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Abstract. Recently Kifer (2000) introduced the concept of an Israeli (or Game)
option. That is a general American-type option with the added possibility that the
writer may terminate the contract early inducing a payment exceeding the holder’s
claim had they exercised at that moment. Kifer shows that pricing and hedging of
these options reduces to evaluating a saddle point problem associated with Dynkin
games. In this short text we give two examples of perpetual Israeli options where
the solutions are explicit.
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1 Israeli options

Consider the Black-Scholes market. That is, a market with a risky asset S and a
riskless bond, B. The bond evolves according to the dynamic

dBt = rBtdt where r, t ≥ 0.

The value of the risky asset is written as the process S = {St : t ≥ 0} where

St = s exp{σWt + µt}
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where s > 0 is the initial value of S and W = {Wt : t ≥ 0} is a Brownian motion
defined on the filtered probability space (Ω, F , F = {Ft}t≥0, P ) satisfying the
usual conditions.

Let 0 < T ≤ ∞. Suppose that X = {Xt : t ∈ [0, T ]} and Y = {Yt : t ∈ [0, T ]}
be two continuous stochastic processes defined on (Ω, F , F, P ) such that with
probability one Yt ≥ Xt for all t ∈ [0, T ]. The Israeli option, introduced by Kifer
(2000), is a contract between a writer and holder at time t = 0 such that both have
the right to exercise at any F-stopping time before the expiry date T . If the holder
exercises, then (s)he may claim the value of X at the exercise date and if the writer
exercises, (s)he is obliged to pay to the holder the value of Y at the time of exercise.
If neither have exercised at time T and T < ∞ then the writer pays the holder the
value XT . If both decide to claim at the same time then the lesser of the two claims
is paid. (Note that the assumption that X and Y are continuous processes is not
the most generic case but will suffice for the following discussion). In short, if the
holder will exercise with strategy σ and the writer with strategy τ we can conclude
that at any moment during the life of the contract, the holder can expect to receive
Zσ,τ where

Zs,t = Xs1(s≤t) + Yt1(t<s).

Suppose now that Ps is the risk-neutral measure for S under the assumption
that S0 = s. [Note that standard Black-Scholes theory dictates that this measure
exists and is uniquely defined via a Girsanov change of measure]. We shall denote
Es to be expectation under Ps. The following Theorem is Kifer’s pricing result.

Theorem 1 (Kifer) Suppose that for all s > 0

Es

(
sup

0≤t≤T
e−rtYt

)
< ∞

and if T = ∞ that Ps (limt↑∞ e−rtYt = 0) = 1. Let Tt,T be the class of F-stopping
times valued in [t, T ]. The value of the Israeli option under the Black-Scholes
framework is given by V = {Vt : t ∈ [0, T ]} where

Vt = ess-infτ∈Tt,T ess-supσ∈Tt,T Es

(
e−r(σ∧τ−t)Zσ,τ

∣∣∣ Ft

)
(1)

= ess-supσ∈Tt,T ess-infτ∈Tt,T Es

(
e−r(σ∧τ−t)Zσ,τ

∣∣∣ Ft

)
(2)

Further the optimal stopping strategies for the holder and writer respectively are

σ∗ = inf {t ∈ [0, T ] : Vt ≤ Xt} ∧ T and τ∗ = inf {t ≥ 0 : Vt ≥ Yt} ∧ T

(with the usual definition inf ∅ = ∞. ) The formulae given in this theorem reflect
the fact that the essence of this option contract is based on the older theory of Dynkin
games or stochastic games; see Friedman (1976) or Dynkin (1969) for example. In
this paper we shall perform calculations showing that for certain familiar choices of
X and Y exact strategiesσ∗ and τ∗ can be obtained giving an explicit expression for
the process V when T = ∞ (perpetual options). The two cases we shall consider
are as follows.
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Israeli δ-penalty put options. In this case, the holder may claim as a normal Amer-
ican put,

Xt = (K − St)+.

The writer on the other hand will be assumed to payout the holders claim plus
a constant,

Yt = (K − St)+ + δ for δ > 0.

