ([33], (9.2.2)),

>′
θ2fλ

�x� = −
∣∣∣∣/
(

1+ iθ

2λ

)∣∣∣∣
2
θ2

2λ
exp�−2λx� 2F1

(
iθ

2λ
+ 1


−iθ
2λ

+ 1�2� exp�−2λx�
)
�

By (4.3), we must find limε→0 Iε�θ
 λ�, where

Iε�θ
 λ� =
>′
θ2fλ

�ε�
>θ2fλ

�ε� − ε>′
θ2fλ

�ε� + θ2
∫ ∞
ε

fλ�a�da

=
>′
θ2fλ

�ε�
>θ2fλ

�ε� − ε>′
θ2fλ

�ε� +
θ2

2λ
ln
(

1
2λε

)
�

To study limε→0 Iε�θ
 λ�, we need the following approximation near 1 of the
function 2F1�a
 b� c�x� for c = a+ b:

2F1�a
 b�a+ b�x�

= /�a+ b�
/�a�/�b��23�1� −3�a� −3�b� − ln�1− x�� +O��1− x� ln�1− x��


where 3�x� = /′�x�//�x�. Then, we see that limε→0 ε>
′
θ2fλ

�ε� = 0 and

lim
ε→0

Iε�θ
 λ� = lim
ε→0

(
>′
θ2fλ

�ε� + θ2

2λ
ln
(

1
2λε

))
�

Now,

>′
θ2fλ

�ε� = − θ2

2λ
exp�−2λε�

(
23�1� −3

(
1+ iθ

2λ

)
−3

(
1− iθ

2λ

)

− ln�1− exp�−2λε��
)

+O�ε ln�ε��

and therefore,

lim
ε→0

Iε�θ
 λ� = − θ2

2λ

(
23�1� −3

(
1+ iθ

2λ

)
−3

(
1− iθ

2λ

))
� ✷
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Remark. We have obtained the Laplace transform of

p�v�
∫ ∞

0
�da/ exp�2λa� − 1�laτx �

Since 2/�exp�2a� − 1� = coth�a� − 1,

E

(
exp

(
−θ

2

2
p�v�

∫ ∞
0

da

exp�2λa� − 1
laτx

))
= E

(
exp

(
−θ

2

4
Hλ
+

τx
+ θ2

4
τ+x

))



where Hλ
+
τx

= p.v.
∫ τx

0 ds coth�λBs�1�Bs≥0� and τ+x =
∫∞

0 laτx da.
Alili [1, 2] obtained the joint law of �Hλ
+

τx

 τ+x �; taking formally u2 = θ2/2

and µ2 = −�θ2/2� in the formula obtained by Alili, we recover (4.19) up to
a coefficient, that is, ln�2λ�, which does not appear in our (4.19). This comes
from the fact that the “normalization” ln�2λε� in our definition of p.v. is not
the same as that of Alili, who uses ln�ε�.

5. Generalized Bessel processes and the porous medium equation.
In the preceding section, we presented the following identities in law:

∫ ∞
0

ds

exp�2R3�s�� − 1
�law�= �i�

∫ T
�2�
1

0

ds

1− �R2�s��2
�law�= �ii� T

�3�
π/2
(5.1)

where Rd denotes a d-dimensional Bessel process starting from 0 and T
�d�
a =

inf�t > 0
 Rd�t� = a�. The first, (i), is an easy consequence of the following
representation (see [34]):

ln
(

1
R2�t�

)
= R3

(
sup

{
u

∫ ∞
u

exp�−2R3�s��ds > t

})

= R3

(∫ T
�2�
1

t

ds

R2
2�s�

)

 0 < t ≤ T

�2�
1 �

(5.2)

The second identity in law, (ii), will follow from the study of the functional

Aa�R� =
∫ Ta�R�

0

ds

1− �R�s��2 
 a ≤ 1


where R is a positive process which belongs to a certain class of diffusions (to
be defined in the next subsection), including the Bessel processes.

