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SOME BROWNIAN FUNCTIONALS AND THEIR LAWS
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Université Paris VI

We develop some topics about Brownian motion with a particular em-
phasis on the study of principal values of Brownian local times. We show
some links between principal values and Doob’s A-transforms of Brownian
motion, for nonpositive harmonic functions A. We also give a survey and
complement some martingale approaches to Ray—Knight theorems for local
times.
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0. Introduction. The contents of this paper were presented by the second
author, in a much less advanced form, at the IMS Conference in Montreal
(July 1995). Our aim is to develop a number of topics found in [65] and in [66]
(throughout this paper, Chapter 1 in [65] will be referred to as Chapter 1*,
Chapter 12 in [66] as Chapter 12*, and so on). However, to a large extent we
do not assume that the reader is familiar with [65] and [66].

The main objective of [65] was to derive explicitly the laws of more and
more complicated Brownian functionals, essentially using stochastic calculus
and excursion theory. Here, although our aim is somewhat similar, we took
a different direction; in fact, we drifted strongly, as we shall now explain,
towards the study of principal values of Brownian local times.

In Section 1, we recall some quite well-known links between space-time
harmonic functions 2 and the set of laws of processes which admit the same
bridges as Brownian motion, that is, Doob’s A-transforms of Brownian motion.

More generally, one may also look for some definition of A-transforms, when
h is not necessarily positive. This topic was first suggested by P. A. Meyer to
Ruiz de Chavez [52], in order to obtain a more general martingale charac-
terization of Brownian motion, possibly involving signed measures. This may
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1012 C. DONATI-MARTIN AND M. YOR

seem somewhat exotic but, in fact, appears to be quite natural in the context
of Girsanov’'s theorem and in some studies in mathematical finance.

Indeed, an interpretation of Girsanov’'s theorem is that it gives a formula
for a bounded variation process A such that, if D, = dQ/dP| is the Radon—
Nikodym derivative of @ with respect to P, P and @ being two probabilities
on a filtered space (Q, 7, (%)), and if (M,) is a (P, (%)) local martingale,
then

(M, - A,)D, is also a (P, (%)) local martingale.

With this formulation, the probability @ does not appear any more, and one
could start with any pair (D,, M,) of (P, (%)) local martingales.

Formally, Girsanov's formula is dA, = d(M, D),/ D,, which, in case (D,) is
not necessarily positive, leads naturally to the study of principal values, that
is, limits of

td{(M,D
/0 <Ts>81(|Ds>s) as e — 0.
In the original study [7] of such quantities for D, = B,, and particularly for
M, = D, = B,, in which case one obtains
tds
A, = p.v. 0 B,
it was found that the study of this additive functional is closely related to that
of 5 ds B2.

This brings us naturally to the presentation in Section 2 below of some
developments of Chapter 2*, which was devoted to the study of the laws of
some quadratic functionals of Brownian motion, and more generally, Bessel
processes.

In Section 3, we survey and develop martingale approaches for a number
of Ray—Knight theorems about local times, which, as is now well known, may
be described in terms of squares of Bessel processes.

In Section 4, we get back to principal values of Brownian local times to
discuss a striking result of Alili [1, 2, 3] concerning the law of

p.v./o dscoth(AB,), u=>0,

taken at the inverse local time of B.
In Section 5, we consider one of the consequences of Alili’s result, namely:

T1(R3) ds (law)
A = T, o(Ro),

1—(Ry(s))

where R; denotes the &-dimensional Bessel process starting from 0 and
T,(Ry) is its first hitting time of a > 0. We discuss a number of extensions of
this result, leading us in particular to the porous medium equation [4].

In Section 6, we study exponential functionals of the normalized Brownian
excursion.
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1. Around the Gaussian space of Brownian motion. Chapter 1* con-
tains a description of all probability measures on (C(R,, R), %), where X, =
w(t), t > 0, denotes the canonical process, and %, = o(X,, s < t) (t < 00)
such that, for each finite ¢, (X, — (v/t)X,, u < t) is a standard Brownian
bridge (of duration t), independent of X,. This topic led naturally to various
computations involving the first Wiener chaos, that is, the Gaussian space of
Brownian motion.

1.1. Relationship with space-time harmonic functions. Let W denote the
Wiener measure on (C(R,, R), %,). We give a description of .7, the set of all
probabilities W’ on € such that

Wh|z = h(t, X)W|,

for a positive function A, which is therefore a space—time harmonic function
with A(0,0) = 1. Assuming the integral representation of positive space—time
harmonic functions (see, e.g., [59]), there exists a unique probability measure
v on R such that

(1.1) h(x, t) = / v(dy)exp(xy — y2t/2).

We have the following characterization of .7.

PROPOSITION 1.1.  Under W”, the process (X,, t > 0) satisfies
(1.2) X,=B,+1tY, t>0,

where Y := lim,_, (X,/t), and (B,) is a Brownian motion independent of Y.
Moreover, the law of Y is v, & and v being related by (1.1).

ProOOF. This is elementary and relies mainly on Fubini’s theorem. Let T' >
0, and ¢ € L?([0, T); then,

wh [exp i /O ! go(s)dij|
- W[h(T, XT)expi/OT go(s)dXS:|
- / v(dy)W|:eXp<i /O " o(s)dX, + yXT>:| exp(—y;T>
= /v(dy)exp<—y?2T> exp(%E[(i /OT o(s)dB, + yBT>2D
- /v(dy) exp<iy /OT o(s)ds — % /OT ©2(s) ds)

- E[exp i /O " o(s)d(B, + sY)}. o
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REMARKS. (i) Equation (1.2) is a noncanonical representation of the diffu-
sion process with infinitesimal generator

g L@ M@o d

2dx?  h(x,t) dx

(ii) Note that, in general, G" is inhomogeneous; that is, &/.(x,t)/h(x,t)
depends on ¢; however, for the space-time harmonic function h,(t,x) =
cosh(Ax)exp(—A%¢/2) (A # 0), hl.(x,t)/h(x, t) does not depend on ¢ and the
generator G” takes the form

2
T 2dx?
More generally, Benjamini and Lee [5] remark that for the two parameter
family of drifts u(x) = ktanh(kx + ¢), the bridge of the diffusion with drift u
is a Brownian bridge.

(iii) In Theorem 1.3*, a more complete description of the set .7 is given and
in particular, the integral representation (1.1) is not assumed, but, in fact, is
obtained as the consequence of the proof of the theorem.

(iv) These results admit some partial generalizations to infinite dimensions,
that is, when the original Brownian motion is replaced by a Brownian sheet
(see [10], [29D).

d
h
G + Atanh(Ax)dx.

1.2. Extensions to Gaussian—-Markov and other processes.

EXTENSION a. Proposition 1.1 is still valid when we replace Brownian mo-
tion (B,, ¢t > 0) by a continuous Gaussian—Markov process U,. It is well known
[41] that U can be expressed in terms of B by U, = u(¢)B, ), where u, v are
continuous, strictly positive and v is nondecreasing. In this case, Proposition
1.1 generalizes as follows (and the proof is quite analogous).

PROPOSITION 1.2. We denote by # the set of probabilities PU-* on Q such
that
PUF| = k(t, X)PY|
where PU is the law of the Gaussian process U on Q and k is U-harmonic in
the sense that (¢, U,) is a martingale with mean 1.

Under PY*, X, = U, + u(t)v(¢)Y, where Y is a random variable with law
v, independent of (U,),.o and v and % are linked by the formula

2
Xy Y
1. = X .
13) b 0) = [y exp 2%~ So(0))
In particular, when U is the standard Brownian bridge b(¢) on [0, 1], then
under P*, X, = b(t) + tY; when U is the Ornstein-Uhlenbeck process U} of
parameter A (i.e., the solution of dU, = d B,+\U,dt), X, = U}+(sinh(A¢)/A)Y.
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For the Brownian bridge b, u(¢) =1 —t; v(¢) = t/(1 — ¢), but the statement
of Proposition 1.2 must be slightly modified with Q changed into C([0, 1[, R);
details are left to the reader.

For the Ornstein—Uhlenbeck process U*, u(t) = exp(At); v(t) = (1 —
exp(—2At))/2A.

Applications. (1) From the absolute continuity relation

1 exp( —Xi )W
RNy 2(1—-1)
we recover that the function £(x, ¢) = v/1 — texp(x?/(2(1 — t))) is b-harmonic
and the corresponding measure v associated by (1.3) is the Gaussian standard
density.

(2) Let us denote by X the Ornstein—Uhlenbeck process of parameter —%,
starting from 0. Breiman’s formula [9],

’

t<1,

Al

1
@o(c)’

where T, is the first hitting time of level ¢ by | X| and

(1.4) Elexp(—aT,)] =

1 o© 22
@, (x) = W/O dzzt exp(—?> cosh(xz),
may be recovered from Proposition 1.2, by checking that
k(x,t) = ¢,(x)exp(—at), a>0
is a particular solution of (1.3).
EXTENSION b. We now present a generalization of Proposition 1.1 to signed

measures (or to nonpositive space—time harmonic functions). Let » be a signed
measure on R satisfying [ |v|(dy) < oo, and define @, = W ® v a signed mea-

sureon Q) = C(R,, R)xR. For (w, y) € O, let Y, (w, y) = o(t) and Y(w, y) = v,
and define Z, =Y, + tY.

PROPOSITION 1.3. The law of the process Z under @, is W”, the law of the
process of coordinates X on (2, where W” is the signed measure on () defined

by
Wh|$ = h(t, X)W|,
and
(15) h(x,t) = [ v(dy)exp(xy - ¥t/2)

is a space-time harmonic function (not necessarily positive).

The proof of Proposition 1.3 is the same as that of Proposition 1.1.
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EXAMPLE 1. Let h,(x, ¢) = sinh(Ax)exp(—(A%/2)t) be the space-time har-
monic function corresponding to the measure v = %(SA —&_,) where §, denotes
the Dirac measure at «. In this case, the function 4/ /h does not depend on ¢
and under W,

. ¢
X, =X, /\/O coth(AX,) ds

is a local martingale; that is, X,h, (¢, X,) is a W local martingale. The study
of H} :=v.p. fot dscoth(AB,) has been made by Alili [1] in his thesis; we shall
study the process H” in Section 4.

