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Abstract. We study stationary solutions u(x) and their stability of the fourth
order Swift-Hohenberg equation on a bounded domain (0, L) with boundary con-
ditions u = 0 and u′′ = 0 at x = 0 and x = L. It is well known that as L increases
the set of stationary solutions becomes increasingly complex. Numerical studies
have have exhibited two interesting types of structures in the bifurcation diagram
for (L, u). In this paper we demonstrate through a center manifold analysis how
these structures arise naturally near certain bifurcation points, and that there are
no others. We also analyze their stability properties.

1. Introduction

In this paper we consider solutions of the Swift-Hohenberg equation

(1.1)
∂u

∂t
= α u−

(
1 +

∂2

∂x2

)2

u− u3, α ∈ R,

on the cylindrical domain Q = (0, L)×R+ subject to the boundary conditions

(1.2) u = 0 and
∂2u

∂x2
= 0 at x = 0, L.

It is well known (see [1], [3], and Chapter 9 in the monograph [19]) that equation
(1.1) has an increasing number of stationary solutions which satisfy the boundary
conditions (1.2) as the length L of the domain increases. The objective of this paper
is to study the set of stationary solutions as it depends on α and L. In particular, we
focus on understanding certain complex but recurrent structures in the bifurcation
diagram which were first observed in numerical studies

In studies of pattern formation, the Swift-Hohenberg equation plays a central role.
Proposed in 1977 by Swift & Hohenberg [21] in connection with Rayleigh-Bénard
convection, it has since featured in a variety of problems, such as Taylor-Couette
flow [14], [16], and in the study of lasers [15]. For further references we mention the
surveys given in [8] and [9] and the recent review [2].

We view the Swift-Hohenberg equation as a model equation for a large class of
higher order parabolic model equations arising in a wide range of applications, such
as the Extended Fisher-Kolmogorov equation in statistical mechanics [10], [22], and
a sixth order equation introduced by Caginalp and Fife in phase field models [4],
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[11]. Many of the phenomena observed here for the Swift-Hohenberg equation are
found in the dynamics of such equations as well [3], [5], [6], [7] and [19].

The Swift-Hohenberg equation is interesting from the point of view of pattern
formation, because of its many qualitatively different stable equilibrium solutions.
This begs the question, which of these equilibrium solutions will be selected as time
tends to infinity, and how this selection depends on the parameters α and L involved
in the problem.

We study the Cauchy-Dirichlet problem for the Swift-Hohenberg equation on the
cylinder Q = (0, L) ×R+ with boundary conditions (1.2). Thus, writing equation
(1.1) in a more conventional form, we consider the problem

(1.3)


ut = −uxxxx − 2uxx − (1− α)u− f(u) for 0 < x < L, t > 0,

u = 0 and uxx = 0 at x = 0, L, t > 0,

u(x, 0) = u0(x) for 0 < x < L,

where we consider nonlinearities f(u) which are either stabilizing or de-stabilizing.
We shall assume that f is a smooth function, and that f(s) = o(s) as s → 0. As
typical examples of such functions we choose

(1.4) f(s) = s3 (stabilizing) or f(s) = −s3 + s5 (de-stabilizing).

The boundary conditions have been chosen so that solutions can be extended as
periodic functions on R. The initial function u0 is a smooth function that vanishes
at x = 0 and x = L. In most of this article we will assume that u0 is symmetric
with respect to the center of the domain, i.e.

(1.5) u0(L− x) = u0(x) for 0 < x < L.

Note that this assumption implies that the solution remains symmetric for all t. It
is motivated by the fact that it increases the set of lengths L for which the trivial
solution is globally stable [17],[18].

Problem (1.3) is a Gradient System with corresponding Lyapunov functional

(1.6) J(u; L) =
1

L

∫ L

0

{1

2
(u′′)2 − (u′)2 +

1− α

2
u2 + F (u)

}
dx,

where F ′(s) = f(s) and F (0) = 0. This means (cf. [13]) that if the stationary
solutions of Problem (1.3) are isolated, then u(x, t) tends to one of these solutions
as t →∞. i.e., for every x ∈ (0, L):

(1.7) u(x, t) → v(x) as t →∞,

where v(x) is a solution of the two-point boundary value problem

(1.8)

{
viv + 2v′′ + (1− α)v + f(v) = 0 for 0 < x < L,

v = 0 and v′′ = 0 at x = 0, L.

For the stabilizing case it is known that if α ≤ 0, then Problem (1.3) has the trivial
solution only (cf. Chapter 9 of [19]), and hence, for every x ∈ (0, L),

u(x, t) → 0 as t →∞.
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Figure 1. Global bifurcation diagram when α = 0.65

For both cases the situation is much more complex when α > 0 and, depending
on the value of α and L, there may be very many stationary profiles to choose from.
In this article we make a start with answering the question, which of these profiles
is chosen.

In [17], [18] a series of numerical simulations was carried out on the Swift-
Hohenberg equation in order to gain insight into the different types of limiting
behaviors and the effect of the parameters α and L on the final profile that is se-
lected. One of the striking observations was that for values of α smaller than, say,
1
4

critical lengths L1 and L2 could be identified such that the solution converged
to one type of limit for L1 < L < L2, and to another when 3L1 < L < 3L2, pro-
vided the intervals [L1, L2], [3L1, 3L2] and [5L1, 5L2] are disjunct. In between, for
L ∈ [L2, 3L1] and for L ∈ [3L2, 5L1] the trivial solution proved globally stable.