5.1. Generalized Bessel processes and hypergeometric functions. We con-
sider a family � δ
 c of diffusions �Rt
 t ≥ 0� with values in �0
1�, depending
on two parameters δ > 0 and c, whose infinitesimal generator is given by

Lδ
 cf�x� = 1
2
f′′�x� + δ− 1

2x
f′�x� + 2cx

1− x2
f′�x�
 f ∈ C2�(5.3)

For δ < 2, 0 is an instantaneously reflecting regular boundary (for δ ≥ 2, 0 is
not reached). The process R, starting from x ∈ �0
1�, is stopped at time T1.
One can verify by computing the scale function of R that T1 < ∞ p.s. if and
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only if c > − 1
2 . We denote by Pδ
 c

x the law of the process R of generator Lδ
 c,
starting from x. Then, we have the following proposition.

Proposition 5.1. Let δ = 2�ν + 1� > 0 and c ∈ R.

(i) For a ∈ �0
1� and x ≤ a,

Eδ
 c
x

[
exp

(
−k

2

2

∫ Ta�R�

0

ds

1− �R�s��2
)]

= 2F1�α
β� ν + 1�x2�
2F1�α
β� ν + 1�a2� 
(5.4)

where 2F1 denotes the hypergeometric function (see [33]);

α �= ν − 2c+ iθ

2
� β �= ν − 2c− iθ

2
if k2 ≥ �ν − 2c�2


α �= ν − 2c+ θ

2
� β �= ν − 2c− θ

2
if k2 < �ν − 2c�2


and θ = √�k2 − �ν − 2c�2�.
(ii) When c > − 1

2 ( T1 <∞ a.s.),

E
δ
 c
0

[
exp

(
−k

2

2

∫ T1�R�

0

ds

1− �R�s��2
)]

= �/�ν/2+ �1+ c� + �iθ/2���2
/�ν + 1�/�1+ 2c� if k2 ≥ �ν − 2c�2


(5.5)

E
δ
 c
0

[
exp

(
−k

2

2

∫ T1�R�

0

ds

1−�R�s��2
)]

= /��ν/2�+ �1+ c�+ �θ/2��/��ν/2�+ �1+ c�− �θ/2��
/�ν+1�/�1+2c� if k2 < �ν−2c�2�

(5.6)

Proof. It is well known that if ϕ is the bounded solution on �0
 a� of

Lδ
 cϕ�r� = k2

2�1− r2�ϕ�r�

with ϕ�0� = 1, then

Eδ
 c
x

[
exp

(
−k

2

2

∫ Ta�R�

0

ds

1− �R�s��2
)]

= ϕ�x�
ϕ�a� 
 x ≤ a�

Thus ϕ is the solution of

ϕ′′�x� + δ− 1
x

ϕ′�x� + 4cx
1− x2

ϕ′�x� = k2

�1− x2�ϕ�x��(5.7)

Now, according to Lebedev ([33], page 164), the equation

ϕ′′�x� + 2��γ − 1
2� − �α+ β+ 1

2�x2�
x�1− x2� ϕ′�x� = 4αβ

�1− x2�ϕ�x�
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admits 2F1�α
β�γ�x2� as a solution. Now, we compute the coefficients α
β
 γ
so that the above equation is precisely (5.7). Therefore, we set


2γ − 1 = δ− 1


2α+ 2β+ 1 = δ− 1− 4c


4αβ = k2


or 

γ = δ

2
= ν + 1


α+ β = ν − 2c


4αβ = k2�

We assume that k2 ≥ �ν − 2c�2 so that we can set k2 = �ν − 2c�2 + θ2. The
above system gives 



γ = ν + 1


α = ν − 2c+ iθ

2



β = ν − 2c− iθ

2
�

The function ϕ�x� = 2F1��ν − 2c+ iθ�/2
 �ν − 2c− iθ�/2� ν + 1�x2� is then a
solution of (5.7) bounded on �0
 a� and ϕ�0� = 1. This proves the first part of
Proposition 5.1; (5.5) is a consequence of the following relation ([33], (9.3.4)):

2F1�a
 b� c�1� =
/�c�/�c− �a+ b��
/�c− a�/�c− b� for Re�c− a− b� > 0.