EXAMPLE 2. Let A, be the harmonic function Ay(x, ¢t) = x. Under Who,
N t ds
X, =X,—- | =
t t /(; XS
is a local martingale. We refer to Biane and Yor [7] for the study of
p.v. [3 (ds/B,). Note that A, is not of the form (1.5) but

o 1) = tim hA(j\c, t)

EXTENSION ¢. We now give an analogue of Proposition 1.1 when we replace
Brownian motion by a particular Lévy process, namely the gamma process T,
which is the subordinator (that is, a Lévy process valued in R ) with Lévy
measure u(dx) = ((exp —x)/x)dx on R_. The Laplace exponent of I', ¥, defined
by

Elexp(—Al',)] = exp —t¥(A), A>0
is V(1) =In(A + 1).

We set P* the law of I' on D = D(R,, R, ) the space of positive cadlag
functions. Let v be a probability measure on R, and @} = P*® v on O =
DR, R,) x R,. For (w,y) € Q, let Y,(0,y) = w(t) and Y(o,y) = y and
define Z, =YY,.

PROPOSITION 1.4 ([58]). The law of Z on ), under Q7 is the law of the
canonical process X on D under P*”, the probability measure on D defined by

Pt =h(t, X,)P*|,,

with

h(x, t) = /v(dy)exp(—e . 1>x —¢tIn y).

1.3. Loss of information. We now discuss a relationship between space—
time harmonic functions and the phenomenon of loss of information for Brown-
ian motion.
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1. Let i: R xR, — R be a space—time harmonic function such that £(0,0) =0
and A (x,t) # 0 for every ¢ and x (this is the case in Examples 1 and 2).
Then we can define the process (B!, t > 0) (see Example 5.a in Chapter
17*) by

R.(Bs, s)

t
h— —
By =B, p.v./0 ds h(B,,s)

We denote by %" (resp., .Z,) the natural filtration of B* (resp., B); then we
have %" ¢ .7, (see [7], Appendix A and [66]).

More generally, let (D,) denote a Brownian martingale such that Dy = 0,
(D,, t>0) =0 and such that

/t d(B, D), def
o D -

o d(B, D),
'T(‘)fo Yupo—p

exists. Then if we denote B? = B, —fot (d(B, D),)/D,, Ruiz de Chavez [52]
proves that

S

E(D,/B?, s<t)=0,

s

implying that the natural filtration of B? is strictly smaller than that of B.

2. We recall another much simpler example of loss of information taken from
[30] (see also Theorem 1.1* and Nagasawa and Domenig [40] for recent
developments).

PROPOSITION 1.5. (i) The process 3, = Bt—f(f(ds/s)Bs is a one-dimensional
Brownian motion.

(i) For every t > 0O, 3‘;3 = o{B, — (u/t)B,;, u <t} £ &; in particular, for
fixed ¢ > 0, B, is independent of Zﬁ.

We note that, in this case,

_ L W (Bs,8)
Bt_Bt_/(; ds h(BS,S)

for the positive space—time harmonic function defined on R x R% by

h(x,t) = % exp(;—i).

We refer to Chapter 17* for other examples of loss of information, in par-
ticular Tsirel'son’s equation (see also [64]).

To conclude Section 1.3, we ask the following.

Question. Under the hypothesis made in point 1 above, is the filtration
#P = o{BP, s <t} generated by a Brownian motion?

The answer to this question, even for Example 2 above, and a fortiori for Ex-
ample 1, is unknown. One does not even know whether all (#?) martingales

are continuous.
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2. Quadratic functionals of Brownian motion. We refer to [21] and
[22] for studies of Brownian quadratic functionals in the recent literature.

2.1. Lévy's formula. We consider (B,, ¢t > 0) a §-dimensional Brownian
motion, starting from 0. Then,

t a —8/2
(2.1) E(exp(—a|Bt|2 - b—Z/ ds|BS|2)) = <cosh(bt) + 2= sinh(bt)) :
2 Jo b

A well-known method to prove this formula is to consider a new probability
P® defined by

(b) b 2 b td 2
PO = exp(—2(B,| —8t)—?fo s|B,2) Pl
in order to “take care” of the quadratic functional integral and reduce the
problem to the computation of the mean and variance of the Gaussian process

(B,, t >0) under P®, where it becomes a Ornstein-Uhlenbeck process.
From formula (2.1), we deduce the conditional formula

b2 ot |
E(exp(——= | ds|B,]?)|B, = )
(e (= [ asl.) B =a
bt \°? |a|?
= — —— h -1
(sinh(bt)> exp( > (bt coth(bt) )),
which, in the case a = 0, gives

2.3) E(exp(—b;/; ds|Bs|2> B, = o) - <Si%’ébt)>8/2.

Lévy's formula (6 = 2) for the stochastic area of B, = (X, Y,), s < t,

2.2)

E<exp<ib /:(Xdes - stXs)> i(Xt, Y,) = a>

_ (ﬁ’@) exp(—%(bt coth(bt) — 1)>,

follows from (2.2), using the rotational invariance of Brownian motion.

2.2. Integrating out: some consequences of a path decomposition of Brown-
ian motion. We first recall an elementary path decomposition of Brownian
motion up to time 1. For a process X and two random times a, b, with 0 <
a < b, we denote

1
Vb —a

X[a’b] = ( Xa+t(bfa); 0<t< 1)
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Then, if g, denotes the last zero of B before time 1 (g, is arc-sine distributed),
we have (see [6], [7], [50]) the following:

1. b:= Bl% &l is a Brownian bridge;
2. m := |B|l#v1] is a Brownian meander;
3. g1, b and m are independent.

Our aim here is to check partially and to look at some consequences of the
following identity in law:

4. m2 "2 §2 4 R2 where b is a Brownian bridge independent of a two-
dimensional Bessel process R (see Corollary 3.9.1%).

Now, putting together 1 through 4, we obtain
1 1 1 -
(2.4) | duB? (1 & [ dubl+(1-g)? [ du(+R2)
0 0 0

with b, b, R, g, independent. Since the Laplace transforms of fol X2ds for X
a Brownian bridge and for X = R are given in particular by (2.3) and (2.1),
the identity in law in (2.4) implies the following relation:

1 da

1 (e
23 CoshpiZ ~ = /0 (sinh a)/2(sinh(u — a))?(cosh(p — a))’

More generally, from the identity
2 1
_® 2 2
E(exp( . /O duBu>f(Bl)>
MZ 2 ! 2 2 ! 72 2 2
— 5 (exp( -5 {2 [[aubd + @) [[dulb? + B ) (@ - 2 RD).

we obtain

1 1 z
EW eXp —E COth[.L

(2.6) o

-1 /M ex z coth( )
= 27 Jo (sinha)2(sinh(n — a))a2 P\ T2 O T @) )
We note that (2.5) is obtained from (2.6) by integrating with respect to dz.

Taking the Laplace transform in A (with respect to z) in the above identity,
we obtain

1
(cosh p + Asinh w)1/2

2.7) s

1
T /o (sinh a)¥/2(sinh(u — a))Y/2(cosh(u — @) + Asinh(u — a))’

We briefly indicate an elementary proof of this identity. We denote by L (resp.,
R) the left-hand side (resp., right-hand side) of (2.7). We set a = sinh(u); then,

1
L= ;
(V1+ a2 + Aa)t/2
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(sinh x)~Y2(a cosh x — /1 + a2 sinh x)~1/2
[(vV1+a?+ Aa)coshx — (a + Av1+ a?)sinh x]

_ /" gy (L) ayy 1+ y? = V1t a?y?) 2
=Jy y[( T+ a? + Aa)y/1+ 32 — (a + W1+ a?)y]
(taking y = sinh(x))

WR:/Ode

b dv
B /o (av — 1+ a2v2)2[(V1+ a2 + Aa) — (a + WL+ a?)v]

. y a
(takmg v=————and b= —)
Vi+y? 1+ a?
™ qu

=2(1+a*)"*
( ) /0 (2+ a2+ dav1+a?)— (a? + Aav1+a?)cose

a a
taking v — = — cos
( g 271+ a? 21+ a? ¢>

00 dt . @
=2(1+ a4 (takln t = tan(—))
(+a) /o 14+ (1+a?+ Aav1+a?)e? J 2

1
= am =
(V14 a?+ ra)t/?

as desired.

2.3. ldentities in law between two quadratic functionals. We present a sim-
ple proof of the identity in law:

1 1
(2.8) /Odt(Bt—G)z ('1”/0 dt b2,

where B is a standard Brownian motion, G = fol B, ds and b is a Brownian
bridge on [0, 1]. The identity in law (2.8) has been obtained independently by
Chiang, Chow and Lee [14] and Chan, Dean, Jansons and Rogers [12], using
a diagonalization procedure; in [15], we prove this identity as a consequence
of a Fubini type theorem.

Here, we shall give a new variant, involving a Brownian sheet, of our proof
of (2.8). First, we introduce the following notation. Let X and Y denote two
rv.’s;, wewrite X ~; pY,andalso Y ~5_; X if

E(exp(irY)) = E(exp(—/\;X)) VAeR.

Now we note that the left-hand side of (2.8) equals [ du [ ds(B, — B,)?
moreover,
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where {W, ,; s,u < 1} denotes a Brownian sheet independent of B. Using
Fubini's theorem,

/01 /01 AW, (B, — Byl = /01 dB, /01 /01 AW, Loty

Below, we use the notation W(A) for [, dW,, and we recall that

E[W(A)W(C)] = m(A n C), where m is Lebesgue measure on R?, and
A and C are two Borel sets.

Now, consider the rectangles T, = {(s,u); 0 <s<t<u <1},0<¢t < 1.
The process {W(T,); ¢t < 1} is a centered Gaussian process with covariance

EW(T,)W(T,))=m(T,NnT,)=1t,(L-¢t) forty<t
That is, (W(T,), ¢ <1) is a Brownian bridge. Thus,
1 2 1 1 2
[ duB — Gy ~ [ dBW(T,) ~ [ duw(T,)
proving (2.8).

Note. Clearly, this type of argument may be applied to more general
quadratic functionals of Brownian motion; for example, the reader may give
a proof of Exercise 2.4* along the preceding lines.