Israeli δ-penalty Russian options. The holder may exercise to take a normal Rus-
sian claim,

Xt = e−αt max

{
m, sup

u∈[0,t]
Su

}
for α > 0, m > s

and the writer is punished by an amount e−αtδSt for annulling the contract
early,

Yt = e−αt

(
max

{
m, sup

u∈[0,t]
Su

}
+ δSt

)
for δ > 0.

Our method of analysis is straightforward. Relying on the results for American
put and Russian options (cf., McKean 1965; Shepp and Shiryayev 1995; Graversen
and Peškir 1998; Kyprianou and Pistorius 2000; Avram et al. 2002a) we guess the
form of the optimal stopping strategies using heuristic arguments based on fluctua-
tion theory and then show, using martingale techniques, that the suggested solutions
solve the associated saddle point problem suggested by Kifer’s pricing Theorem.
For both Israeli δ-penalty put and Russian claim structures, when solving the saddle
point problem (V,σ∗, τ∗), it will be the case that {e−rtVt : t ≤ σ∗ ∧ τ∗} is a uni-
formly integrable P-martingale whose terminal value is equal to e−r(σ∗∧τ∗)Zσ∗,τ∗ .
This is sufficient to construct a hedge and hence the value process of the Israeli
option is indeed equal to V . In the following two sections we deal with the Isreali
δ-penalty put and Russian options respectively. We conclude the paper with some
remarks about Canadization and the finite expiry case.

2 Perpetual Israeli δ-penalty puts

For reflection, let us consider the case of the perpetual American put option with
the same parameter K. In this case it is known that the option value is given by the
process {vA (St) : t ≥ 0} where

vA (s) = sup
σ∈T0,∞

Es

(
e−rσ(K − Sσ)+

)

which may otherwise be expressed as

vA (s) =

{
(K − s) s ∈ (0, s∗]

(K − s∗) (s∗/s)2r/σ2

s ∈ (s∗, ∞)
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with

s∗ =
K

(1 + σ2/2r)
.

Further the optimal stopping strategy is σs∗ = inf{t ≥ 0 : St ≤ s∗}.
The logic behind this solution is as follows. The holder is interested in stopping

to claim when S is as small as possible. On the other hand, if (s)he waits too long
for this to happen, then (s)he will be punished through the exponential discounting.
The compromise is to stop at some boundary close to zero. Suppose now that the
holder has not yet exercised, then the remaining time to expiry in this option is still
infinite suggesting the solution is time invariant, that is to say the boundary is a
fixed level.

Now let us turn our attention to the Israeli δ-penalty put. In this case, the holder
is still interested in stopping as close to zero as possible but without waiting too
long. From the writer’s perspective, there is a chance to exercise when the value of
the asset S is small enough to make (K − Sτ )+ = 0 in which case, they are only
left with the burden of a payment of the form δe−rτ . The later this can happen the
better. If the initial value of the risky asset is below K then it would seem rational
to cancel the contract as soon as S hits K. On the other hand, if the initial value of
the risky asset is above K then it would seem rational to wait until the last moment
that St ≥ K in order to prolong the payment. Again, the perpetual nature of the
option suggests a time invariant approach to the writers strategy. The conclusion
would seem to be a hitting problem of the set (0, k∗) ∪ {K} for some choice of
k∗ < K. This will turn out to be the case providing the value of δ is not too large.
Beyond a certain value of δ it would not seem efficient for the writer to exercise at
all. We shall show in this case that the solution is, as one would expect, the same
as the American put.

Theorem 2 Let γ =
(
r/σ2 + 1/2

)
and define

δ∗ = vA (K) =
K

2γ

(
2γ − 1

2γ

)(2γ−1)

.

(i) If δ ≥ δ∗ then the perpetual Israeli δ-penalty put option is nothing more than
an American put option, that is, the writer will never exercise.