The case k2 ≤ �ν − 2c�2 is similar. ✷

Corollary 5.1.1. We have

∫ T
�2�
1

0

ds

1− �R2�s��2
�law�= T

�3�
π/2�(5.8)

Proof. We apply (5.4) in the particular case δ = 2
 c = 0, that is, for the
two-dimensional Bessel process

E

[
exp

(
−θ

2

2

∫ T
�2�
1

0

ds

1− �R2�s��2
)]

=
∣∣∣∣/
(

1+ iθ

2

)∣∣∣∣
2

= πθ/2
sinh�πθ/2� = E

[
exp

(
−θ

2

2
T
�3�
π/2

)]
� ✷
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5.2. A particular case: c = ν/2. When c = �ν/2�, (5.5) becomes

E
δ
 ν/2
0

[
exp

(
−θ

2

2

∫ T1�R�

0

ds

1− �R�s��2
)]

= �/�1+ ν + �iθ/2���2
�/�ν + 1��2 �(5.9)

Note that in this case, the infinitesimal generator Lδ
 c is

Lδ
 ν/2f�x� = 1
2
f′′�x� + 2ν + 1− x2

2x�1− x2� f
′�x��(5.10)

In the special case ν = −1/2 that is δ = 1, we obtain the following result:

E0

[
exp

(
−θ

2

2

∫ T1�R�

0

ds

1− �R�s��2
)]

= 1
cosh�θπ/2� 
(5.11)

where R is the (reflected) diffusion with infinitesimal generator

Lf�x� = 1
2
f′′�x� − x

2�1− x2�f
′�x�
 x ∈ R

+�(5.12)

Let X be the diffusion, with values in �−1
1�, which solves the SDE

dXt = dβt −

Xt

2�1−X2
t �
dt
 t < T1 ∧T−1


X0 = 0


(5.13)

where β is a real valued Brownian motion. The scale function of X is s�x� =
arcsinx, so that

arcsinXt = B

(∫ t

0

ds

1−X2
s

)

 t < T∗

1 = inf�s
Xs = 1 or − 1�(5.14)

for a real valued Brownian motion B, starting from 0.
The representation (5.14) gives an explanation for the Laplace transform

obtained in (5.11). In fact, by (5.14),∫ T1�X�∧T−1�X�

0

ds

1−X2�s�
�law�= Tπ/2��B���(5.15)

This obviously agrees with (5.11), since it is well known that

E

[
exp−θ

2

2
Ta��B��

]
= 1

cosh�θa� 
 a > 0�

Given the identities in law (5.8) and (5.15), which exhibit T�3�
π/2 and T

�1�
π/2, and

the well-known probabilistic interpretation of the factorization

1
cosh�θa� =

(
tanh�θa�

θa

)(
θa

sinh�θa�
)

as the expression of the Laplace transform (in θ2/2) for

T
�1�
a = g

T
�1�
a
+ �T�1�

a − g
T
�1�
a
�
(5.16)
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one obtains the following:∫ gT∗1

0

ds

1−X2
s

�law�= g
T
�1�
π/2
�B��

∫ T∗
1

gT∗1

ds

1−X2
s

�law�= T
�3�
π/2�(5.17)

In the above equations, we denote

g
T
�1�
a
= sup�t < T

�1�
a 
 R1�t� = 0�

and

gT∗
1
= sup�t < T∗

1
 X�t� = 0��
The Laplace transform of the right-hand side of (5.16) follows from the path
decomposition of Brownian motion at time gTa

(see [60], [66]), which states
that �B�gTa

+ t�� t ≤ Ta − gTa
� is a three-dimensional Bessel process, inde-

pendent of �B�t�� t ≤ gTa
�. Concerning the last identity in law in (5.17), it is

now tempting, in view of Corollary 5.1, to think that

(�X�gT∗
1
+ u��� u ≤ T∗

1 − gT∗
1

) �law�=
?