We give a second example which originates from Chan and Jansons [13].
The authors are interested in the law of

1 _
| (X, - Xy,
0

where

a>0

dX,=alU,dt,
dU, =dB, — aU dt,

and X = fol X, ds; U is an Ornstein—Uhlenbeck process. Then,
1 _ 1 s
/ (X, - X)?dt = / ds/ du (X, — X,
0 0 0
1 u
L:F o dWs,u(/L; dXt)l(s<u)

1 1
= /dXt W(Tt):af dtU, W(T,),
0 0

where b, := W(T,) is a Brownian bridge independent of U,

E(exp(—/\; fol(Xt — Xy dt)) - Eb(exp —%ZaZEUG/OldtUt btr)),

where the second expectation is taken with respect to U, b being fixed.
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We assume that U, ~ N(0, 1/2«) so that U, is stationary and E(U,U,) =
(exp(—alt — s|))/2«. Finally, we obtain

E(exp(—%Z/Ol(Xt - X)Zdt>>

= E(exp(—%zafol dt /Ot dsexp(—a(t — s))bsbt>)

proving the identity in law:

(1aw)

(2.9) /Ol(Xt—X')Zdt _ a/oldt /Ot ds exp(—a(t — s))b,b,.

3. A martingale approach to Ray-Knight theorems. The results of
this section are a continuation of Chapter 3*. On one hand, we prove again
Theorems 3.3* and 3.4* without using excursion theory. On the other hand,
we give some complements to Theorem 3.3* in studying the two parameter
process (L% (|B| + (2/8)l); a = 0, & > 0), where (I,; ¢ > 0) denotes the local
time at 0 of B. We also include well-known Ray—Knight theorems for Bessel
processes.

To prove these results, we use stochastic calculus; this approach has al-
ready been used by McGill [38, 39], Jeulin [27, 28] and by Jeulin and Yor [29]
to study some functionals of Brownian motion. In Chapter 3*, Ray—Knight
theorems are proved with the tools of excursion theory and Lévy—Khintchine
representation of squares of Bessel processes.

We refer to [51], [17], [56], [36], [45], [54] for other Ray—Knight theorems
and other approaches (among which are excursion theory and Dynkin’s isomor-
phism theorem). From the classical Ray—Knight theorems (at time 7', and 7,),
one can obtain the Ray—Knight theorem for local times taken at an indepen-
dent exponential time (see [8]). For recent simplifications of the Ray—-Knight
theorem at a fixed time [44], [28], we refer to [37], [57].

First, let us introduce some notation. We set X,(¢) = |B,| + A~1(2l,) where
A:R, — R, isa C* function, strictly increasing, with A(0) = 0 and A(co) = co.

We define the squared Bessel process with generalized dimension A’ as a
R, -valued process, which is solution of the SDE

(3.1) X, = x+2/0t VX, dB, +At),

and Q%" denotes the law on C(R,, R, ) of a process which satisfies (3.1). The
law of the squared Bessel process of dimension 6 (6§ > 0) corresponding to
A(t) = 8t is Q°.

We now introduce some notation about the solutions of the Sturm-Liouville
equation

(SL) P = fd

associated with a measurable locally integrable function f: R, — R,. ®, and
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W, are the solutions of (SL) which satisfy the following:

() ®,(0) =1, &, > 0and &, is decreasing;
(ii) V(0) =0, V,(0) =1.
The functions ®, and ¥, are linked by
t ds
3.2 V() =De(t) | ——.
(3:2) 0= [ 525

We recall that the Laplace transform of the law Q2 can be expressed in terms
of solutions of the Sturm-Liouville equation (SL).

LEMMA 3.1. Let f: R, — R, be a measurable function with compact sup-
port. Then

33) QY (exp—%/ooo th(t)dt) - exp(% /Ooo

which, in the case A’(t) = 8, becomes

G4 @fen—; [ XA(0)dt) = (@00 Zexp( 50,(0)).

AQ)

5. HX® dt) exp(%cb}(O)),

3.1. The Ray-Knight theorem for the process X,. We can now state the
Ray-Knight theorem for the family of local times of the process X,.

THEOREM 3.1 ([35], Theorem 3.3*). The law of the process (L% (2,)), the
family of local times of the process 3, is Qé'. In particular, the law of the family
of local times of (35(¢) = |B,| + (2/8)l,; ¢t > 0) is Q).

The proof of this theorem given in [35], Chapter 3*, is based on excursion
theory. See also [43] for some extensions. Doney, Warren and Yor [16] show
that @} is also the law of the family of local times of R; ,, where R, is
an «a-perturbed Bessel process of dimension 3 with 6 = 2(1 — &) and, relying
partly on [34], they explain the relationships between the two processes 3
and Rg ,.

We shall obtain Theorem 3.1 as a consequence of the following general
result.

PropPoOSITION 3.1. We denote X, = |B,| + I,. Let f be a measurable function
on {(x,1); x > [ > 0}, positive with compact support. Then,

(3.5) E(exp -1 /Ow f(X,, ls)ds> - exp(/ooo Fl(u,u) du),
where
(36) F(JC, l) = In(@,ﬂ(_,l)(x)), x>1

and @ ;) is the positive decreasing solution of the (SL) equation associated
with the function x — f(x,1), x > [, satisfying @ ;(!) = 1.
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ProOF. Let F satisfy (3.6); then F (or rather F",) solves the Riccati differ-
ential equation

Flo(x, )+ (F(x, 1)? = f(x,0).
Define

@7 M/ :exp{F(Xt,zt)—/ol' Fl(u,u)du — %fot f(Xs,ls)ds}.

Using the decomposition X, = B, + 21,, with the help of 1td’'s formula, one can
easily prove that (Mf) isa &, := ag(|B,|, s < t) local martingale. Moreover,
since f has compact support in {(x, [); x > [ > 0}, this martingale is bounded
(F", has compact support). Equality (3.5) then follows from the optional stop-
ping theorem. O

Proor oF THEOREM 3.1. We apply (3.5) to the function f(x,l) = g(x —
1+ A%(21)). Then F(x,1) =In D (x—1+ A7Y(20)) —In <I>g(A—1(21)) and (3.5)
becomes

1 1 o ()
E(exp—E/O g(24(s)) ds) = exp(z 0 D,00)

N(t)dt).
That is,
B(exp-1 [ p@La()da) = @ (o1 [ X, a(0)d)
by (3.3). Note that, in the case A'(¢) = §, the martingale M’ takes the form

(3:8) (1) = oxp| G (3400 — (1+ (072G, (31,) = 5 [ a(Ss(on s,
where G, (x) =In®,(x). O

SOME COMMENTS ON PROPOSITION 3.1. (1) According to Pitman’s represen-
tation of Bes(3), we have the following equality in law:

(law)

(39) (Xt’ lta t = 0) - (Rt’ Jt? t = O)a
where (R, t > 0) is a Bes(3) process and J, = inf_, R.. Thus, (3.5) is equiva-
lent to

(3.10) E(exp—% /ODO f(R,, Js)ds> - exp(fooo F.(u, u)du),

where F satisfies (3.6).
(2) We now consider the process 35(¢) in the case 6§ = 2, that is, for local
times of a Bessel process of dimension 3 (beware: not 2!). We note R = 3.,; the

martingale Mf defined by (3.8) takes the form

@11 MI()= exp{G,«R(t» -2, - 3 [ F(R(s)) ds},
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where G;(x) = In®(x); M is a martingale with respect to the natural filtra-
tion <, of | B|]. The natural filtration %, of the process R, = |B,| + [, is strictly
smaller than ., (see [18]). A natural question arises: what is the projection of
the martingale M’ on the filtration .%,? Here is the solution:

We set Nf = E[Mf/,@t]. To calculate N/, we use the following fact: for fixed
t, the conditional law of /, is the uniform law on [0, R,]; thus

NI = exp{Gf(R(t)) - %/Ot f(R(s))ds}%t/ORt exp(—2G(u)) du
1 R du 1/t
1) =R [ s ool [ FRE)ds)

= 2 R)ee{=3 [ () dsl,

using (3.2). Formula (3.12) yields another proof of the Ray—Knight theorem for
the family of local times of Bes(3). Indeed, we can apply the optional stopping
theorem to the bounded martingale N/ and then use

x  x=oo Pp(o0)’

We can also obtain the Ray—Knight theorem for the family of local times at
time T';, the hitting time of 1 by R. The optional stopping theorem applied to
(3.12) at time T'; gives

1

E[exp _% /0 " f(R(s))ds] 7

1
= Q%»o[eXp—%/o f(x)X, dx]

using a result of Pitman and Yor [47], where Qgﬁo is the law of the squared
two-dimensional Bessel bridge. In other words,

(law)

(3.13) (L$(R), 0<a=<1) = (1Z,f, 0<¢t=<1),

where Z is a Brownian bridge in R2.

3.2. A second Ray-Knight theorem for the process 5. The martingale M’
introduced in the proof of Proposition 3.1 enables us to obtain the law of the
family of local times up to 7, the inverse local time.

THEOREM 3.2 (Theorem 3.4*). Let x > 0 and consider 7, = inf{¢ >0, [, >
x}. The process (L% (25), a > 0) is an inhomogeneous Markov process, starting
at 0, which is the §quare of a 6-dimensional Bessel process for ¢ < 2x/6, and
the square of a O-dimensional Bessel process for a > 2x/6.
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PrOOF. The optional stopping theorem E[M(;] = E[fo] shows

E[exp —% [ " @)L da} - E[exp —% [ " FE(s)) ds]

I

Let (Y,, a > 0) be an inhomogeneous Markov process as specified in the
above theorem. Then,

E[exp _% [ODO f(Q)Y, da]
= Bexp( 5 [ F@Yada)exp—3 [~ fu@)Y 0.pda]

with b := 2% and fi(a) = f(a+b)

=Q] [exp(—% fob fla)X, d“) Q%, (exp(—% /0"0 f(@)Xe da))}

from the Markov property. Now, by (3.3),

(05 [ i@, da)) =exp Sray, 0],

By, (x) = B(x + b)/D(b) and ), (0) = &'(b)/B(b). Then,
E[exp 1 /°° f(@)Y, da]

= Qo[exp(——/ f(a)X,da+ ;Z((:))X )]

1 8/2 .
- {\P}(b) - (qy(b)/@(b))q,f(b)} (by [47], Equation (1.h))

= (®,(b))* using (3.2).

This proves the equality in law between the processes (L{ (%;), a > 0) and
(Y,, a=0).