(ii) If δ < δ∗ then the perpetual Israeli δ-Put option has value process Vt = IP (St)
where IP (s) is given by

K − s s ∈ (0, k∗]
(K − k∗)

(
s

k∗

)−(γ−1) (s/K)γ−(s/K)−γ

(k∗/K)γ−(k∗/K)−γ

+δ
(

s
K

)−(γ−1) (s/k∗)−γ−(s/k∗)γ

(k∗/K)γ−(k∗/K)−γ

s ∈ (k∗, K)

δ
(

s
K

)−(2γ−1)
s ∈ [K, ∞)

and the optimal stopping strategies for the holder and writer respectively are

σ∗ = inf {t ≥ 0 : St ≤ k∗} and τ∗ = inf {t ≥ 0 : St = K}
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where k∗/K is the solution in (0, 1) to the equation

y2γ + 2γ − 1 = 2γ
(

1 +
δ

K

)
y

Proof (i) Suppose that δ > δ∗. Taking the value function vA (s) recall the well
established facts that

{
e−rtvA (St) : t ≥ 0

}
and

{
e−r(t∧σs∗ )vA (St∧σs∗ ) : t ≥ 0

}

are a supermartingale and martingale respectively where σs∗ = inf{t ≥ 0 : St =
s∗}. Since δ > δ∗ it follows that

(K − s)+ ≤ vA (s) < (K − s)+ + δ (3)

(a sketch may help) and hence

vA (s)

= inf
τ∈T0,∞

Es

(
e−r(τ∧σs∗ )vA (Sτ∧σs∗ )

)

≤ inf
τ∈T0,∞

Es

(
e−r(τ∧σs∗ )

[
(K − Sσs∗ )+ 1(σs∗ ≤τ)+{(K − Sτ )+ +δ}1(σs∗ >τ)

])

≤ sup
σ∈T0,∞

inf
τ∈T0,∞

Es

(
e−r(τ∧σ)

[
(K − Sσ)+ 1(σ≤τ)+{(K − Sτ )+ +δ}1(σ>τ)

])

≤ sup
σ∈T0,∞

Es

(
e−rσ (K − Sσ)+

)

= vA(s).

The first equality follows from the martingale property and Doob’s Optional Stop-
ping Theorem. The first inequality follows from (3) and the third inequality uses the
fact that the infimum can be no greater than the expectation evaluated at τ = ∞.
Note also that the order of the supremum and infimum in the second inequality
above can also be reversed by starting from the right hand side and reasoning in
a similar manner towards the left hand side. It follows with the help of the strong
Markov property that both (1) and (2) can be written as vA(St) and a saddle point
occurs at σ∗ = σs∗ and τ∗ = ∞.

(ii) Let us now suppose then that δ ≤ δ∗. We thus need to conclude that both
(1) and (2) are equal to IP (St) and further this is achieved by stopping at σ∗ ∧ τ∗

with σ∗ and τ∗ as defined in the statement of the Theorem. To this end, define for
general k ≤ K

v(s) = Es

(
e−r(σk∧τK)Zσk,τK

)

where
σk = inf{t ≥ 0 : St ≤ k} and τK = inf{t ≥ 0 : St = K}.

We can write

v(s) =






K − s s ∈ (0, k]
(K − k)Es

(
e−rσk1(σk≤τK)

)
+ Es

(
δe−rτK1(σk>τK)

)
s ∈ (k, K)

δEs (e−rτK ) s ∈ [K, ∞)
.
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The expectations in the previous expression are the classic objects of study from the
two sided exit problem of Brownian motion; see for example Borodin and Salminen
(1996) or Karatzas and Shreve (1988). Filling in we have v(s) is equal to

K − s s∈(0,k]

(K − k)
(

s
k

)−(γ−1) (s/K)γ−(s/K)−γ

(k/K)γ−(k/K)−γ + δ
(

s
K

)−(γ−1) (s/k)−γ−(s/k)γ

(k/K)γ−(k/K)−γ s∈(k,K)

δ
(

s
K

)−(2γ−1)
s∈[K,∞)

where γ = (r/σ2 + 1/2). Note that there is continuity at s = k and s = K.
The remainder of the proof will centre around martingale properties associated

with the function v which we shall now discuss. It is immediate from the two sided
exit problem that when s ∈ (k, K)

{
e−r(t∧τK∧σk)v (St∧τK∧σk) : t ≥ 0

}

is a Ps-martingale, alternatively that (L − r) v (s) = 0 on (k, K) where L is the
infinitesimal generator of the process (S, P). Similarly, from the one sided exit
problem, it follows that when s ≥ K

{
e−r(t∧τK)v (St∧τK ) : t ≥ 0

}

is a Ps-martingale from which it follows that (L − r) v (s) = 0 on (K, ∞).
Finally we can add to these variational equalities that by a trivial computation
(L − r) v (s) ≤ 0 on (0, k).