When the above intervals overlap, the simulations were not very revealing. This
motivated us to carry out a numerical study of solution branches of the stationary
problem (1.8). In Figure 1 we present a result of such a study for α = 0.65. It
reveals interesting qualitatively new structures in the intersections of the intervals,
which are quite robust under changes of α. We see that loop-type branches bifurcate
from the trivial solution at L = nL1 and L = nL2, n = 1, 3, 5, . . . . But in addition
we see
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Figure 2. Detail of bifurcation diagrams when [L1, L2] and [3L1, 3L2]
overlap (left) and when [3L1, 3L2] and [5L1, 5L2] overlap (right).

(A) Comparable – nontrivial – structures in the intersection of the intervals [L1, L2]
and [3L1, 3L2], and in the intersection of the intervals [3L1, 3L2] and [9L1, 9L2].

(B) Pairs of branches which connect the loop-type branch bifurcating from 5L1 to
the one from 3L1 and to the one from 7L1.

In this paper we analyze these structures by means of a center manifold analysis
carried out when, for instance, 3L1 ≈ L2 and the intervals [L1, L2] and [3L1, 3L2]
slightly overlap.

We shall show that when nL1 ≈ mL2 and the intervals (mL1, mL2) and (nL1, nL2)
slightly ovelap for certain odd integers m and n, then two types of structures may
be distinguished:

(i) When n = 3m we obtain the structure shown in Figure 2 (left), and

(ii) When n 6= 3m we obtain the structure shown in Figure 2 (right)

and these are the only two possible structures. In addition, only if m = 1 and n = 3
is the dimension of the unstable manifold Xu equal to zero. In all other cases it is
positive.

The plan of the paper is the following. First, in Section 2, we recall some results
about the stability properties of the linearized Swift-Hohenberg equation. Then, in
Section 3 we discuss stationary solutions in the limit as α → 0. In Section 4, we
turn to the first characteristic solution set when 3L1 ≈ L2 and in Section 5, we
generalize the analysis to the situation when nL1 ≈ mL2. In Section 6 we compute
the Lyapunov functions for the solutions found in Sections 4 and 5, and inspect,
which of the solutions is the global minimizer, given a value of L. Finally, in Section
7, we apply the techniques used in the previous sections to the Swift-Hohenberg
equation with the de-stabilizing quintic nonlinearity: f(s) = −s3 + s5.
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2. The linearized Swift-Hohenberg equation

In this section we recall some properties of the linear problem associated with
Problem (1.3):

(2.1)


ut = −uxxxx − 2uxx − (1− α)u for 0 < x < L, t > 0

u = 0 and uxx = 0 at x = 0, L, t > 0

u(x, 0) = u0(x) for 0 < x < L

The stability of the zero solution to (2.1) is determined by examining the Ansatz
u(x, t) = ϕ(x)e−λt. This leads to the eigenvalue problem

(2.2)

{
ϕ(iv) + 2ϕ′′ + (1− α)ϕ = λϕ for 0 < x < L,

ϕ = 0 and ϕ′′ = 0 at x = 0, L.

The eigenvalues λn and the eigenfunctions ϕn are given by

(2.3) λn = λn(L) = P
(nπ

L

)
and ϕn(x) =

√
2 sin

(nπx

L

)
,

where P (ξ) is the symbol of the operator on the left hand side of (2.2):

P (ξ) = (ξ2 − 1)2 − α.

and the eigenfunctions have been normalized that

(ϕm, ϕn)
def
=

1

L

∫ L

0

ϕm(x)ϕn(x) dx = 1 if m = n.

What is interesting about this equation is that given α ∈ (0, 1) is small enough,
there are domain lengths for which the zero solution is stable and others for which
it is not. Let α ∈ (0, 1). Then P (ξ) has two zeros ξ± (0 < ξ− < ξ+), so that P < 0
on (ξ−, ξ+) and P > 0 on (0.ξ−) ∪ (ξ+,∞). This implies that

λn(L) < 0 when L ∈ (nL1, nL2)

where L1 = π/ξ+ and L2 = π/ξ−, i.e.,

L1 =
π√

1 +
√

α
and L2 =

π√
1−

√
α

.

This phenomenon is exhibited in Figure 3. Here we have solved the Cauchy-
Dirichlet Problem (1.3) numerically for α = 1/4 and α = 5/8, and randomly chosen
initial data. The L2-norm of the limiting solution v(x) is plotted against the domain
length clearly showing regions when the zero solution is or is not stable. Details of
the numerical simulations are discussed in Appendix B.

In order the analyze the solution branches on the (L, u)-plane, we vary α so that
two critical domain lengths coalesce:

Case I: L2 − L1 ↘ 0 and Case II: L2 − 3L1 ↘ 0.

The first case arises when α → 0. Here we will formally construct the solutions in
this limit to describe the branch of solutions connecting L1 and L2 as depicted in
Figure 3.
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Figure 3. L2−norms of stable solutions as a function of L. In the
left figure α = 1/4 while in the right α = 5/8. Notice that as α
increases further, the two solution branches come together at the base
line. They meet when α = α∗

1 = 16/25.

The second case arises when

α ↘ α∗
1

def
=

16

25
and L∗

1 = 3L1(α
∗
1) = L2(α

∗
1) = π

√
5.