(
R2�u�� u ≤ T

�2�
1

)

(5.18)

which would give a nice explanation of Corollary 5.1.
However, the identity in law (5.18) does not hold, as will be shown, with

the description of the diffusion �X̃�u�� u ≤ T̃1� on the left-hand side of (5.18).
To show this, we may use the enlargement formula for L ≡ gT∗

1
, that is, a

formula which gives the decomposition of the Brownian motion �βu
 u ≥ 0�
driving X:

Xt = βt +
∫ t

0
ds b0�Xs� where b0�x� = − x

2�1− x2� 


as a semimartingale in the enlarged filtration; that is, in terms of X,

X̃t =XL+t = β̃t +
∫ t

0
ds b�X̃s�
(5.19)

where �β̃t� is a Brownian motion in the enlarged filtration, and

b�x� = ϕ′�x�
ϕ�x� + b0�x� and ϕ�X�u ∧T∗

1�� ≡ 1−ZL
u


�ZL
u
 u ≥ 0� being the customary notation for Azéma’s supermartingale asso-

ciated with L (see Chapter 12∗, and [26], Chapter 5). Since

arcsin�Xt� = B

(∫ t

0

ds

1−X2
s

)

 Z

gT∗a �B�
t = 1− 1

a
�B�t ∧T∗

a�B���


it is not difficult to show that 1−ZL
t = �2/π�arcsin��X�t∧T∗

1���, which implies

ϕ′�x�
ϕ�x� =

1√
1− x2�arcsin�x��

�
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hence,

b�x� = 1√
1− x2�arcsin�x��

− x

2�1− x2� 


so that the process ��X̃t�
 t ≤ T̃1�, where X̃ satisfies (5.19), is definitely not a
two-dimensional Bessel process. However, both X̃ and R2 satisfy

∫ T1��X̃��

0

ds

1− X̃2�s�
�law�=

∫ T1�R2�

0

ds

1−R2
2�s�

�(5.20)

5.3. The porous medium equation. The porous medium equation is the
partial differential equation

�E�µ
{
ut = 1

2�u2m+1�xx
 m > 0


u�0
 ·� = µ


where u� R
∗
+ × R → R. If µ is a probability measure, the positive solution of

(Eµ) is a probability density and it is natural to associate to (Eµ) a random
process X, such that P�Xt ∈ dx� = u�t
 x�dx. More precisely, we consider the
solution of

�Sµ� Xt=X0 +
∫ t

0
um�s
Xs�dBs
 and the density of the law of Xt is u�t
 ·�.

The systems (Eµ) and (Sµ) have been studied by Benachour, Chassaing,
Roynette and Vallois [4] for a large class of measures µ. The purpose of this
paragraph is to link the generalized Bessel processes introduced in Section 5.1
and the solution of (Sµ), for µ = δ0 the Dirac measure at 0.

If X is the solution of (Sδ0
), then the process Zt �= exp�−tβ�Xexp�t� is the

unique stationary process, with invariant measure ϕ�x�dx, which solves

Zt = Zs +
∫ t

s
ϕm�Zr�dBr − β

∫ t

s
Zr dr
 t ≥ s
(5.21)

where 


β = 1
2m+ 2




am =
{

m1/2

��2m+ 1��m+ 1��1/2B��2m+ 1�/2m
1/2�
}m/m+1

where B�a
 b� = /�a�/�b�
/�a+ b� 


γm = am

( �2m+ 1��m+ 1�
m

)1/2




ϕ�x� = a1/m
m

(
1−

(
x

γm

)2)1/2m

+
�

(5.22)
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Equation (5.21) admits a unique weak solution with values in �−γm
 γm� (see
[4]). We denote by �Zy

t 
 t ≥ 0� the solution of (5.21) satisfying Z
y
0 = y and

Sx
y = inf�t > 0
 Zx
t = y�� x
y ∈� − γm
 γm��

In [4], the authors obtain the Laplace transform of the hitting time Sx
y,
the result being expressed in terms of hypergeometric functions. We shall
establish an identity in law between the time Sx
y ∧Sx
−y and the functional
Ay�R�, already introduced at the beginning of Section 5, for a diffusion R

of the family � δ
 c, which enables us to recover some results from [4]. We
consider Yy

t = �Zyγm
t �/γm with values in � − 1
1�, where Yy

t solves

Y
y
t = y+

∫ t

0
σm�Yy

r �dBr − β
∫ t

0
Yy
r dr

with

σ�x� = δ1/m
m �1− x2�1/2m+ 
 δm =

(
m

�2m+ 1��m+ 1�
)1/2

�

Let Tx
y = inf�t > 0
 Yx
t = y� = Sxγm
yγm

.
By a change of time, there exists a process ξy such that

Y
y
t = ξy

(∫ t

0
σ2m�Yy

s �ds
)

and ξy is the solution of

ξ
y
t = y+ γt − β

∫ t

0

ξ
y
s

σ2m�ξys �
ds

for a Brownian motion γ:

ξ
y
t = y+ γt − β

∫ t

0

ξ
y
s

δ2
m�1− �ξys �2�

ds for y ∈� − 1
1�
 t ≤ T1��γ���(5.23)

The generator of ξ, the solution of (5.23), belongs to the class � δ
 c with δ = 1
and c = −�β/2δ2

m� < −�1/2�. The diffusion ξ is symmetric; that is,

�ξyt 
 t ≥ 0� �law�= �−ξ−yt 
 t ≥ 0��

Thus ��ξyt �
 t ≥ 0� �law�= �Rt
 t ≥ 0� under P
1
−�β/2δ2

m�
�y� . We denote by αu the

inverse of the increasing functional

t→
∫ t

0
σ2m�Ys�ds


so that ξu = Yαu
. One easily verifies that

αu =
∫ u

0

ds

σ2m�ξs�
=
∫ u

0

ds

δ2
m�1− ξ2

s�
�(5.24)

It is now easy to obtain the law of Tx
y with the help of Proposition 5.1.
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Proposition 5.2. Let 0 ≤ x ≤ y ≤ 1,

E
[
exp�−λ�Tx
y ∧Tx
−y��

] �i�= E

[
exp

(
−λ

∫ Ty��ξ��

0

ds

δ2
m�1− ξ2

s�
)]

�ii�= ϕλ�x�
ϕλ�y�

(5.25)

with

ϕλ�x� = 2F1

(
ξm
2


bm
2
� 1

2
�x2

)



ξm = m+ 1
2m

+ iθ




bm = m+ 1

2m
− iθ
(5.26)

θ =
√

2�2m+ 1��m+ 1�
m

√
λ− λm with λm = m+ 1

8m�2m+ 1� 


(5.25) being given for λ ≥ λm.

Proof. The identity (i) follows from the relation ξu = Yαu
and the ex-

pression of αu. Identity (ii) is a consequence of Proposition 5.1, since the
law of �ξ� is Pδ
cwith δ = 1 (ν = −1/2), c = −�β/2δ2

m�. In this case, θ2 =
�2λ/δ2

m� − �ν − 2c�2. ✷

Remarks. (i) In [4], Corollaire II.6, the authors obtain the following:

E
[
exp�−λ�Tx
y ∧Tx
−y��

] = kλ�x� + kλ�−x�
kλ�y� + kλ�−y�

(5.27)

with

kλ�x� = 2F1

(
ξm
 bm�

2m+ 1
2

� 1+ x

2

)

= 2F1

(
ξm
 bm� ξm + bm +

1
2
� 1+ x

2

)
�

It follows from Lebedev ([33], (9.6.11)) that

kλ�x� + kλ�−x� = Cϕλ�x��
Formulas (5.25) and (5.27) are then equivalent.

(ii) Theorem II.2 in [4] gives the Laplace transform of the law of Tx
y. We
could obtain this result with the family of diffusions introduced in Section
5.1, but we must choose symmetric diffusions with values in �−1
1� instead of
reflected diffusions. For example, in order to compute the Laplace transform
of Tx
y for x ≤ y, we look for a function ϕ solution of (5.7) with δ = 1,
c = −�β/2δ2

m�, k = √
2λ, which is bounded on �−1
 y�. This is exactly the

function kλ�x�.
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Table 1
Laplace transforms of some variables

X E�exp �−��2/2�X��
∫ ∞

0

ds

exp�2R3�s�� − a2 , a ∈�0
1� 1

2F1��−iθ�/2a
 iθ/2a�1�a2�∫ ∞
0

ds

exp�2R3�s�� − 1
�law�= T

�3�
π/2

πθ/2
sinh�πθ/2�

∫ ∞
0

ds

exp�2<δ�s�� − 1

(
πθ/2

sinh�πθ/2�
)δ/2

∫ ∞
0

exp�−2R3�s��ds
�law�= T

�2�
1

1
I0�θ�∫ ∞

0
exp�−2<δ�s��ds

(
1

I0�θ�
)δ/2

6. Complements. Let Iν and Kν denote the modified Bessel functions
and let Jν, Yν stand for the Bessel functions of the first and second kind (see
[33], Chapter 5).