For s < K we want to deduce that
{
e−r(t∧τK)v (St∧τK ) : t ≥ 0

}
is a Ps-

supermartingale by applying the Itô formula. The minimum requirement of smooth-
ness on v we can allow without involving local time in the computation is that k is
chosen to be a special value k∗ such that v′(k∗) = −1. That is, there is continuity
in v′ at k∗. A rather tedious calculation reveals that this condition on k∗ amounts
to finding a solution in (0, K) to the equation

(
k∗

K

)2γ

+ 2γ − 1 = 2γ
(

1 +
δ

K

) (
k∗

K

)
. (4)

Note that if δ = δ∗ then the solution is easily seen on inspection to be k∗ = s∗ =
K (2γ − 1) /2γ. Further, as δ decreases the solution k∗ increases until δ = 0 where
the solution becomes k∗ = K. It can be further checked that with k = k∗, it is also
true that v is a convex function on (0, ∞) such that

(K − s)+ ≤ v (s) ≤ (K − s)+ + δ. (5)

Since now v(s) ∈ C1 (0, K) ∪ C2 [(0, K)\{k∗}] and (L − r) v (s) ≤ 0 on
(0, K)\{k∗} we can apply the Itô formula to the process

{
e−r(t∧τK)v (St∧τK ) : t ≥ 0

}

and deduce that it is a Ps-supermartingale.
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It also follows from Itô’s rule for convex functions that on t ≤ σk∗

d
[
e−rtv (St)

]
=e−rt (L − r) v (St) dt

+e−rt
(
v′ (K+)

− v′ (K−))
LK

t + dMt

where LK is the local time at K of S, v′(K+) and v′(K−) are the right and
left first derivatives of v at K and Mt is a pure martingale term (cf. Karatzas and
Shreve Problem 3.6.24). Since v′ (K+)− v′ (K−) ≥ 0 (because of convexity) and
(L − r) v (s) = 0 on (k∗, ∞)\{K} it follows that

{
e−r(t∧σk∗ )v (St∧σk∗ ) : t ≥ 0

}

is a Ps-submartingale.
With all the previous observations concerning martingales we now have

v (s)

≤ inf
τ∈T0,∞

Es

(
e−r(τ∧σk∗ )v (Sτ∧σk∗ )

)

≤ inf
τ∈T0,∞

Es

(
e−r(τ∧σs∗ )

[
(K − Sσk∗ )+ 1(σk∗ <τ)+{(K − Sτ )+ +δ}1(τ≤σk∗ )

])

≤ sup
σ∈T0,∞

inf
τ∈T0,∞

Es

(
e−r(τ∧σ)

[
(K − Sσ)+ 1(σ<τ)+{(K − Sτ )+ +δ}1(τ≤σ)

])

≤ sup
σ∈T0,∞

Es

(
e−r(τK∧σ)

[
(K − Sσ)+ 1(σ<τK) + {(K − SτK )+ +δ}1(τK≤σ)

])

≤ sup
σ∈T0,∞

Es

(
e−r(τK∧σ)v (SτK∧σ)

)

≤ v (s) .

We have used the submartingale property in the first inequality and (5) in the
second. For the fourth inequality we have used the fact that the infimum of the
expectation over τ is no greater that the expectation evaluated at τK . The fifth
inequality uses (5) again and the sixth uses the supermartingale property. Again the
order of the supremum and infimum can be exchanged by starting from the right
hand side and working the inequalities in reverse. Again with the help of the strong
Markov Property we have thus established the saddle point in (1) and (2), hence
Vt = IP (St) = v(St) with k = k∗ given by (4). )*

Remark 3 There is an intuitive way to see the results that have appeared in Theo-
rem 2. Consider in the same diagram the graph of (K−s)+, vA (s) and (K−s)++δ.
Given that the writer now has the possibility of removing the rights of the holder,
one should expect to see that IP (s) is bounded above by the smaller of vA (s) and
(K − s)+ + δ. On the other hand, it is also clear that if the writer is to exercise
at all, then they should do it when s ≥ K. With this in mind, when δ ≥ δ∗ a
possibility that would make sense is that the writer never exercises and hence the
option is nothing more than an American put as the graph of vA(s) fits between
those of (K − s)+ and (K − s)+ + δ. When δ < δ∗ and the graphs of vA (s) and
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(K − s)+ + δ cross over one another, things change. The shape of IP (s) could be
imagined to be the result of the following deformation of vA(s). Slowly decrease
δ from a large value, so that the curve (K − s)+ + δ pushes down on vA (s) at the
contact point s = K reshaping it. A non-smooth ‘angle’ will form at s = K and
the smooth join to the line (K − s) will also be dragged towards K.