In [17], [18] the local shape near L = L1 and L = L2 of this diagram was determined.
Specifically, the following results were established:

Theorem 2.1. Let α > 0. There exists a unique branch in the (L, u)−plane of
nontrivial solutions of Problem (1.3) which emanates from the trivial solution at L1.
Its local behavior is given by

‖u‖2 ∼ 8

3π

√
α(1 +

√
α)3/2(L− L1) as L ↘ L1.

Theorem 2.2. Let 0 < α < 1. There exists a unique branch in the (L, u)−plane
of nontrivial solutions of Problem (1.3) which emanates from the trivial solution at
L2. Its local behavior is given by

‖u‖2 ∼ 8

3π

√
α(1−

√
α)3/2(L2 − L) as L ↗ L2.

Here ‖u‖2 = (1/L)
∫ L

0
u2(x) dx.

It is our present interest to understand the full time-dependent problem near those
values of α and L where these bifurcation points approximately coalesce.

We have the following center manifold theorem:
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Theorem 2.3. Suppose that α = α∗
1 and so 3L1 = L2. Then if L = 3L1,

(a) Problem (1.3) has a two-dimensional center manifold Xc about the trivial solu-
tion which is spanned by ϕ1 and ϕ3.

(b) The dimension of the unstable manifold Xu is zero.

Proof. If we extend Problem (1.3) to include αt = 0, and linearize about u(x, t) = 0
and α = α∗

1, we obtain the system

(2.4)


ut = −uxxxx − 2uxx − (1− α)u for 0 < x < L, t > 0

u = 0 and uxx = 0 at x = 0, L, t > 0

αt = 0 for t > 0.

The eigenfunctions and eigenvalues of Problem (2.4) are given by (2.3). Since α has
been chosen such that 3L1 = L2, and L = 3L1, it follows that

λ1(L) = 0 and λ3(L) = 0.

A simple calculation shows that

λn =

((
n√
5

)2

− 1

)2

− 16

25
=

n2

5

(
n2

25
− 2

)
+

9

25
> 0 for n = 5, 7, . . . .

so that all the eigenvalues, starting from λ5, are positive. Therefore, (i) there exists
a two-dimensional center manifold for this value α = α∗

1 which is spanned by ϕ1 and
ϕ3, and (ii) the unstable manifold has dimension zero.

By smoothness this manifold persists for small changes in α and L [20]. �

3. Stationary solutions in the limit as α → 0+

In this section we construct asymptotic expressions for nontrivial stationary so-
lutions of Problem (1.3) in the limit as α → 0+ when the nonlinearity is cubic, i.e.
when it is given by f(s) = s3. Thus, we seek to describe nontrivial solutions of the
problem

(3.1)

{
viv + 2v′′ + (1− α)v + v3 = 0 for 0 < x < L,

v = 0 and v′′ = 0 at x = 0, L.

We choose L ∈ (nL1, nL2), where n is an arbitrary positive integer, so that a
nontrivial solution is known to exist, and we choose α so small that the intervals
[nL1, nL2] and [(n + 2)L1, (n + 2)L2] are disjoint. This is the case when α < α∗

n,
where

α∗
n =

4(n + 1)2

(n2 + 2n + 2)2
.

It will be convenient to rescale the spatial variable so that the domain (0, L) maps
onto the fixed domain (0, 1). Thus, we put

y = Lx and w(y) = v(x).
7



We then find that Problem (3.1) becomes

(3.2)

{
wiv + 2L2w′′ + L4

(
(1− α)w + w3

)
= 0, for 0 < x < 1

v = 0, v′′ = 0 at x = 0, 1.

We are interested in the situation that α → 0+. The existence of branches bifur-
cating from L1 and L2 is established in Theorems 2.1 and 2.2. These local results
show that as L → L+

1 and L → L−
2 the solution scales like

√
α. We therefore seek

an expansion of w(y) in a series of the form

(3.3) w(y) ∼ α1/2w1(y) + αw2(y) + α3/2w3(y) + α2w4(y) + . . .

We introduce a scaling factor δ ∈ [0, 1] and write

L = nπL1 + nπδ(L2 − L1) = nπ{L1 + δLgap}, 0 ≤ δ ≤ 1

and expand L in the limit as α → 0+. A simple computation shows that

L1(α) =
π√

1 +
√

α
= π

(
1− 1

2
α1/2 +

3

8
α− 5

16
α3/2 + . . .

)
and

L2(α) =
π√

1−
√

α
= π

(
1 +

1

2
α1/2 +

3

8
α +

5

16
α3/2 + . . .

)
,

so that

Lgap(α)
def
= L2(α)− L1(α) ∼ π

(
α1/2 +

5

8
α3/2 + . . .

)
as α → 0+.

Therefore as α → 0+ we have

(3.4) L(α) = nπ

{
1 +

1

2
(2δ − 1)α1/2 +

3

8
α +

5

16
(2δ − 1)α3/2 + . . .

}
.

We now expand (3.2), using (3.3) and (3.4), in terms of powers of α1/2 and equate
the coefficients of α1/2, α, α3/2 and α2 equal to zero. We then obtain the equations

O(α1/2) : L1w1 = 0,

O(α) : L1w2 + L2w1 = 0,

O(α3/2) : L1w3 + L2w2 + L3(w1) + n4π4w3
1 = 0,

O(α2) : L1w4 + L2w3 + L3w2 + L4w1 + n4π4{3w2
1w2 + 2(2δ − 1)w3

1} = 0,

where

L1z
def
= ziv + 2n2π2z′′ + n4π4z,

L2z
def
= 2n2π2(2δ − 1)(z′′ + n2π2z),

L3z
def
= 2n2π2{1− δ(1− δ)}z′′ + n4π4{2− 6δ(1− δ)}z,

L4z
def
= 2n2π2(2δ − 1)

(
z′′ + n2π2{2− δ(1− δ)}z

)
.
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The functions wj(y), j = 1, 2, 3, 4, . . . all need to satisfy the boundary conditions of
Problem (3.2):

wj(y) = 0 and w′′
j (y) = 0 at y = 0, 1.