6.1. Table of formulas. In Table 1, we give the Laplace transforms of some
variables encountered in the preceding sections (and some generalizations).
We denote by Rδ a δ-dimensional Bessel process and by T

�δ�
x its first hitting

time of x; B is a Brownian motion and lt its local time at 0 and at time t;
<δ�t� = �Bt� + �2/δ�lt.

Some comments. (i) The first line follows from the identity in law

∫ ∞
0

ds

exp�2R3�s�� − a2

�law�= 1
a2

∫ T
�2�
a

0

du

1− �R2�u��2



and Proposition 5.1.
(ii) The fourth identity in law follows from the representation (5.2). More-

over, we verify that

lim
a→0

1

2F1�−iθ/2a
 iθ/2a�1�a2� =
1

I0�θ�
�

(iii) The third and fifth lines are consequences of Theorem 3.1 and of the
additivity of squared Bessel processes.

6.2. Some functionals of the three-dimensional Bessel bridge. In Section 4,
we have seen that Alili obtained the law of

∫ 1
0 coth�λrs�ds from the study of

the law of �Hλ
τt

 τt�, where r denotes a three-dimensional Bessel bridge (i.e.,
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a normalized excursion). In view of Table 1, we are interested in the laws of∫ 1
0 �ds/�exp�2rs� − a2�� (0 < a < 1) and of

∫ 1
0 �ds/�exp�2rs���. This study relies

on the following proposition.

Proposition 6.1 ([25]). Let f be a locally bounded function and define

u�k�x� = Ex

(
exp−

(
k2

2
T0 +

∫ T0

0
f�Bs�ds

))
�

Then,

d

dx

∣∣∣∣
x=0+

u�k�x� =
∫ ∞

0

dt√
2πt3

(
1− exp

(
−k

2

2
t

)
Kf�t�

)

= k+
∫ ∞

0

dt√
2πt3

exp
(
−k

2

2
t

)
�1−Kf�t��


where

Kf�t� = E

(
exp−

∫ t

0
duf�R3�u���R3�t� = 0

)
�(6.1)

Applying these results to f�x� = θ2/�2�exp�2x� − a2�� (a ∈ �0
1�), we obtain
the following proposition.

Proposition 6.2. (i) Let 0 < a < 1; then

∫ ∞
0

dt√
2πt3

exp
(
−k

2

2
t

)

×
(

1−E

(
exp−θ

2

2

∫ t

0

du

exp�2R3�u�� − a2

∣∣∣∣R3�t� = 0
))

=
∫ ∞

0

dt√
2πt3

exp
(
−k

2

2
t

)

×
(

1−E

(
exp−θ

2

2
t
∫ 1

0

du

exp�2t1/2r�u�� − a2

))

= θ2

2�k+ 1�
2F1�α+ 1
 β+ 1�k+ 2�a2�

2F1�α
β�k+ 1�a2� 


(6.2)

where

α = 1
2

(
k+ i

√
θ2

a2
− k2

)

 β = 1

2

(
k− i

√
θ2

a2
− k2

)

 k2 <

θ2

a2
�
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(ii) For a = 0,∫ ∞
0

dt√
2πt3

exp
(
−k

2

2
t

)

×
(

1−E

(
exp−θ

2

2

∫ t

0
du exp�−2R3�u��

∣∣∣∣R3�t� = 0
))

=
∫ ∞

0

dt√
2πt3

exp
(
−k

2

2
t

)

×
(

1−E

(
exp−θ

2

2
t
∫ 1

0
du exp�−2t1/2r�u��

))

= θ
Ik+1�θ�
Ik�θ�

�

(6.3)

Formula (6.3) follows from [25] or from (6.2), letting a → 0. We denote by
Xt = t

∫ 1
0 du exp�−2t1/2r�u��. From (6.3),∫ ∞

0

dt√
2πt3

exp
(
−k

2

2
t

)
E

(∫ Xt

0
du exp

(
−θ

2

2
u

))
= 2
θ

Ik+1�θ�
Ik�θ�

�

Now (see [24]),

2
θ

Ik+1�θ�
Ik�θ�

= 4
∫ ∞

0
dz exp�−θ2z�Gk�z�


where

Gk�z� =
∞∑
n=1

exp�−j2
k
nz�
(6.4)

�jk
n�n being the increasing sequence of positive zeros of the Bessel function
Jk. The function Gk is a generalized theta function.