3 Perpetual Israeli δ-penalty Russian

We begin again by considering the older relative of this option, the perpetual Russian
option; a full account of which may be found in the articles of its inventors, Shepp
and Shiryayev (1993, 1995). Recall the Russian option has value given by

ess-supσ∈Tt,∞Es

(
e−r(σ−t)e−ασ max

{
m, Sσ

}∣∣∣ Ft

)

where St = supu∈[0,t] Su and m > s > 0. By using a second change of measure
(over and above moving to the risk neutral measure)

dP̃s

dPs

∣∣∣∣∣
Ft

=
e−rtSt

s

and defining P̃m/s (·) = P̃s

(
·|S0 = m

)
, Shepp and Shiryayev (1995) have shown

using this change of measure (with the help of the Markov Property) that the value
of the option can be more neatly written as

{
e−αtStv

R (Ψt) : t ≥ 0
}

where Ψ = {Ψt = St/St : t ≥ 0} and

vR (ψ) = sup
σ∈T0,∞

Ẽψ

(
e−ασΨσ

)
.

Further, with γ =
(
r/σ2 + 1/2

)
as before and η :=

√
2α/σ2 + γ2, vR (ψ) can

be written as
{

(ψ∗/2η)
[
(γ + η − 1) (ψ/ψ∗)

γ−η + (1 − γ + η) (ψ/ψ∗)
γ+η

]
ψ ∈ [1,ψ∗]

ψ ψ ∈ (ψ∗, ∞)
,

where

ψ∗ =
(
γ + η

η − γ
· η − γ + 1
γ + η − 1

)1/2η

.

Finally, the optimal stopping strategy is given by σψ∗ = inf{t ≥ 0 : Ψt ≥ ψ∗}.
The logic behind this result whenα > 0 is as follows. The holder is interested in

the supremum of the value of the risky asset reaching a high level. However waiting
too long for this to happen will again will count against the holder because of the
exponential weighting in the payout. If S experiences an excursion from S which
is large, then the holder will wait a long time for the supremum to increase before
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the excursion is completed and thus will be penalized. Taking time invariance into
account the holder of the Russian option thus behaves optimally by exercising once
S gets too far from the previous maximum.

Let us assume temporarily that α = 0. When moving to the perpetual Israeli
δ-penalty Russian option, it would seem that the holder’s intentions should not
change if they are to act reasonably. On the other hand, the writer would like to
protect themselves against large values of S. To do this it would seem logical to
exercise once the value of S gets too high. Indeed with in an initial value of S being
m, prudence would suggest it is better to call the contract off once the value of the
risky asset hits m. In both cases, the perpetual nature of the option preserves the
time invariance of their stopping strategies. With the obvious restriction that δ is
not too large we shall show that this is indeed the case. When δ takes large values,
it would again not seem rational for the writer to exercise at all, in which case we
have returned to the case of the Russian option.

Theorem 4 Define

δ∗ = vR (1) − 1 =
(η + γ − 1)ψη−γ+1

∗ + (1 + η − γ)ψ−γ−η+1
∗ − 2η

2η
.

(i) Let δ ≥ δ∗ and α > 0 then the perpetual Israeli δ-penalty Russian option is
nothing more than the perpetual Russian option. That is, the writer’s strategy
will be to never exercise.

(ii) Let δ < δ∗ and α ≥ 0. Define k∗ as the solution in [1, ∞) to

(γ + η − 1) yη−γ+1 + (η − γ + 1)y−(η+γ−1) = 2η(1 + δ).