This means that
w1(y) = γ1 sin(nπy),

where γ1 still needs to be determined. Since L2w1 = 0, the equation for w2 reduces
to L1w2 = 0, so that

w2(y) = γ2 sin(nπy),

as well, and γ2 must also be determined. To fix γ1 we enforce the solvability condition
for the equation for w3:

(w1,L1w3) = −(w1,L2w2 + L3w1 + n4π4w3
1) = 0,

where (·, ·) is the standard inner product in L2(0, 1). Since L2 is self adjoint, and
L2w1 = 0, this condition reduces to

(w1,L3w1 + n4π4w3
1) = 0,

which yields

(3.5) γ1(δ) =
4√
3

√
δ(1− δ) with δ ∈ [0, 1].

To determine γ2 we use the solvability condition for the problem for w4 term in the
expansion. This yields the condition

(w1,L3w2 + L4w1 + n4π4{3w2
1w2 + 2(2δ − 1)w3

1}) = 0,

from which we derive γ2. The first two terms of the expansion are thus found to be:

(3.6) w(y; δ) =
√

δ(1− δ)

(
4√
3

√
α + α

√
3 (1− 2δ)

)
sin(nπy) + . . .

A comparison of the branch predicted by this formula against numerical computa-
tions is shown in Figure 4.

The stability of the solutions on this branch is easily computed by setting

u(x, t) ' c(t)
√

αv1(x) + . . . , v1(x) = γ1 sin
(nπx

L

)
.

Clearly one asympotic solution of the full time-dependent PDE is c(t) = γ1. Pro-
jecting this solution onto the local center manifold Xc = span{sin(nπx/L)} and
expanding to leading order in α leads to

(3.7) ċ = −1

8
c
{
3c2 − 16δ(1− δ)

}
.

Linearizing this equation about c(t) = γ1 + d(t) for small d yields

ḋ = −4δ(1− δ)d

from which we conclude that this solution is stable for admissible δ. This comes as
no surprise as it is precisely in this interval that the zero solution is unstable.

The construction described above involves an interval (nL1, nL2) which is disjunct
from ((n + 2)L1, (n + 2)L2). In Sections 4 and 5 we consider what happens when

9
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Figure 4. Comparison of the numerical and asymptotic structures
of the branches for α = 10−3,10−2 on the left and 5 10−2 and 10−1 on
the right.

these two intervals overlap, albeit slightly, and we investigate the dynamics on a
two-dimensional center manifold.

4. Stationary solutions in the limit as α → α∗
1.

In this section we focus on the situation when the branch which connects the
branchpoints at L1 and L2 overlaps with the branch which connects 3L1 and 3L2.
As we saw in the Introduction, this will be the case when α > α∗

1. Numerical studies
suggest that the set of stationary solutions then can become quite complex. In this
section we analyse this set when the bifurcation points at L2 and 3L1 are close
together, i.e. when α = α∗

1 + ε and ε is positive and small.
As we have seen in Theorem 2.3 when α = α∗

1, then Problem (1.7) has a two
dimensional center manifold Xc about the trivial solution:

Xc = span {ϕ1, ϕ3} = {sin (xπ/L) , sin (3xπ/L)} .

In our analysis we shall fix α close to α∗
1 and use L as a bifurcation parameter taking

values close to L∗
1 = L2(α

∗
1).

To determine the dynamics on the space Xc we write

u(x, t) = a(t)ϕ1(x) + b(t)ϕ3(x)

and project the differential equation onto Xc:

1

L

∫ L

0

{ut + uxxxx + 2uxx + (1− α)u + u3}ϕ1 dx = 0,

1

L

∫ L

0

{ut + uxxxx + 2uxx + (1− α)u + u3}ϕ3 dx = 0.

10



This yields a pair of differential equations for a(t) and b(t):

(4.1)


ȧ = −P

(π

L

)
a− 3

2
a3 +

3

2
a2b− 3ab2,

ḃ = −P

(
3π

L

)
b +

1

2
a3 − 3a2b− 3

2
b3.

where dots denote differentiation with respect to t.
Because the original equation is a gradient system, the reduced system is one as

well. The corresponding Lyapunov functional (the projection of (1.6) onto Xc) is
given by

(4.2) V (a, b) =
1

2
P
(π

L

)
a2 +

1

2
P

(
3π

L

)
b2 +

3

8
a4 − 1

2
a3b +

3

2
a2b2 +

3

8
b4.

Plainly,

ȧ = −Va(a, b) and ḃ = −Vb(a, b),

where subscripts denote partial differentiation, and

dV

dt
= Va ȧ + Vb ḃ = −(V 2

a + V 2
b ) ≤ 0.

Thus, the function V (a, b) decreases along orbits.
We will consider the structure and stability of the set of stationary solutions of

the system (4.1). They are defined by the pair of equations

Va(a, b) = 0 and Vb(a, b) = 0.