3.3. Relation between the local times (L% (25), a > 0). For 6 > 0, we
denote C2 the local time at level a and at time oo for the process 3(¢) =
| B,| +(2/6)lt. One can prove [35] that there exists a jointly continuous version
of the process (C2; a > 0, § > 0). In Section 3.1 above, we have obtained the
law of C® = (C%; a > 0), namely Q3. We are now interested in the joint law
of the processes (C?; & > 0) and we show the following theorem.

THEOREM 3.3. Define MJ = (CS — a$); then M? is a two-parameter mar-
tingale with respect to the Filtration ¢ = o{Cj; b <a, 0 <y < 8} its
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increasing process is given by

(3.14) (M)? :/a dx C?.
0
Moreover, (M) is C* and
d 2 (>
S5 Mi =5 [ du(Cl - i)
(3.15) !

_ o s s
- ﬁfo dL,(C2 — C3(s)),
where 7 is the inverse of the local time /.
PROOF. From Tanaka's formula,
1 .5 ¢
5(C20) —a8) = [ Lp, 1 io0,-0) SIN(B,)d B,

2
2 - 2 o \
+<|Bt|+glt—a> —<1+5>(lt—§a) ,

where C2(¢) is the local time at level a at time ¢ of the process 3. For ¢ = oo,
(3.16) simplifies to

3(C —ad) = /O 1(B,1+(2/8)1,<a) SIN(B;) d B

(3.16)

(3.17)
2 Mo,

Now, we shall use a representation of the square integrable random variables
measurable with respect to £72.

LEMMA 3.2. Any r.v. H of L?(¢2) may be written
(3.18) H = E(H) +/0 hs1(B1+2/9)1,<a) 4 Bs,

where £ is predictable w.r.t the filtration of B and
(319) E|:/O h§1(|3s|+(2/5)ls<a) dS] < Q.
PrOOF. It is enough to prove (3.18) for a r.v. H of the form

H = expy — Z/a gi(b)C} db}
i=1"0

—exp| z [ e ds)

—exp =3 [ (S M 05|
=1

with g; > 0 with support in [0, a], v; < & and 3,(s) := |B,| + (2/v;)L,.
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Clearly, H can be written as exp{— [;° f(X,, {,) dt} with X, = |B,| +{, and

n 2
flx,)=>"g; <x -+ y—l> Li<(as/2))-
i-1 i

Let us consider the martingale M/ associated with the function f introduced
in the proof of Proposition 3.1. Then

t
M{ =1+ [ MIF.(X,.1,)s0n(B,)dB,.

where F is defined by (3.6). Since supp g; € [0,a] and y; < 6, f(x,l) = 0 for
x> a+1—(2/8)l. Now, we easily verify that supp f(-,1) Cc [l,a +1 — (2/5)],
(! < (ad/2)) implies supp F',.(-,1) C [{,a + 1 —(2/6)!] and therefore

t
Mf =1+ [ MIF(X,. 1 )Lix, v, o) SON(BL) dB,
t
=1+ /0 M/ F (X, 1)1(B,11(2/5),<a) SIN(By) d By
Since H = ML, exp{/y" F'(u,u)du}, H can be written

H=C+ [ h(s)Lapseozn 9B .

It is now easy to prove that M? is a €2 martingale. By (3.16), we can see that
E(C?%) = ad when we take ¢ — oo, which implies E(M%) = 0. Let H be a ¢,
measurable r.v. with y < § and b < a. By the lemma, we can write

H=E(H) +/0 h(s)1B,|+(2/v)t,<b) B

and

E(M}H) = E(/O h($)1 (B, +(2/7)1,<b) (1B, +(2/8)1,<a) SIN(Bs) d8>

(using (3.17)),
= E(MyH),

proving the martingale property of M?2.

Following Wong and Zakai [61] (see also [41]), we say that a two-parameter
continuous martingale (M ,, %, z € ]R{i) is path-independent if for every con-
tinuous increasing path y from [0, 1] to Ri, M, is a one-parameter martin-
gale with increasing process A, such that A, is the same for all increasing
paths y having the same endpoints y(0) and y(1). For a path-independent
martingale, one can define a function (M, M), called the increasing process,
as the increasing function A, for all paths y connecting y(0) and y(1) = z.

We shall verify that M? is path-independent. Let y be an increasing path
connecting y(0) = 0 and y(1) = (e, 6) and A, a sequence of subdivisions (¢;) of
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[0, 1] such that |A,,| — 0. We set (a;, 6;) = y(t;). Let A, denote the increasing
process of the martingale M .,,,. Then,

A, = lim Z( MO

a
n—00 i+1

Set M2(t) = fo 1B, 1+(2/8)1,<a) SAN(B;) d B, and apply 1to's formula to (M, L”(t)—
M2 (£))? to obtain, by letting ¢ — oo,

(Ma - M2)° =2 [T (MG () - ME(s)
X (LB, 14 (2/500)t2arss) — LB, +(2/5,)0,<a)) SIN(By) d B,
o0 2
[ Qumpier, — Lizgaer) ds.

where T; = {(b,1) € (R,)?; b+(2/8;)l < a;}. We note that I'; c I'; ; since
a; < Qi1 and 6i < 8i+1' Hence

S (Ma - M) =302 [ (M (s) — M()1r, ., (1Bl L) san(B,) d B,
A A,

o0
+ /0 LBl t)euriry) 98-
Now,
o0 o0
/0 LB aeur ) 48 = /0 LB+, <a) 48
a
8
= /0 C? db.
It remains to prove that lim,_, . M, (co) = 0 in probability, where

M0 = X [ (ME(5) — M), 0, (1B L) San(B,) dB,
A,

This follows from

oo = [ (M) = M2 (9)*1r, i (1Bl 1) ds
An

S/o SUP( alﬂi(s)—M (3)) 1B, 1+(2/8)l,<a) A4S

< sup(M aiﬁ(s) — Mi(s)) / 1B, +(2/6)l,<a) 4S

s, 1

— 0,
n—oo

using the continuity of the map (a, 8) — M?2(-), whose proof will be given in
Section 3.5. This proves that A; = fg’ cg db, which is independent of the path
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v with endpoint (a, §). Thus,
5 _ ("o
(M)° = /O C? db.
To prove (3.15), we write

(M) = [ dxC?
- /0 dx<x6+2 /0 1(BS+(2/5)ls<x)sgn(Bs)st>

a2 0o 2 +
=86—+2 —|B,| — = B,)dB,.
s 2 (a- 1B~ 21 san(B,)dB,

Then,
J s a? 00
%<M>a =57 2/0 1B, 1+(2/6),<a)ls SAN(B;) d B,

and we easily verify that this expression is the same as (3.15). O

SOME COMMENTS ON THEOREM 3.3.

1. The two-parameter filtration €2 does not satisfy the important (F.4) prop-
erty for two-parameter processes (see [11]); that is, €° = v7>053 and

€2 = vbzogf are not conditionally independent given ¢°.
Indeed, let ay < @ and &, < 6 and compute E(MzoMZO). By (3.17),

lo¢]
E(M; M) = E < [ st -olisi ez ds)
2

_ ) a? ag )
= 5|0 GBI )] Y SR

a? a?
-l e
(U +(2/50) 1 -0))?" (U +(2/8)(1 - 1))
where U is an uniform r.v. on [0, 1] and the last equality follows from
the identity in law (|By],1;) "~ R,(U,1 — U) with R,, a Bes(3) at time
1, independent of U. For example, in the case (aq/8y) — (a/6) < 0 and
. 8

(ag/8g) — (a/8)+a —ay > 0, we find E(MzoMa") = 8(a3/2).

On the other hand, if (F.4) were satisfied, then E(MZOM?,O) would be
equal to

2

80\2Y _ %0 8 . o _ @
E(MY) )_E(/O c? db) _/O (308)db = 8,=2.

2. Another way to find the increasing process (M) would be to prove directly
that

(M2)*> — (M)2 is a €2 martingale.
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We can see that
(M?)? —/O Cpdb = 2/0 M?(s)1(B,|+(2/5), <a) SIN(B;) d By,

but we do not know how to prove directly that the right hand side is a €?
martingale.

INFINITE DIVISIBILITY OF THE LAW OF THE PROCESS C. We recall another

property of the law of the process C = (C%; a > 0, § > 0) proved by Le Gall
and Yor [35]: if C is an independent copy of C, then for p > 0, g > 0,

(3.20) (CPP 4+ CP; a >0, 5>0) "2 (CP a>0, 5> 0),

a ?

which proves the infinite divisibility of the law (on C(R, x R’ ,R,)) of C. We
can describe the Lévy—Khintchine representation of the law of C as follows:

E[exp{— Z /OOc fi(@)CP da”
(3.21) =t )
_ exp{—/v(dcb)(l —exp— 2[000 fi(@)a(a, Sl-)da> }

where v is the image of the measure M(dw) ® ds under the mapping
CRy,Ry) xRy - C(Ry xRY,RY)
(0, 38) > (a(a,8)=w((a—s/8)%), a>0, §>0)

and M is the image of the Itd measure n* of positive excursions under the
mapping which associates with an excursion e its family of local times (I (e),
a > 0) (see [35], [65] and another description of M in [45]). Equation (3.21) is
a consequence of master formulas of excursion theory ([50], Chapter XII).

3.4. Some extensions to Bessel processes. In this subsection, we shall ex-
tend Proposition 3.1, or more precisely equation (3.10), to a Bessel process
of dimension d for d > 2. Let R denote a d-dimensional Bessel process and
J, = inf., R,. We denote by #, = o(R,,s < t) and #, = #, Vv o(J,). The
decomposition of the semimartingale R in the filtration %, is the following
(Corollary 12.7.1*, as well as [53], [55], [49]):

d—3 tdu

(3.22) Ri=r+B,+2J,— ——— | —,
2 Jo R,

where B is an (#,) Brownian motion. We can now state the theorem.

THEOREM 3.4. Let f be a measurable function on {(x, [); x > [ > 0}, posi-
tive with compact support. Then

(3.23) E(exp 1 /OOO f(R., Js)ds> - exp(/:o G.(u, u)du),
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where G satisfies
(324) G(x, l) =1In qu(Lo(,’l)(x“)

and the function g(® is defined on the set {(x,1); x > [* > 0} by
1

(325) g(a)(x, l) — _zx(Z/OL)—Zf(xl/a’ l)
o

with « := d — 2 and as before ®,. . ; is the positive, decreasing solution of the
(SL) equation with initial value ® g ;) (%) = 1.