If
2ηk−γ+1

∗ − (1 + δ)
[
(η − γ)kη

∗ + (η + γ)k−η
∗

]
≥ 0 (6)

then Vt = e−αtStIR (Ψt) where

IR(ψ) =

{
k∗

(
ψ
k∗

)γ
ψη−ψ−η

kη
∗−k−η

∗
+ (1 + δ)ψγ (ψ/k∗)−η−(ψ/k∗)η

kη
∗−k−η

∗
1 ≤ ψ < k∗

ψ ψ ≥ k∗.

Further the optimal stopping strategies for the holder and writer respectively
are

σ∗ = inf {t ≥ 0 : Ψt ≥ k∗} and τ∗ = inf {t ≥ 0 : Ψt = 1} .

Remark 5 Like the proof of the Israeli δ-penalty put option, the method of proof
in the second part of the above theorem is to show that {e−αtIR(Ψt) : t ≥ 0} is a
martingale, supermartingale and submartingale when stopped at σ∗ ∧τ∗, τ∗ and σ∗

respectively. The strange technical condition (6) guarantees that the submartingale
status can be affirmed. Curiously its presence is strictly necessary as it is possible
to make choices of α,σ, r such that the inequality is violated. It is little work to
verify that this condition holds when for example α = 0. This is quite a natural
situation as to some extent the parameter α is a superfluous distraction here. In
principle, its presence is merely for the purpose of guaranteeing that the optimal
stopping problem associated with the Russian option has a solution (cf., Shepp and
Shiryayev 1995).
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Proof of Theorem 4 First note that the expressions (1) and (2) can be simplified in
a similar way to the Russian option. Indeed we can use the measure P̃m/s together
with the Markov property to deduce that they are given by

e−αtSt × inf
τ∈T0,∞

sup
σ∈T0,∞

Ẽψ

(
e−ασΨσ1(τ≥σ) + e−ατ (Ψτ + δ)1(τ<σ)

)

and

e−αtSt × sup
σ∈T0,∞

inf
τ∈T0,∞

Ẽψ

(
e−ασΨσ1(τ≥σ) + e−ατ (Ψτ + δ)1(τ<σ)

)

respectively.
(i) Suppose now that δ ≥ δ∗ and α > 0. Note that when this happens, we have

that
ψ ≤ vR (ψ) < δ + ψ (7)

(a quick sketch may help). Recall from well established facts concerning the Russian
option

{
e−α(t∧σψ∗ )vR

(
Ψt∧σψ∗

)
: t ≥ 0

}
and

{
e−αtvR (Ψt) : t ≥ 0

}

are a P̃m/s-martingale and a P̃m/s-supermartingale respectively. With these two
pieces of information we can deduce that vR (ψ) is a saddle point value as follows:

vR (ψ) ≥ sup
σ∈T0,∞

Ẽψ

(
e−ασvR (Ψσ)

)

≥ sup
σ∈T0,∞

Ẽψ

(
e−ασΨσ

)

≥ inf
τ∈T0,∞

sup
σ∈T0,∞

Ẽψ

(
e−ασΨσ1(σ≤τ) + e−ατ (Ψτ + δ)1(σ>τ)

)

≥ inf
τ∈T0,∞

Ẽψ

(
e−ασψ∗Ψσψ∗

1(σψ∗ ≤τ) + e−ατ (Ψτ + δ)1(σψ∗ >τ)
)

≥ inf
τ∈T0,∞

Ẽψ

(
e−α(σψ∗ ∧τ)vR

(
Ψσψ∗ ∧τ

))

= vR (ψ) .

The first inequality follows by the supermartingale property associated with vR,
the second by (7). The third inequality is a lower bound on the second which one
can consider to have the same form of expectation as in the third inequality except
with τ = ∞. Note that under P̃ψ the state 1 is positive recurrent for the process
Ψ (the drift of the underlying Brownian motion has become γσ > 0) and hence
from arguments similar to those given in Chapt. VII.2 of Bertoin (1996) one can
deduce that in the Poisson point process of excursions (indexed by local time at
the maximum) of σ−1 logΨt there is an almost surely finite number of excursions
whose maximum height, ht, exceed c+ξt at local time t where c, ξ > 0 are arbitrary
constants. It follows that when α > 0,

lim sup
t↑∞

e−αtΨt ≤ lim sup
t↑∞

e−αL−1
Lt eσhLt = lim sup

u↑∞
e−αL−1

u eσhu = 0
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P̃ψ-almost surely where L is the local time of Ψ at 1 (recall that the inverse local
time L−1 is a subordinator hence it grows asymptotically no slower than linearly).
The fifth inequality again uses (7) together with the definition of σψ∗ and the final
equality is a consequence of the martingale property associated with vR. Reversing
the arguments we can reverse the order of the infimum and supremum and we find
that e−αtStvR(Ψt) is the required value of the saddle point problem.