This solution set contains at least three distinct branches: (i) the trivial state, (ii)
a branch bifurcating from the bifurcation point at 3L1 and (iii) a branch emanating
from L2. The existence of these branches was established in [18], but there the
structure was only described in the limit as ‖u‖ → 0. However, because of the center
manifold structure near L∗

1 = 3L1 = L2 at α∗
1, we see that these branches persist

under small changes in α and L near the first bifurcation point (u, L) = (0, L∗
1). It

is their local structure and stability that we now wish to investigate.
We fix

α = α∗
1 + ε, ε > 0.

Then 3L1 < L2 and we write L, which serves as a bifurcation parameter, as

L = 3L1 + δLgap, where Lgap = L2 − 3L1, δ ∈ R.

Note that Lgap > 0 since 3L1 < L2 in this range of α. The parameter δ positions
the length L with respect to the interval (3L1, L2) so that δ = 0 corresponds with
3L1 and δ = 1 corresponds with L2. In what follows we shall describe the set of
stationary solutions of (4.1) in the (δ, u)-space, where u = (a, b), and discuss their
stability properties.

Plainly, Lgap(ε) → 0 as ε → 0. To obtain a more precise estimate, we expand 3L1

and L2 in powers of ε. This yields

3L1 =
3π√

1 +
√

α∗
1 + ε

= π
√

5

{
1− 25

144
ε + O(ε2)

}
as ε → 0,

11



and

L2 =
π√

1−
√

α∗
1 + ε

= π
√

5

{
1 +

25

16
ε + O(ε2)

}
as ε → 0.

Therefore

Lgap(ε) =
125

72
π
√

5 ε + O(ε2) as ε → 0.

Based on the natural balance of terms in (4.1) we rescale the variables according
to

(4.3) (a, b) 7→
√

ε(a, b), t 7→ 1

ε
t.

Using this rescaling and expanding (4.1) to O(ε) we obtain the leading order problem

(4.4)


ȧ = g1(a, b)

def
= a

{
10

9
(1− δ)− 3

2
a2 +

3

2
ab− 3b2

}
,

ḃ = g2(a, b)
def
= 10δb +

1

2
a3 − 3a2b− 3

2
b3.

Any solution of the system (4.4) recovers a solution to (4.1) to O(ε2).

4.1. Stationary solutions. The stationary solutions of the system (4.4) are the
points where the null clines Γ1 and Γ2, defined by

(4.5) Γi = {(a, b) : gi(a, b) = 0} for i = 1, 2,

intersect. Plainly, Γ1 consists of two components:

Γ
(1)
1 = {(a, b) : a = 0} and Γ

(2)
1 =

{
(a, b) :

3

2
a2 − 3

2
ab + 3b2 =

10

9
(1− δ)

}
,

and

Γ2 =

{
(a, b) :

1

2
a3 − 3a2b− 3

2
b3 + 10δb = 0

}
.

Note that both Γ1 and Γ2 are invariant under the transformation (a, b) → (−a,−b),
i.e., they are symmetric with respect to the origin. In what follows we shall at times
only discuss the null clines in the first and the second quadrant, since the structure
there will be duplicated in the third and the fourth quadrant.

We immediately see that the intersection of Γ
(1)
1 and Γ2 consists of two points in

the (a, b)-plane:

(4.6) O = (0, 0) for δ ∈ R and P =

(
0,

√
20δ

3

)
for δ ≥ 0.

The first point yields the branch of trivial solutions and the second point yields
the branch of stationary solutions of the system (4.4) which emanates from 3L1 as
described in [17] and [18]. It undergoes no bifurcation as α increases through α∗

1.

It is the third branch, the one which emanates from L2, for which a is not identially

zero, and which corresponds the the points of intersection of Γ
(2)
1 and Γ2 that we

now concentrate on. We see that for any δ < 1 the null cline Γ
(2)
1 is an ellipse in the

(a, b)-plane around the origin, and that Γ2 defines a continuous curve connecting
12
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Figure 5. Plots of Γ
(2)
1 and Γ2 for δ = 0.025, δ = 0.1 and δ = 0.2

(0, 0) to the point at infinity. Thus, for any δ < 1 there is always at least one

stationary solution of the system (4.4). In Figure 5 we show the null clines Γ
(2)
1 and

Γ2 for δ = 0.025 (left), δ = 0.1 (middle) and δ = 0.2 (right)

The graphs of Γ
(2)
1 and Γ2 suggest that there are three critical values of δ: δ1 <

δ2 < δ3 in the interval (0, 1) such that

• if 0 < δ < δ1, then Γ
(2)
1 ∩ Γ2 consists of one point in the first quadrant, which we

denote by A(δ) and one point, −A(δ) in the third quadrant.

When δ increases and passes through δ1, two additional points of intersection appear
in the second quadrant, and two appear in the fourth quadrant:

• if δ1 < δ < δ2, then Γ
(2)
1 ∩Γ2 consists of two points in the second quadrant, which we

denote by B(δ) and C(δ), and one point, A(δ), in the first quadrant. Symmetrically
located with respect to the origin, there are points −A(δ), −B(δ) and −C(δ) in the
lower half plane.

When δ increases B(δ) moves to the b-axis and crosses it at δ2, so that

• if δ2 < δ < δ3, then Γ
(2)
1 ∩ Γ2 consists of the origin, one point C(δ) in the second

quadrant, and two points, A(δ) and B(δ) in the first quadrant. Symmetrically
located with respect to the origin, there are points −A(δ), −B(δ) and −C(δ) in the
lower half plane.