PROOF. As in the proof of Proposition 3.1, we are looking for an .#, mar-
tingale of the form

t
(3.26) M/ = exp|G(R, )+ o)~ § [ F(R,. T,y ds).
Using the decomposition (3.22) and It6's formula, one sees that G and ¢ should
satisfy
d-3
X

f(x, 1) =Golx, 1) - G (x, 1)+ (G(x, 1)),

(3.27) l
o(l) = —G(l, l)—/o G.(u, u)du.

Now, to solve the differential equation
. a-—1
Y=Y O = (),

we use the change of variable z(x) = y(x¥/%); then z satisfies a standard
Ricatti equation

Z// + (Z/)Z — g(a)(x)
with
1 - [e3
(3.28) g("‘)(x) — gx(Z/a) Zf(xl/ ).

Now z(x) = In®,w(x) solves the preceding Ricatti equation, and G(x,!) =
IN P4 . ;)(x*) is a solution of (3.27) such that the martingale defined by (3.26)
is bounded. Then the end of the proof is the same as in Proposition 3.1. O

Note that when f(x, [) does not depend on [, the martingale M’ is
F_ _ a1
M{ = exp|G(R,) — 2G(J)) - } [ f(R))dsy.
where G(x) = In @, (x*) with g(@ satisfying (3.28) and @, (0) = 1.

As in Section 2.1, we can compute the projection of the martingale M/ on
the filtration #,. To do this, we need the conditional law of J, given .%,. Using
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the Markov property of R and the local martingale (1/RY) (see, e.g., Lemma
12.1%), one can prove that

(o3

P(thy@t):%, y <R,
t
Then,
~f def f
! € E(M| %)
1 ,t 1 (R
= exp{G(Rt)— —f f(RS)ds}—a/ exp(—2G(u))au"t du
R¢ Jo
— @, (RY)ex / f(R,)ds /Rt L e ldu
(3.29) = Py P RiJo @2, (u)”

_ Riqu)g(”(R?)/o — = dv exp{——/ f(R, )ds}

CDZ(&)( )

_ Ri?q,g(a)(Rg)exp{—zfo f(Rs)ds}.

COROLLARY 3.4.1 (Ray—Knight theorem for local times of Bessel processes for
d >2). Letd >2anda=d-2, wedenote by Z (resp., Z) a two-dimensional
Brownian motion (resp., Brownian bridge). Then:

1
() La(Ra a2 0) " (170 a = 0),
aa®*~
(il (L5, (Ray 0<a=1) (12, 0<a<1),
aq®™

where R; denotes a d-dimensional Bessel process and T'; is the hitting time of
1by R,.

The assertions of the corollary are well known: they are obtained from the
classical Ray—Knight theorem for Bes(3) by time change (see [34], [63]). Here,
we give another proof, using the expression (3.29) of the martingale M. We
apply the optional stopping theorem to the bounded martingale M/:

E[exp{—% [ f(Rd<s>)ds” lim gy = e (=)
Q%[exp{—zfo g("‘)(x)XxdxH

— Bexp{ -5 [ @1z da |
E[exp{—%/ooo f(x)#wxqzdx”.
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Part (ii) is obtained in the same way, using

1

= @2 [ex {_}/1 @ ()X dx”
\I,g(a)(l) - X0-0 p 2 Jo g x

_ E[exp{—% /01 g<a>(x)|Zx|2dxH.

COROLLARY 3.4.2 (Ray—Knight theorem for local times of Bessel processes
ford <2). Letd <2and B8 =2-d. Assume R, is a d-dimensional Bessel
process with R;(0) = r > 0 and T, is the hitting time of 0 by R;. Then

(law) 1
(3.30) (L§,(Ry); a>0) = ( Bap il a2 0),
where (Y ,,a > 0) is an inhomogeneous Markov process, starting at 0, which
is the square of a two-dimensional Bessel process for ¢ < r#, and the square
of a 0-dimensional Bessel process for a > rA.

The identity (3.30) is obtained in a similar way as above. Note that there
exists a version of (3.22) for a Bessel process of dimension d < 2; that is,

d—3 rtdu

(3.31) Rt=r+yt+2Kt—ToR—u, t<T,,

where K, = sup,_,.p, R,, and y is an (#,) Brownian motion, (#,) being the
filtration %, v o(K,).

The decomposition (3.31) leads, as might be expected, to the same result as
above:

1

1 st
R—?\Ifgw(Rf)exp{—E/O f(Rs)ds}

is an (#,) martingale, where a =d — 2 = — and g is defined by (3.28).
Note also that by time reversal, we can partially recover Corollary 3.4.2
from (i) of Corollary 3.4.1.

3.5. Proof of Lemma 3.3. As announced, we shall now prove the following
lemma.

LEMMA 3.3. There exists a continuous version of the map (a, 8§) — M3(-).
PrROOF. We assume a < N and é < D, for arbitrary but fixed N and D. To
use Kolmogorov's criterion, we must prove that there exist p > 0, « > 2 and

C > 0 such that, fora,b < N, and 6,y < D:

(332) B(sup [Mi(s) = MY(s)|?) = C(Jla ~ bl + 15— )"
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Let p > 0 be an even integer; then

B(sup 130~ M) = €, (| [ @B 1) 1B LY as) ),
where
F:{(x,l);x—i—%lga}, f‘:{(x,l);x+%l§b}.

Leta>0,6>0and 0 < A <1; then

0 p/2
E<5U(l)3 | M, ,(s) — M:?(s)lp) < CpE<{/0 (La<iB,+(2/6), <a+h ds} )

a+h p/2
= CpE<{/ c;jdx} )

= C,h?? sup E[(C})P7?]

x€la, a+1]
= C k" E[(Chri0)™?):

On the other hand, the estimates for increments involving the dimension pa-
rameter are more involved; first,

00 p/2
E(sup [M3(9) - M) = CE({ [ are Bl L ds] ).
s>0 0
where
r (l)+21< ['=1(x,0) +21<
={(x,0); x+——=IL<ay; =1{(x,0); x+=l<ay.
6+ h 0
We now write
o0 o0
/O 1np(I1Bsl, L) ds =f0 1(B,1+(2/6+ )1, <a<|B,|+(2/5)1,) AS
o0
= /O L@ty <iB.l<ta-@rs+hi ) 48
a o0
2/0 @ /o L@t <ya-rormiy AL
where (L3, y > 0) denotes the family of local times of |B|. Now, for y € [0, a],
o0 o0
/0 L@ <ysta-rarmiy) dsls = /0 Lor2pa-n<t<@rhiae—y) L3
OO Y
:fo L <srpy) FsLs

— LY _LY

TB(y) Ta(y)
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where 7(u) = inf{¢t >0, [, > u} and

8
(3.33) a(y) = 5(a—y),
+h
(3.34) By) = ——(a—-y)
Therefore,
(3.35) Z = /o 1F\f(|Bs|’ ls) ds = /o dy(LZﬁ(y) B L‘J’/a(y))'

Now, we must estimate the moment of order p/2 of the r.v. Z. Let k& € N*,

k k
k x; x;
E(Z ) = k! 40 al* 1(x1<x2<~~~<xk) l_gdxl E( I_Ij-(LTB(xi) a LToz(xi))>.

We note that the functions « and B defined by (3.33), (3.34) are decreasing.
We want to compute the function:

k
A(xl’ cees xk) = E( H(Lf;(x” N Lf'i(xi))).

i=1
To do this, we use the Markov property of B and the additive functional iden-
tity:

LY — LY =LY o6 forA<C,
c A C-A

TA

where 6 denotes the translation operator on the Wiener space.

The computation of A(x) depends on the position between «(x;) and B(x ;)
for i < j. Let us first study the easier case, that is, let x; < x, < --- < x; such
that a(x;) > B(x;,,) (recall that « and B are decreasing). Then

k
A(.’)C) = E( 1_[ (Lf;(xi) - Lfi(xi))EB (Lf;(xl)ﬂ(xl)))

=2 Ta(x1)

k
E ( iZI_IZ(Lf/iw - Lfi(m)) Eo (Lf;ocl)—a(xl))

I
=

1 E (Lflg(xz‘)fa(xl' ) )

~
Il

k
=2k n(ﬁ(xi) —a(x;))

=1

= 2kpk ﬁ(a —x;).

i=1
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The equality E(L7,) = 2A is a consequence of the Ray—Knight theorem for
the local times of Brownian motion at time 74; that is,

|
(&, x=0) "2 @9,

and L7 =1{7 +17*. We have thus obtained

k
fl(x1<x2<“'<xk)1a(xi)Zﬁ(xi+1)A(x) dx < Ch”.

It remains to study the case where a(x;) < B(x;,,) for some i. We shall study
the case £ = 3 (which is enough to prove the continuity). Let x < ¥y < z
and suppose that a(x) > B(y), a(y) < B(z). The last condition implies that z
varies in an interval I(y) of amplitude less than Ck. Now, we can prove that
in this case,

A(x,y,z) < Ch?
and

/ A(x,y,2z)dz < Ch®.
I(y)

The other cases are similar and finally, we have obtained that
E(Z®) < Chr?,

which proves the lemma. O
4. On some principal values of Brownian local times.

4.1. Distributions of principal values of Brownian local times, taken at the
inverse local time. In Section 1, we introduced the two processes

t d t
thp.v./o gs and H§=p.v./0 dscoth(AB,),

corresponding to the space—time harmonic functions hq(x, ¢)=x and h,(x, t) =
sinh(Ax) exp(—A2t/2). The first process has been studied by Biane and Yor [7],
the second one by Alili [1, 2].

More generally, let f be an odd function, locally integrable on R*, satisfying
f(x) ~¢ (C/x). We can define

£ t i t
Al = po. [ f(B)ds:=lim [ f(B)L g, ds
= [ f@)f ~1;*)da.
The existence of Af follows from the Holder continuity of Brownian local times.

For a general survey of principal values of local times, see [62].
Let 7 denote the inverse local time of B at 0. We present two approaches

to study the law of the r.v. A’;. The first one is based on excursion theory and
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gives the Lévy measure of the Lévy process (A’:t, t > 0) in terms of n the

1td measure of excursions. This approach has been used by Biane-Yor [7] to
describe the law of (H,, ;).