(ii) Let us assume that δ < δ∗ and α ≥ 0 then we want to show that e−αt St IR

(Ψt) solves the saddle point problem given by (1) and (2). To this end let us define
for k > 1

τ1 = inf{t ≥ 0 : Ψt = 1} and σk = inf{t ≥ 0 : Ψt ≥ k}

and for 1 ≤ ψ < ∞ the function

v(ψ) = Ẽψ

(
e−ασkΨσk1(τ1>σk) + e−ατ1 (Ψτ1 + δ)1(τ1<σk)

)

=
{

Ẽψ

(
ke−ασk1(τ1>σk) + e−ατ1 (1 + δ)1(τ1<σk)

)
1 ≤ ψ < k

ψ ψ ≥ k
.

Note that by construction (that is to say by virtue of the fact that v is the linear sum of
solutions to a two sided exit problem forΨ ) we have that

(
L̃ − α

)
v (ψ) = 0 forψ ∈

(1, k) and
(
L̃ − α

)
v (ψ) ≤ 0 forψ ∈ (k,∞)where L̃ is the infinitesimal generator

of
(
Ψ, P̃

)
. [To see this recall that e−t∧τ1∧σkv(Ψt∧τ1∧σk) is a P̃ψ-martingale and

apply the Itô formula]. We will show that for an appropriate choice of k, v(ψ) =
IR (ψ) . The expectations in the right hand side of the above equation can be
evaluated using again fluctuation theory. Note that

σ−1 log
(
St/St

)
=

(
βt − βt

)
(8)

where under P̃m/s, β is a Brownian motion with drift σγ where γ was defined in
the previous section as

(
r/σ2 + 1/2

)
. Using this information, we can use the usual

two sided exit problem for Brownian motion to deduce that in fact

v(ψ) =

{
k

(
ψ
k

)γ
ψη−ψ−η

kη−k−η + (1 + δ)ψγ (ψ/k)−η−(ψ/k)η

kη−k−η 1 ≤ ψ < k

ψ ψ ≥ k
.

Note that v(ψ) is continuous at k and v(1) = 1 + δ. We would again like to apply
Itô’s formula to v(Ψt∧τ1) in which case we will need at least continuity in v′ at k in
order to avoid involving local time. Again a series of tedious calculations reveals
that by requiring that k = k∗ where k∗ is the solution to

(γ + η − 1) kη−γ+1
∗ + (η − γ + 1)k−(η+γ−1)

∗ = 2η(1 + δ), (9)

then v′(k∗) = 1 in which case v is a convex function on (1, ∞) satisfying v′(1) ≥ 0
when condition (6) holds and further

ψ ≤ v (ψ) ≤ ψ + δ. (10)
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Note that when δ = δ∗ the solution to (9) is k∗ = ψ∗ and as δ decreases then so
does the value of k∗ until finally at δ = 0, k∗ = 1.

With all the afore mentioned properties of v(ψ) in mind for the choice k = k∗,
applications of Itô’s formula thus yield that

{
e−α(t∧τ1∧σk∗ )v

(
Ψt∧τ1∧σk∗

)
: t ≥ 0

}
and

{
e−α(t∧τ1)v (Ψt∧τ1) : t ≥ 0

}

are a P̃ψ-martingale and a P̃ψ-supermartingale respectively. Further, Itô calcu-
lus (for semi-martingales) reveals that on t ≤ σk∗ , the non-martingale part of
d [e−αtv (Ψt)] takes the form

e−αt
(
L̃ − α

)
v (Ψt) dt + e−αtS−1

t v′ (Ψt) dSt = e−αtS−1
t v′ (Ψt) dSt

(cf., Shepp and Shiryayev 1995). SinceSt only increases whenΨt = 1 it follows that
we could replace v′ (Ψt) by v′ (1) ≥ 0 in the above calculation. The consequence
of this is that {

e−α(t∧σk∗ )v
(
Ψt∧σk∗

)
: t ≥ 0

}

is a P̃ψ-submartingale. The proof of the theorem is now completed in a familiar way,
making use of martingale properties, the inequalities in (10) and Doob’s Optional
Stopping Theorem. That is

v(ψ) ≥ sup
σ∈T0,∞

Ẽψ

(
e−α(τ1∧σ)v (Ψτ1∧σ)