When δ = δ3 the points A(δ) and B(δ) coalesce to a point in the first quadrant and
subsequently disappear, so that

13
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Figure 6. Connecting orbits in the phase plane when δ = 0.025 ∈
(0, δ1), δ = 0.1 ∈ (δ2, δ3) and δ = 0.2 ∈ (δ3, 1)

• if δ3 < δ < 1, then Γ
(2)
1 ∩ Γ2 consists of one point, C(δ) in the second quadrant

and one point, −C(δ), in the fourth quadrant.

Remark The points B(δ) and C(δ) move together as δ → δ+
1 and the points B(δ)

and A(δ) move together as δ → δ−2 .

In Appendix A we prove all these statements. There we find that

δ1 = 0.050785 . . . , δ2 = 0.052631 . . . and δ3 = 0.15191 . . . .

4.2. Stability. The stability of the stationary solutions obtained above can easily
be established by means of an analysis of the vector field of the system (4.4).

As a first observation, we note that Γ
(1)
1 = {(a, b) : a = 0} is an invariant set.

This set contains three stationary points: the points P and −P as well as the origin
O. Within this set, the origin is a repellor and the points ±P are both attractors.
Thus, the origin is always unstable.

To discuss the nontrivial stationary solutions, we consider the three ranges of
δ-values: (0, δ1), (δ1, δ2), (δ2, δ3) and (δ3, 1) in succession. Graphs of orbits in the
ranges (0, δ1), (δ2, δ3) and (δ3, 1) are shown in Figure 6.

The range 0 < δ < δ1: We have four nontrivial stationary points: ±P and ±A.
By symmetry the characters of ±P and ±A are the same.

– Both P and −P are saddles: their stable manifold is Γ
(1)
1 and their unstable

manifold is perpendicular to the b-axis. Therefore, both P and −P are unstable.

– The points A and −A are both stable nodes.

The range δ1 < δ < δ2: We have four nontrivial stationary points: P , A, B and C
in the upper half plane, and their symmetric images −P , −A, −B and −C in the
lower half plane.

14



– The points ±A and ±B are stable nodes.

– The points ±P and ±C are saddles, and hence unstable.

The range δ2 < δ < δ3: We have nontrivial stationary points: P , A, B and C in
the upper half plane and their symmetric images −P , −A, −B and −C in the lower
half plane.

– The points ±P and ±A and their symmetric images are stable nodes .

– The points B and C and their symmetric images are saddles, and hence unstable.

The range δ3 < δ < 1: We have four nontrivial stationary points: ±P and ±C.

– The points ±P are stable nodes .

– The points ±C are saddles .

When we translate these results to the solution branches in the (L, u)-plane, we
obtain the following description:

• The branch emanating from the point (3L1, 0) starts at δ = 0 and corresponds to
the point P in the phase plane.

– For 0 < δ < δ2 the branch is unstable.

– For δ2 < δ < 1 it is stable.

• The branch emanating from the point (L2, 0) starts at δ = 1 and corresponds
successively to the points C, B and A in the phase plane.

• For δ1 < δ < 1 the branch corresponds to C and it is unstable. At δ1 the branch
bends back, and passes through a saddle-node bifurcation. This part of the branch
corresponds to the point B and is stable for δ1 < δ < δ2, i.e., until it intersects
with the branch which emanates from (3L1, 0). Continuing beyond δ2 it becomes
unstable until at δ3 it bends back again through a saddle-node bifurcation. Then, for
0 < δ < δ3 the branch corresponds to the point A and it is stable again.

The stability properties of the different pieces of the branches are indicated in
Figure 7.

5. Further bifurcation points

In this section we study structures of bifurcation curves in the (L, u)-plane when
higher order bifurcation points (nearly) coincide, i.e., when there exists an α∗ ∈ (0, 1)
and positive integers m and n such that

(5.1) nL1(α
∗) = mL2(α

∗).

Since L1 < L2 it follows that m < n. Throughout we only consider odd integers. it
is readily verified that (5.1) occurs when

(5.2) α∗ = α∗
m,n

def
=

(
n2 −m2

n2 + m2

)2

.

15
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As a first observation we note that when n = 3m, then (5.1) becomes 3L1(α
∗) =

L2(α
∗), so that α∗ = α∗

1, and we return to the structure described in Section 4. In
Figure 8, in which 5L1 ≈ 3L2, we see a different type of structure. This type of
connecting branch will be the main focus in this section.

Let us generalize the center manifold theorem, Theorem 2.3, from Section 2 to
this situation.

Theorem 5.1. Suppose that (5.1) holds for some α∗ ∈ (0, 1) and for odd integers
m and n. Then, if L = nL∗

1,

(a) There exists a two-dimensional center manifold Xc spanned by the eigenfunctions
ϕm and ϕn.

(b) If n = m+2` for ` ≥ 1, then the dimension of the unstable manifold Xu is equal
to `− 1.

Proof. Since we have chosen L such that L = nL1(α
∗) = mL2(α

∗), it follows that

λm(L) = 0 and λn(L) = 0.

Remembering that λk(L) = P (kπ/L) we therefore have

P (ξ) = 0 for ξ = ξm and ξ = ξn where ξk =
kπ

L
.