PROPOSITION 4.1. The characteristic function of A’; is given by

E(exp(i£A7))
(4.1) - exp{—t/ n(de)(l - exp(if/OV(e) fe(w)) du>> }
4.2) - exp{—tfooo %Hv<l - cos<g [O f(r(u))du))}.

The identity (4.2) is a consequence of the following description of n™*, the
1t6 measure of positive excursions (see [50], Chapter 12):

(1) under n*, the law of the lifetime V of the excursion is
dv/2~2mu3,

(D) (2) conditionally on V = v, the law of (e(s),s < V) is the
law, denoted by II,, of a three-dimensional Bessel bridge
over [0, v].

A second method (used by Alili) to obtain the law of Aft uses the Ray—Knight
theorem for (I7, x € R) and the description of squared Bessel processes in
terms of Sturm-—Liouville equations (see Section 3). Let us first introduce the
processes

Al = [ F@) - Byda+ [ fla)l da,
Al = /0 ") — ) da + /l ¥ @) da.

REMARK. If [* f(a)da < oo, we can set another definition for the pro-
cesses A+, Af~; that is,

AlT = [ f@@ - yda, AT = [ (@)l - ) da.
Alili in [1] and [2] chooses this renormalization.

We assume that f p+ > 0; as in Section 3, ® denotes the decreasing solution
of the (SL) equation associated with f p+.

PROPOSITION 4.2. Let 6 > 0; then

(4.3) E(exp(-%Aﬁ; +)) = exp{%!i_r}ra((bef(sq;;_f(:g)%f(s) + 0/91 f(a) da)}
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PROOF.
00 1
Al = Iing)(/ fla)ie da—t/ f(a)da).
e—> e &

Set f.(x) = f(x)1(,>, and denote by ®, the solution of (SL) associated with
f.- Then, it is easy to see that

q)/ef(s)
Dyr(e) — SCD/Of(S)'
Formula (4.3) follows then from the Ray—Knight theorem and (3.4). O

(I)lefg(0+) =

Denote by I(0) the Laplace exponent of Afﬁ which is given in (4.3); then

(4.4) E(exp(igA{t)) - exp{é([(if) + 1(—ig))}.

Applying these results to fy(x) = (1/x) and f,(x) = coth(Ax), one obtains the
theorem. O

THEOREM 4.1 ([2], Theorem 3). Let £ € R and u € R™; then we have

(4.5) E(exp(i¢H) — pry)) = exp<_77)\t|§| coth(%\/(p} + g2y M))

In particular, for u =0,

: —mt|¢] T [
(4.6) E(exp(i¢HY})) = exp( : coth(x\/|§|>).
THEOREM 4.2 ([7]). Let £ e R and w € R™; then we have
4.7) E(exp(iéH, — p7,)) = exp(—m‘|§| coth (wi))
V2u

The comparison of these two results implies the following puzzling identity
in law:

A
(4.8) AHL 2 H, v 2C
where (C,, u > 0) denotes a standard Cauchy process, independent of B.

4.2. An identity in law for the normalized excursion. If we rewrite (4.5)
and (4.7) using excursion theory as in Proposition 4.1, we can see (cf. [2],
Theorem 9) that (4.5) and (4.7) imply the following surprising fact: for v € R*,
the law of

1 2
(4.9) 0, = vz{ (/0 ds Coth(vrs)) - 1}
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does not depend on v, where (r,, s < 1) is a three-dimensional Bessel bridge
of length 1. Now, we give a partial explanation of (4.9). We refer to [3] for a
more complete discussion of this identity in law.

First verification. We verify that 6, := lim,_ 6, and 6, := lim
the same law. Letting v go to 0, we find that

(4.10) 6o = (/01 ‘f—j)z.

Now, it is well known ([7], (2.g) and (5.d)) that

0, have

V—>00

0, 2 TG 4 7O,
where TSS') and AS;Q') are two independent copies of the first hitting time of =
by a three-dimensional Bessel process, so that

#(o0(-5 ) = (s

On the other hand, when v — oo,

1
0, ~ 21/2/ dsf,.(vry),
0

where

2

f*(X)ZCOthx—].:W

We now apply the following result (see [20], [26]): for f a bounded function,
with compact support (and in fact for a larger class of functions),

(4.11) V2 fol ds f(rr,) /Ooo ds f(Rs)+[O°° ds f(R,),

where R and R are two independent three-dimensional Bessel processes. We
apply this result to f, even though this function does not have a compact
support. Thus, to prove the identity in law between 6, and 6.,, we must show
that

/oo ds (law) TG
o exp(R,)—1 g

This identity is a consequence of

00 ds (law) 7y ds (law) 3)
4.12 — =, — =T
(4-12) /o exp(2R,) — 1 (')/o 1—(Ry(s)2 ~ W m2

where R, is a two-dimensional Bessel process. This identity in law (4.12) will
be proved and generalized in Section 5.
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Second verification via the scaling property. If we assume (4.9), the function
®, (1) = E(exp(—A8,)) does not depend on v, hence

d
—O =0.
Z®,(0) =0

This implies

w () ed)

dv C

where C, = fol dscoth(vr,). We multiply both sides of (4.13) by »3; then, we
can write (4.13) as

E<v2 [ s g*(vrs)|9,,> -2,
0

v

where g,(x) = x/(sinh x)?. Let v go to oo and use (4.11) to obtain from the
above equation

E( [ase R+ [ ds g*u%s)i [Casr.ro+ [ ds f*ai’s))

- 2</O°° dsf.(R,)+ /Ooo ds f*(l?s)>-

Thus, we must show that

(4.14) E(/Ooo dsg.(R,)

[ as f*(Rs)> =2 dsf.(R,).

The identity (4.14) is just a consequence of the scaling property of Bes(3). More
generally, for any C?* function £, and ¢ > 0,

14
@1s)  EB(if(R) -} [ dsRFR)

[ as f(Rs)> = [ ds (R,

PROOF OF (4.15). For A > 0, we can write, using the scaling property,

E(exp(—)\,uz /O " ds f(MRS)>) — E(exp(—A /0 “ s f(Rs)>>.

We then differentiate the two sides of the above equality with respect to u
and take u = 1 in the resulting formula. This yields (4.15). O

4.3. An explicit computation. We come back to Section 4.1. We shall com-

pute the Laplace transform of the functional Af}”’ for the function f(x) =
1/(exp(2x) — 1). The choice of this function is motivated by the identity in
law (4.12). The computation of @, , the solution of the (SL) equation asso-

ciated with f;, gives both the Laplace transform of A’f;Jr [see (4.3)] and the
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Laplace transform of [;* (ds/exp(2R,) — 1), proving directly the identity in
law between this functional and Tf'/)z. Indeed,

(o054 smamy=s)) - B(e(-2 [ 1)
= ®gor (00)

where @, is the positive, decreasing solution of

02

®(x), D0)=1.

To solve (4.16), we set ¥(x) = ®(In(1/x)), 0 < x < 1; ¥ satisfies the differential
equation

\I,//(x) +

W' (x) 6?
x 1 a2 V).

A solution of this equation is given by

10 —i0
V(x) = 2F1<2 T;l;x2>,

where , F(a, B;v; z) denotes the hypergeometric function, defined for |z| < 1
by the series

N)n(Bln n

2 Fi(a, B;y;2) = Z ((‘y) o

with (), =A(A+1)---(A+n—1).
Clearly, ¥ is increasing on [0, 1]. Thus, the solution @, is given by

0 —i0
2F1<l : — L1 exp(—2x)>

2

(4.17) Dgep, () = ‘r<1 + i—0> 5

and

2
7(0/2) 02 (3)
=——">-_=F ——=T
2 sinh(7(6/2)) P\ =2 ) )
which proves the identity in law between the two extreme terms of (4.12).

We now proceed to the study of the law of Afj’+ or more generally to Kﬁ‘t
where we denote

(4.18) g (00) = ’r(1 + i—0>

t ds
K? = p.u. 11(3820), A > O,

o exp(2ABy) —

00 da o 10
- fo exp(2ia) — 1 =)
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THEOREM 4.3. Let A > O; then,

(4.19) E(exp(—%Kﬁ)):exp( Tj{ —2y — \If<1+ 20) ‘I’<l—%0)}>,

where y denotes Euler’s constant and W(x) = I"(x)/I'(x).

Proor. We apply (4.3) with the function f,(x) = 1/(exp(2Ax) — 1). Now,
Peep, (%) = Pro/nr, (A%)

| 16 i —i6
=rf1 | ,F :1; 2 ing (4.17).
| ( +2A)' P 1(2)\ o exp(— )\x)) using ( )

According to Lebedev ([33], (9.2.2)),

2 52
, 10
(I)Ozf)\(x)z_l < +2)\>

0
ﬁexp( 2Ax)2F1< +1, — 2/\ +1 2; exp(— 2Ax))
By (4.3), we must find lim,_, 1,.(0, A), where

qD’szA(s)

1.(0,)) =
+(0,4) qD@ZfA(s)—aCD’ezfA(s)

+0 [ f@)da

02r,(8) 02 ( 1 )
= - +—In{—).
Dpzp (8) — 8<I>92fA(s) 2\ 2)e
To study lim,_,I.(6, A), we need the following approximation near 1 of the
function ,F(a, b;c; x) for c = a + b:
2F1(a, bia +b;x)

_T'(a+b)
~ D(@)I'(d)
where ¥(x) =I"(x)/I'(x). Then, we see that lim,_, sCIJQ)ZfA(a) =0and

(0.0 =t 75 ) )

(2¥(1) — ¥(a) — ¥(b) — In(1 — x)) + O((1 — x) In(1 — x)),

Now,
02 i i
92;3(8) o exp(—2/\s)(2\lf(1) - ‘I’(l + ﬁ) — \If(l — ﬁ)

—In(1 - exp(—2Aa))>
+ 0(z1n(s)),

and therefore,

lim 7,(0, 1) = —29—2(2\?(1) w<1+§) —\P(l—;—i)) o
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REMARK. We have obtained the Laplace transform of
p.v. / (da/exp(2Aa) — 1)1° .
0 x

Since 2/(exp(2a) — 1) = coth(a) — 1,

62 0o da " 62 62

E(exp(—?p.v./o Wl7x>> = E(exp(_zH¢;+ + ZTI)),
where H)* = p.v. [* dscoth(AB)1(p o) and 77 = [~ 1% da.