)

≥ sup
σ∈T0,∞

Ẽψ

(
e−ασΨσ1(τ1>σ) + e−ατ1 (Ψτ1 + δ)1(τ1<σ)

)

≥ inf
τ∈T0,∞

sup
σ∈T0,∞

Ẽψ

(
e−ασΨσ1(τ>σ) + e−ατ (Ψτ + δ)1(τ<σ)

)

≥ inf
τ∈T0,∞

Ẽψ

(
e−ασk∗Ψσk∗

1(τ>σ) + e−ατ (Ψτ + δ)1(τ<σk∗ )
)

≥ inf
τ∈T0,∞

Ẽψ

(
e−ασk∗Ψσk∗

1(τ>σ) + e−ατ (Ψτ + δ)1(τ<σk∗ )
)

≥ inf
τ∈T0,∞

Ẽψ

(
e−α(τ∧σk∗ )v

(
Ψτ∧σk∗

))

≥ v(ψ)

and a similar sequence of inequalities going the other way which establishes the
required saddle point. )*

4 Conclusion

Israeli options generalize the concept of American options in that they give the
writer the opportunity to cancel the contract. Seeing this as lesser rights from the
point of view of the holder, a given Israeli option should be no more expensive than
an associated American option. Based on this fact, Kifer (2000) has argued that
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they serve as an interesting derivative in the financial markets and offers a generic
pricing formula.

We have shown here that for two familiar claim structures, the put and Russian,
within a perpetual context, Kifer’s pricing formula reduces to explicit expressions
and the optimal stopping times of the holder and writer reduce to intuitively ap-
pealing strategies. Further, both cases are essentially barrier options in disguise.

One can also consider the solution to these problems in the context of a free
boundary problem. For example, the Israeli δ-penalty put is the unique solution to

(L − r) IP (s) = 0 on (k∗, K) ∪ (K, ∞)
IP (s) = (K − s) on (0, k∗)

dIP (k∗)/ds = −1
IP (K) = δ ∧ vA(K)

lim
s↑∞

IP (s) = 0

where k∗ is to be determined. Following the terminology of Carr (1988), Canadizing
an Israeli option would mean replacing a finite expiry date T by an independent
exponential random variable with some rate λ > 0. If one were to proceed with
the Canadized version of the Israeli δ-penalty put, then taking a free boundary
perspective, one could solve the following problem for the value function ICP (s)

(L − r − λ) v(s) = −λ(K − s)+ on (c∗, K) ∪ (K, ∞)
v(s) = (K − s) on (0, c∗)

dv(c∗)/ds = −1
v(K) = δ ∧ vCA(K)

lim
s↑∞

v (s) = 0

where vCA(K) is the value of the Canadized American put and c∗ is to be deter-
mined. Alternatively one could address the problem using fluctuation theory and
martingales by assuming the solution takes the form

Es

(
e−(r+λ)(τK∧σc∗ )

[
(K − Sσc∗ ∧τK )+ + δ1(σc∗ >τK)

])

+λEs

(∫ τK∧σc∗

0
e−(r+λ)u (K − Su)+ du

)

(which can be written out explicitly as a function of s using standard excursion
theory for the first term and the resolvent of Brownian motion for the second term).
Similar remarks can be made for Candized Israeli δ-penalty Russian options.

If one were to consider the two examples we have dealt with in this paper but for
finite expiry, the optimal stopping times for writer and holder are time dependent
and yet more difficult to characterize than for American put and Russian options.
However in forthcoming work we hope to offer a characterization of such finite
expiry Israeli options.

On a final note, it is worth remarking that given the exact analytical expressions
obtained in Avram et al. (2002a,b), one may consider re-employing the methods
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presented here to deal with the same options under spectrally negative and phase-
type models. However in these cases, the possibility of jumping over boundaries
(or even two boundaries) may present some interesting consequences.
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