Given the properties of the function P (ξ), we see immediately that

P (ξ) > 0 for ξ ∈ (0, ξm) ∪ (ξn,∞).

and

P (ξ) < 0 for ξ ∈ (ξm, ξn).
16
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Figure 8. Global bifurcation diagram when α = 0.24 and 5L1 ≈ 3L2

Since ξn = ξm + (2lπ/L), this implies that

λk(L) = P (ξk) < 0 for k = 1, 2, . . . , `− 1,

so that the dimension of the unstable manifold is equal to `− 1. �

Remark We note that the dimension of Xu is positive, precisely when there is a
bifurcation point inside an interval (nL1, nL2). Thus while we can construct the
local bifurcation diagram for any bifurcation point, only those which occur at α∗

1

are related to stable dynamics.

We now extend the calculations of Section 3 to the general case. Projecting the
Swift-Hohenberg equation onto the space Xc = span{ϕm, ϕn} and writing

u(x, t) = a(t)ϕm(x) + b(t)ϕn(x),

we obtain the system

(5.3)


ȧ = −P

(mπ

L

)
a− 3

2
a3 − 3ab2 +

3

2
a2b(ϕ3m, ϕn),

ḃ = −P
(nπ

L

)
b− 3a2b− 3

2
b3 +

1

2
a3(ϕ3m, ϕn),

where we have used the fact that

(ϕ3
m, ϕn) = −1

2
(ϕ3m, ϕn) and (ϕ2

m, ϕ2
n) = 1.

We note that when 3m = n we retrieve the system (4.1) in Section 4, and we
obtain the same structure, albeit scaled by a factor m.

If 3m 6= n the inner products in (5.3) vanish and we obtain the new system

(5.4)


ȧ = −P

(mπ

L

)
a− 3

2
a3 − 3ab2,

ḃ = −P
(nπ

L

)
b− 3a2b− 3

2
b3.
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Next, we increase α by ε, i.e., we put α = α∗
m,n + ε (ε > 0). Then the bifurcation

points nL1(α) and mL2(α) move apart. As in Section 4 we write

L = L∗
m,n + δLgap,

where now

L∗
m,n = nL1(α

∗) = π

√
m2 + n2

2
and Lgap =

π

8
√

2

(n2 + m2)7/2

n2m2(n2 −m2)
ε +O(ε2),

and

L = L∗
m,n + δLgap = L∗

m,n

{
1 +

ε

8

(n2 + m2)2

n2(n2 −m2)

(
m2 + n2

m2
δ − 1

)
+O(ε2)

}
.

Rescaling the variables as in (4.3) and expanding P
(

mπ
L

)
and P

(
nπ
L

)
into powers of

ε as before then leads to the system

(5.5)


ȧ = a

{
n2 + m2

n2
(1− δ)− 3

2
a2 − 3b2

}
,

ḃ = b

{
n2 + m2

m2
δ − 3a2 − 3

2
b2

}
.

5.1. Stationary solutions. The null clines of the system (5.3) are two ellipses, as
well as the two axes:

Γ1 = Γ
(1)
1 ∪ Γ

(2)
1 , Γ2 = Γ

(1)
2 ∪ Γ

(2)
2

where

Γ
(1)
1 = {(a, b) : a = 0} and Γ

(2)
1 =

{
(a, b) : a2 + 2b2 =

2

3

n2 + m2

n2
(1− δ)

}
and

Γ
(1)
2 = {(a, b) : b = 0} and Γ

(2)
2 =

{
(a, b) : 2a2 + b2 =

2

3

n2 + m2

m2
δ

}
.

They are shown in Figure 9.
We see that for all δ ∈ (0, 1) the set Γ1 ∩ Γ2 contains the origin as well as the

points P and −P and Q and −Q, where

P (δ) =

(
0,

√
2(n2 + m2)

3m2
δ

)
and Q(δ) =

(√
2(n2 + m2)

3n2
(1− δ), 0

)
.

The points ±P correspond to the branch which bifurcates at nL1 and the points
±Q correspond to the branch which bifurcates at mL2. These solutions are the only
ones for 0 < δ < δ1 and for δ2 < δ < 1, where

δ1 =
m2

m2 + 2n2
and δ2 =

2m2

2m2 + n2
.

At δ1 and δ2 branches of solutions bifurcate from ±P and ±Q and for δ1 < δ < δ2

we have four additional solutions. We denote them by ±A and ±B, where

A(δ) = K
(√

(m2 + 2n2)δ −m2,
√

2m2 − (2m2 + n2)δ
)

,
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Figure 9. Plots of Γ
(2)
1 and Γ

(2)
2 for δ = 0.04, δ = 0.1 and δ = 0.2.

where K = (1/(3mn))
√

2(m2 + n2), and

B(δ) = K
(
−
√

(m2 + 2n2)δ −m2,
√

2m2 − (2m2 + n2)δ
)

,

5.2. Stability. A stability analysis of these solutions such as presented in Section
4 shows the followong:

If 0 < δ < δ1, then
– P and −P are saddles and hence unstable.
– Q and −Q are stable nodes.

If δ1 < δ < δ2, then
– P and −P , and Q and −Q are all stable nodes.
– A and −A and B and −B are saddles and unstable.

If δ2 < δ < 1, then
– P and −P are stable nodes.
– Q and −Q are saddles and unstable.

Let us finally translate these results to the bifurcation picture in the (L, ‖u‖2)-
diagram. For convenience we denote the branch which bifurcates at nL1 by C1 and
the branch which bifurcates at mL2 by C2.