Alili [1, 2] obtained the joint law of (H}*, 7}); taking formally u® = 6°/2
and u? = —(6#%/2) in the formula obtained by Alili, we recover (4.19) up to
a coefficient, that is, In(2A), which does not appear in our (4.19). This comes
from the fact that the “normalization” In(2A¢) in our definition of p.v. is not
the same as that of Alili, who uses In(¢).

5. Generalized Bessel processes and the porous medium equation.
In the preceding section, we presented the following identities in law:

0 ds (law) T(12) ds (law) (3)
A =" - =T
1) /o exp(2R3(s)) — 1 @ /0 1 — (Ry(s))? (iiy 4 m/2

where R; denotes a d-dimensional Bessel process starting from 0 and szd) =
inf{¢ > 0, R;(t) = a}. The first, (i), is an easy consequence of the following
representation (see [34]):

In<%) - R3<sup{u, /:O exp(—2Ry(s)) ds > t})

¥ 4
=R3</ 2—S>, 0<t§T§2)
t  R5(s)
The second identity in law, (ii), will follow from the study of the functional
T.(R) ds
A, (R)= —_— <1,
D= Eap

where R is a positive process which belongs to a certain class of diffusions (to
be defined in the next subsection), including the Bessel processes.

(5.2)

5.1. Generalized Bessel processes and hypergeometric functions. We con-
sider a family ~%¢ of diffusions (R,, ¢ > 0) with values in [0, 1], depending
on two parameters § > 0 and ¢, whose infinitesimal generator is given by

1 o—-1 2
(63 LYf(@) =310+ @)+ 15 (0. [eC?

For 6 < 2, 0 is an instantaneously reflecting regular boundary (for 6 > 2, 0 is
not reached). The process R, starting from x € [0, 1], is stopped at time T';.
One can verify by computing the scale function of R that T, < oo p.s. if and
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only if ¢ > —%. We denote by P2 ¢ the law of the process R of generator L% ¢,
starting from x. Then, we have the following proposition.

ProproOSITION 5.1. Let§=2(r+1)>0andceR.

(i) Fora €[0,1] and x < a,

k2 (T.(R) ds Fi(a, B;v+1;x?)
8, ¢ _ 241
e Bloo(5 [ T(hr)| = Fe g e

where , F'; denotes the hypergeometric function (see [33]);

v—2c+16 v—2c—160

ai="mOTE =t iR - 20
—2c46 —2c— 9
a;:%; B::% if k2 < (v — 2¢)?,

and 0 = /|k2 — (v — 2¢)?|.
(i) When ¢ > =3 (T, < o0 as.),

o5 [ =t )|

(5.5)
_P(w/2+(1+c¢)+ (16/2))|?
N T'(v +1)C(1+ 2c)

B [eXp( k; foTl(R) %ﬂ

_D((/2)+ (A + ) +(6/2)T((»/2) + (1 +¢) = (6/2))
T'(v+ 1)I'(1 + 2¢)

if k2 > (v — 2¢)?,

(5.6)
if k%2 <(v—2c).

Proor. It is well known that if ¢ is the bounded solution on [0, a] of

2

Bcr
L()()

¢(r)

with ¢(0) =1, then

wloo(-3 [ rrar) )= o *=e

Thus ¢ is the solution of

k2
(1—x2)
Now, according to Lebedev ([33], page 164), the equation

2[(y — 3) — (a + B+ 3)x?]
x(1— x2)

(5.7) #'()+ T @)+ L0 (x) = ().

¢"(x) + ¢'(x) = e(x)

4ap
(1—x2)
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admits , F,(a, B;v; x?) as a solution. Now, we compute the coefficients «a, 3, y
so that the above equation is precisely (5.7). Therefore, we set

2y—-1=6-1,
20+2B+1=6—-1-4c,
4op = k2,
or
'y:gzv—f-l,
a+ B =v-—2c,
4afB = k2.

We assume that k% > (v — 2¢)? so that we can set k2 = (v — 2¢)? + 62. The
above system gives

y=v+1,
_v—20+i6
= 5 ,

B_V—Zc—iO
= 5 .

The function ¢(x) = ,F1((v —2c+i6)/2, (v — 2c — 10)/2;v + 1;x?) is then a
solution of (5.7) bounded on [0, a] and ¢(0) = 1. This proves the first part of
Proposition 5.1; (5.5) is a consequence of the following relation ([33], (9.3.4)):

I'(c)[(c — (a + b))

2Fi(a,b;c;1) = I'(c —a)l'(c—b)

for Re(c—a —b) > 0.

The case k? < (v — 2¢)? is similar. O
COROLLARY 5.1.1. We have

/Tg.Z) ds (law)
0

(5.8) TTEmG)? - Tgf/>2.

PrROOF. We apply (5.4) in the particular case § = 2, ¢ = 0, that is, for the
two-dimensional Bessel process

elen(-5 [ o)

. 2 2
10 m6/2 0° 3
'F<1+2> sinh(6/2) E[exp( 2T”/2>]
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5.2. A particular case: ¢ =v/2. When ¢ = (v/2), (5.5) becomes

o2 0 TR ds N v+ (10/2))
69 [exp(‘?/o 1—<R(s>>2)}‘ SN

Note that in this case, the infinitesimal generator L% ¢ is

2
510 L2 F(x) = 317(3) + ooy £ ()
In the special case v = —1/2 that is 6 = 1, we obtain the following result:
62 [T1(R) ds 1
(-11) Eo [ex"<_?/o 1- (R(s))2>] = Cosh(67/2)’
where R is the (reflected) diffusion with infinitesimal generator
(5.12) Lf(x) = %f”(x) - ﬁf/(x), x e R*.
Let X be the diffusion, with values in [—1, 1], which solves the SDE
dX,=dB; — det, t<TAT_4,
(5.13) 2(1-X7)
X,=0,

where B is a real valued Brownian motion. The scale function of X is s(x) =
arcsin x, so that

t ds

0 1-X?
for a real valued Brownian motion B, starting from 0.

The representation (5.14) gives an explanation for the Laplace transform
obtained in (5.11). In fact, by (5.14),

(5.14) arcsinXt=B< ), t<T;=inf{s, X, =10r —1}

T (XAT_(X) ds (law)
5.15 ——  ='T B)).
(5.15) A —xo = TeeUBD
This obviously agrees with (5.11), since it is well known that
62 1
Elexp——T,(B|)| = ———— 0.
[ 3 a(l D} cosh(6a)’ @=

Given the identities in law (5.8) and (5.15), which exhibit T'>), and T",, and
the well-known probabilistic interpretation of the factorization

coshl(aa) - (tangéea))<sin3?0a)>

as the expression of the Laplace transform (in 62/2) for

(5.16) Tgll) = gpw + (szl) — &pw),
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one obtains the following:

gr; ds  (law) Ti ds  (law) (3)
5.17 ' = B); —— ="T .
( ) /O 1_ X? gT571/>2( ); /ZETI 1- X§ /2

In the above equations, we denote
grw =sup{t < Ta", Ry(t)=0}
and
gr: =sup{t <Ti, X(¢)=0}.

The Laplace transform of the right-hand side of (5.16) follows from the path
decomposition of Brownian motion at time gp_(see [60], [66]), which states
that (B(gr, +1t); t < T, — gp,) is a three-dimensional Bessel process, inde-
pendent of (B(t); ¢ < gp, ). Concerning the last identity in law in (5.17), it is
now tempting, in view of Corollary 5.1, to think that

(law)

(5.18) (1X(gr; +w); u<Ti—gr;) = (Ra(w); u < Tg.Z))’

?
which would give a nice explanation of Corollary 5.1.
However, the identity in law (5.18) does not hold, as will be shown, with
the description of the diffusion (X(u); u < T;) on the left-hand side of (5.18).
To show this, we may use the enlargement formula for L = g, that is, a
formula which gives the decomposition of the Brownian motion (8,, u > 0)
driving X:

X

t
Xt:Bt+/(; dsby(X,) where bo(x)z—m’

as a semimartingale in the enlarged filtration; that is, in terms of X,

~ ~ 4 -
(5.19) X, =X, =8 +/0 dsb(X,),
where (8,) is a Brownian motion in the enlarged filtration, and
b(x) = % +bo(x) and o(X(unATi)=1-2ZL
¢

(ZL, u > 0) being the customary notation for Azéma’s supermartingale asso-

u’

ciated with L (see Chapter 12*, and [26], Chapter 5). Since

. t ds gr(B) 1 .
arcsm(Xt)=B< A 1—X§>’ Z; :1—E|B(t/\Ta(B))|,

it is not difficult to show that 1— ZF = (2/m) arcsin(| X (¢ A T%)|), which implies

¢'(x) _ 1 :
¢(x) V1= x%(arcsin(x))’
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hence,
1 X
V1= x2(arcsin(x))  2(1—x?)’

so that the process (| X,|, t < T;), where X satisfies (5.19), is definitely not a
two-dimensional Bessel process. However, both X and R, satisfy

b(x) =

(5.20) /T1(\X\) ds (law) /TI(RZ) ds
' 0 1-X2%s) Jo 1-R¥s)

5.3. The porous medium equation. The porous medium equation is the
partial differential equation

{ Uy = %(u2m+l)xx9 m >0,
u(o’ ) =M,

where u: R} x R — R. If u is a probability measure, the positive solution of
(E,) is a probability density and it is natural to associate to (E,) a random
process X, such that P(X, € dx) = u(t, x) dx. More precisely, we consider the
solution of

(E),

t
(S,) X=X, +/O u™(s, X,)dB,, and the density of the law of X, is u(¢, -).

The systems (E,) and (S,) have been studied by Benachour, Chassaing,
Roynette and Vallois [4] for a large class of measures w. The purpose of this
paragraph is to link the generalized Bessel processes introduced in Section 5.1
and the solution of (S,), for u = 8, the Dirac measure at 0.