Then, by inverting the Laplace transform in θ2/2, one obtains∫ ∞
0

dt√
2πt3

exp
(
−k

2

2
t

)
P�Xt > z� = 2Gk

(
z

2

)
�(6.5)

From (6.5), we can compute the moments of Xt (via a Laplace transform). Let
p ≥ 1, ∫ ∞

0

dt√
2πt3

exp
(
−k

2

2
t

)
E��Xt�p� = 2p+1p!

∞∑
n=1

1

j
2p
k
n

�

For k = 1
2 , J1/2�z� = �2/πz�1/2 sin�z�; therefore, we have

j1/2
 n = nπ�

Then, the above equation becomes∫ ∞
0

dt√
2πt3

exp
(
−1

8
t

)
E��Xt�p� = 2p+1p!

1
π2p

ζ�2p�


where ζ�s� =∑∞
n=1�1/ns� denotes the Riemann zeta function.
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We can obtain an analogous result for the random variable Yt =
t
∫ 1

0 du exp�+2t1/2r�u��. According to [25],

∫ ∞
0

dt√
2πt3

exp
(
−k

2

2
t

)
E

(∫ Yt

0
du exp

(
−θ

2

2
u

))
= 2
θ

Kk−1�θ�
Kk�θ�

�

Now, according to Ismail [23],

2
θ

Kk−1�θ�
Kk�θ�

= 2
∫ ∞

0
dz exp�−θ2z�Hk−1�z�


with

Hk−1�z� =
2
π2

∫ ∞
0

dt t−1 exp�−tz��J2
k +Y2

k�−1�t1/2��(6.6)

Thus,

∫ ∞
0

dt√
2πt3

exp
(
−k

2

2
t

)
P�Yt > z�

=Hk−1

(
z

2

)
= 2
π2

∫ ∞
0

dt t−1 exp
(
−tz

2

)
�J2

k +Y2
k�−1�t1/2��

(6.7)

Let p ≥ 1; then

∫ ∞
0

dt√
2πt3

exp
(
−k

2

2
t

)
E��Yt�p� =

2p+1

π2
p!
∫ ∞

0

dt

tp+1

1

J2
k�
√
t� +Y2

k�
√
t� 


the right-hand side being finite for p < k, using the behavior of the Bessel
functions Jk and Yk near 0. (See [33], Section 5.16.)

Remarks. (i) From (6.7) and (6.5), we see that the functions ν → H√
ν�z�

and ν→ G√
ν�z� are completely monotonic, a well-known fact proved by Ismail

[23] and Ismail and Kelker [24] by analytic means and interpreted probabilis-
tically by Pitman and Yor [46].

(ii) Using Krein’s theory, Kotani and Watanabe [32] and Knight [31] de-
scribed the Lévy measure Lf of the increasing Lévy process Af

τt =
∫ τt

0 f�Bs�ds
for a positive function f. Now, Lf can be expressed in terms of the Itô measure
n and using Williams’s description of n [see (D) following Proposition 4.1], in
terms of r, one obtains that if Zt = t

∫ 1
0 ϕ�

√
trs�ds for a positive function ϕ,

then ∫ ∞
0

dt√
2πt3

exp
(
−k

2

2
t

)
P�Zt ∈ dz� = hk�z�dz


where hk is the Laplace transform of a positive measure. In the particular
cases whenZt =Xt orZt = Yt, (6.5) and (6.7) provide us with two particularly
explicit and rich examples.
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locaux browniens. Thèse de Doctorat, Univ. Paris VI.

[2] Alili, L. (1997). On some hyperbolic principal values of Brownian local times. Bibl. Rev.
Mat. Iberoamericana. To appear.

[3] Alili, L., Donati-Martin, C. and Yor, M. (1997). Une identité en loi remarquable pour
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[16] Doney, R., Warren, J. and Yor, M. (1997). Perturbed Bessel processes. Séminaire de Pro-
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