If X is the solution of (S; ), then the process Z, := exp(—¢f) Xexp(y) is the
unique stationary process, with invariant measure ¢(x) dx, which solves

¢ t
(5.21) Z,=Z, +/ ©"™(Z,)dB, — 3/ Z.dr, t=s,
where
_ 1
= 2m + 2’
m]_/z m/m+1
@m = { [(2m + 1)(m + 1)[*2B((2m + 1)/2m, 1/2) }
I(a)l'(b

(5.22) where B(a, b) = %,

Vi = am<(2m + ]’_7)1(m + 1))1/2,

wo-so- () )
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Equation (5.21) admits a unique weak solution with values in | —y,,, v,,[ (see
[4]). We denote by (Z], ¢ > 0) the solution of (5.21) satisfying Z; = y and

Sx’yZinf{t>O, Zf:y}> x7y€]_7m’ 'Ym['

In [4], the authors obtain the Laplace transform of the hitting time S, ,,
the result being expressed in terms of hypergeometric functions. We shall
establish an identity in law between the time S, , A S, _, and the functional
A ,(R), already introduced at the beginning of Section 5, for a diffusion R
of the family _~% ¢, which enables us to recover some results from [4]. We
consider Y7 = (Z;"™)/y,, with values in | — 1, 1[, where Y solves

t t
Y? =y+/0 am(Yz)dB,—Bfo YYdr

with

1/2
_ meq 1/2m _ m
(@) =0y — ) o= ((Zm T 1)(m 1)) ‘

LetT, ,=inf{t>0, Y{=y}=8,, ,, .
By a change of time, there exists a process £ such that

vi=e(f onnas)

and &7 is the solution of

ft_y+7t B/ 2m(§ )ds

for a Brownian motion y:
y
8 i @n

(523) & =y+v-— ds for ye]—1,1[, ¢t < T(ly]).

The generator of ¢, the solution of (5.23), belongs to the class % ¢ with § = 1
and ¢ = —(B/282)) < —(1/2). The diffusion ¢ is symmetric; that is,

(Iaw)

(6, t=0) =" (=¢", t=0).

Thus (|&]], t > 0) (R;,t = 0) under P1 ~(P12%) \We denote by «, the
inverse of the increasing functional

(Iaw)

t
t_>f o?™(Y,) ds,
0
so that {, =Y, . One easily verifies that

(5.24) a, qu UZm(g) / 5 52).

It is now easy to obtain the law of T', , with the help of Proposition 5.1.
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PROPOSITION 5.2. Let0<x <y <1,

El[exp(—\(T, , AT, _,))] © E[exp<_,\/OTy<§|) L)]

525 78
(i) ¢r(%)
er(y)
with
Em by 1
e(x) = 2F1<7, 7; E;xz ,
1
1
(5.26) b, = % —io,
22m+1)(m+1) . m+1
0= VA=A thA, =—--——
\/ m m WITH A 8m(2m + 1)’

(5.25) being given for A > A,,.

PrROOF. The identity (i) follows from the relation ¢, = Y, and the ex-
pression of «,. ldentity (ii) is a consequence of Proposition 5.1, since the
law of || is P>with § = 1 (v = —1/2), ¢ = —(B/282)). In this case, 6 =
(20/8%) — (v —2¢)?. O

REMARKS. (i) In [4], Corollaire 11.6, the authors obtain the following:
ky(x) 4 ky(—x)

(5.27) E[exp(=A(Ts,y A T )] = Ex(3) + ka(—y)
with
2 11
k,\(X)zzFl(gm’bm;%; —;x>

1 1+x
:2F1<§m?bm;§m+bm+§;7>'

It follows from Lebedev ([33], (9.6.11)) that
ky(x) + ky(—x) = Co,(x).

Formulas (5.25) and (5.27) are then equivalent.

(i) Theorem 11.2 in [4] gives the Laplace transform of the law of T', ,. We
could obtain this result with the family of diffusions introduced in Section
5.1, but we must choose symmetric diffusions with values in [—1, 1] instead of
reflected diffusions. For example, in order to compute the Laplace transform
of T, , for x < y, we look for a function ¢ solution of (5.7) with 6 = 1,

c = —(B/282), k = +/2A, which is bounded on [-1, y]. This is exactly the
function &, (x).
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TABLE 1
Laplace transforms of some variables

X E(exp (—(6%/2) X))
00 ds 1
/0 exp(2Ry(s) —a2' 2 €101 JF1((=i0)/2a, 10/2a; 1, a2)
00 ds (law) . (3) 70/2
fo exp(2R3(s))—1 /2 sinh(76/2)
o0 ds w072 \%?
/o exp(225(s)) —1 <sinh(rr0/2))
o0 (law) ,(2) 1
/0 exp(—2R5(s))ds ' = T¢ )
00 1 \%2
/(‘) exp(—ZEﬁ(s))ds (m)

6. Complements. Let I, and K, denote the modified Bessel functions
and let J,, Y, stand for the Bessel functions of the first and second kind (see
[33], Chapter 5).

6.1. Table of formulas. In Table 1, we give the Laplace transforms of some
variables encountered in the preceding sections (and some generalizations).

We denote by Rs a 6-dimensional Bessel process and by T its first hitting
time of x; B is a Brownian motion and [, its local time at 0 and at time ¢;
25(8) = |Be| + (2/8)L.

SOME COMMENTS. (i) The first line follows from the identity in law

/w ds (@N)i/Tfp du
0o exp(2R3(s))—a?2  a?2lo 1—(R,(u))?’

and Proposition 5.1.
(i) The fourth identity in law follows from the representation (5.2). More-
over, we verify that

1 1
lim = .
a—>0,F(—16/2a,i0/2a;1;a%) Iy(0)

(iii) The third and fifth lines are consequences of Theorem 3.1 and of the
additivity of squared Bessel processes.

6.2. Some functionals of the three-dimensional Bessel bridge. In Section 4,

we have seen that Alili obtained the law of fol coth(Ar,) ds from the study of
the law of (Hﬁt, 7,), where r denotes a three-dimensional Bessel bridge (i.e.,
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a normalized excursion). In view of Table 1, we are interested in the laws of
[3(ds/(exp(2ry) —a?)) (0 < a < 1) and of [;(ds/(exp(2r,))). This study relies
on the following proposition.

PROPOSITION 6.1 ([25]). Let f be a locally bounded function and define

u(k;x) = E, (exp—(k;To n /OT° f(Bs)ds>>.

Then,

= b [ 2 exp( ) 0,
where
6.1) Ky(6) = B(exp [ du f(Rs(u)|Rs(6) =)

Applying these results to f(x) = 6?/(2(exp(2x) — a?)) (a € [0, 1[), we obtain
the following proposition.

PROPOSITION 6.2. (i) Let 0 < a < 1; then
©°_dt exp(_k_2t>
0 «/2mt3 2
6% du |
1-E - | =
§ < (exp 7 o spary—a 0))
o dt k?
6.2) _ ex <__t)

/0 2mt3 P 2

x|1— E|ex _th ' du
P2 )y exp(2i2r(u)) — a2

602 LGF(a+1,B+1k+2;0%)
2(k+1) L,Fi(a,B;k+1;a2)

where
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(i) For a =0,
T ()
0 2mt3 2
02 [t
0
dt exp(—k—2t>
V2me3 2
02 1
X (1 - E<exp——t/ du exp(—2t1/2r(u))>>
2 Jo

1,.1(0)
1,(0)

Formula (6.3) follows from [25] or from (6.2), letting a — 0. We denote by
X, =t [y du exp(—2t*2r(u)). From (6.3),

/Ooo j:;ﬁ exp(-k_2t> (/ du exp(_e_zu))zéfz_ég)‘

Now (see [24]),

(6.3)

=0

21,4(0) ™ 2
S = 4/0 dz exp(—022)G4(2),
where
(6.4) Gi(2) = ) exp(—Jj7 ,2)s

n=1

(Jk.n)n being the increasing sequence of positive zeros of the Bessel function
J ;. The function G, is a generalized theta function.
Then, by inverting the Laplace transform in 62/2, one obtains

6.5) /Ooo j;t exp(—k—2t>P(X >z)_2Gk< )

From (6.5), we can compute the moments of X, (via a Laplace transform). Let
p>1,

00 2
[ Jam (3 0N =2y

For k= 3, J1,5(2) = (2/mz)"? sin(z); therefore, we have

TN
nljkn

J1/2,n = NT.

Then, the above equation becomes

F g exp(——t)E((X ) =27 pl 4 c(2p).

where {(s) = >_»2,(1/n*) denotes the Riemann zeta function.
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We can obtain an analogous result for the random variable Y, =
tfol du exp(+2tY/2r(u)). According to [25],

[ o 0)s([ () =20

Now, according to Ismail [23],

2K, 1(0) ™ 2

S K9 =2 /O dz exp(—622)H,_4(2),
with

2 00
(6.6) Hya(2) == /0 dtt 7 exp(—tz)(J2 + Y2) L (£12).
Thus,
o0 2
/ dt = exp(—%t) P(Y,>=2)

6.7) 0 27t

_ 2\ _ 2 ® ., iz 2 2\—1/,1/2
_Hk_l<§> _F/o dtt exp<—§>(Jk+Yk) (£1/2).
Let p > 1; then

o dt k? 2p+1 o dt 1
exp| ——=t |E((Y,)?) = ! ,
/o 2mt3 p( 2 ) (¥ =" p/O tPHL J2(V1) + Y2(V1)

the right-hand side being finite for p < k, using the behavior of the Bessel
functions J; and Y, near 0. (See [33], Section 5.16.)

REMARKS. (i) From (6.7) and (6.5), we see that the functions v — H /;(z)
and v — G ;(z) are completely monotonic, a well-known fact proved by Ismail
[23] and Ismail and Kelker [24] by analytic means and interpreted probabilis-
tically by Pitman and Yor [46].

(i) Using Krein's theory, Kotani and Watanabe [32] and Knight [31] de-
scribed the Lévy measure Il of the increasing Lévy process A’; = OT‘ f(B,)ds
for a positive function f. Now, I1, can be expressed in terms of the 1t6 measure
n and using Williams’s description of n [see (D) following Proposition 4.1], in
terms of r, one obtains that if Z, = tfol o(v/tr,)ds for a positive function ¢,
then

©  dt k2

f exp(——t) P(Z, € dz) = hy(2)dz,
0o V273 2

where h, is the Laplace transform of a positive measure. In the particular

caseswhen Z, = X, or Z, =Y, (6.5) and (6.7) provide us with two particularly

explicit and rich examples.
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