• The branch C1 corresponds to the point P ; it is unstable for 0 < δ < δ2 and stable
for δ1 < δ < 1.

• The branch C2 corresponds to the point Q; it is unstable for δ2 < δ < 1 and stable
for 0 < δ < δ2.
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Figure 10. Comparison of the asymptotic and numerical bifurcation
diagrams. Dashed lines are asymptotic solutions, solid are numerical.
Left: m = 3 and n = 5. Right: m = 5 and n = 7.

• There are secondary bifurcations from C1 and C2 at, respectively, δ1 and δ2. These
branch points are connected by a branch C3 which spans (δ1, δ2). The branch C3 is
unstable.

A comparison of these structures with numerical computations is presented in
Figure 10. Note that

‖u‖2 = a2 + b2,

so that the branch C3 becomes

‖u‖2 =
2

9

m2 + n2

m2n2

{
m2 + (n2 −m2)δ

}
, δ1 ≤ δ ≤ δ2,

i.e., C3 is a straight line in the (L, ‖u‖2)-plane (see Figure 10).

6. Global minimizers

In Sections 4 and 5 we have computed solutions of Problem (1.3) in the center
manifold Xc of the trivial solutions at certain critical lengths, whenever mL1 ≈ nL2

and mL1 < nL2 for some odd integers m and n. The same analysis also yielded the
stability properties of these solutions in Xc.

Since Problem (1.3) is a gradient system, it is interesting to know which of these
solutions is the global minimizer. In this section we determine which of the solutions
we obtained in Xc is the global minimizer in Xc given any value of δ ∈ [0, 1]. To
this end we compute the value of the Lyapunov functional V (a, b) along the solution
branches in the two structures disussed in the previous sections, the one we find
when n = 3m and the one we find when n 6= 3m. We discuss the two structures in
succession.

20



!1 !0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

!

a2
+b

2

!0.2 !0.1 0 0.1 0.2 0.3 0.4 0.5
!2

!1.5

!1

!0.5

0

!

V

Figure 11. Solution branches (left) and scaled Lyapunov function
V along the branches (right) when m = 1 and n = 3

Case I: n = 3m. We recall from Section 4 that in this case the Lyapunov functional
V (a, b) associated with Problem (4.1) is given by

(6.1) V (a, b) =
1

2
P
(π

L

)
a2 +

1

2
P

(
3π

L

)
b2 +

3

8
a4 − 1

2
a3b +

3

2
a2b2 +

3

8
b4.

We put α = α∗
1 + ε, carry out the scaling

(a, b) 7→
√

ε(a, b), t → 1

ε
t and V (a, b) → 1

ε
V (a, b),

and expand P
(

π
L

)
and P

(
3π
L

)
. This yields for the scaled Lyapunov functional

(6.2) V (a, b) = −20

9
(1− δ)a2 − 20δb2 +

3

8
a4 − 1

2
a3b +

3

2
a2b2 +

3

8
b4.

In Figure 11 we show graphs of the Lyapunov functional J(u; L) (numerically com-
puted) and of of V (a, b) along the solution branches near 3L1, when 3L1 ≈ L2.

Case II: n 6= 3m. Proceeding as in Case I, we find that the scaled Lyapunov
function V (a, b) is now given by

(6.3) V (a, b) = −n2 + m2

2n2
(1− δ)a2 − n2 + m2

2m2
δb2 +

3

8
a4 +

3

2
a2b2 +

3

8
b4.

In Figure 12 we show graphs of the Lyapunov functional J(u; L) (numerically com-
puted) and of V (a, b) along the solution branches near 5L1, when 5L1 ≈ 3L2.

7. The quintic Swift-Hohenberg equation

In this section we expand the analysis of the previous sections to the Swift-
Hohenberg equation in which the cubic term u3 has been replaced by the quintic
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polynomial −u3 + u5. Specifically, we consider the following initial-boundary value
problem

(7.1)


ut = −uxxxx − 2uxx − (1− α)u + u3 − u5 for 0 < x < L, t > 0,

u = 0 and uxx = 0 at x = 0, L, t > 0,

u(x, 0) = u0(x) for 0 < x < L.

Like for the Swift-Hohenberg equation, the linearized version of Problem (7.1) is
Problem (2.1) which has been studied in detail in Section 2. We find the same critical
lengths L1 and L2 and the same eigenvalues λn and eigenfunctions ϕn. Solution
branches bifurcate from the points (L, u) = (nLk, 0) (k = 1, 2) for every n ≥ 1.
However, whereas in the Swift-Hohenberg equation, the bifurcations at (nL1, 0) are
supercritical and subcritical at (nL2, 0), here they are subcritical at (nL1, 0) and
supercritical and at (nL2, 0). Proceeding as in [18] we can find the local behavior at
(L1, 0) and (L2, 0):

Theorem 7.1. Let α > 0. There exists a unique branch in the (L, u)−plane of
nontrivial solutions of Problem (7.1) which emanates from the trivial solution at L1.
Its local behavior is given by

‖u‖2 ∼ 8

3π

√
α(1 +

√
α)3/2(L1 − L) as L ↗ L1.

Theorem 7.2. Let 0 < α < 1. There exists a unique branch in the (L, u)−plane
of nontrivial solutions of Problem (7.1) which emanates from the trivial solution at
L2. Its local behavior is given by

‖u‖2 ∼ 8

3π

√
α(1−

√
α)3/2(L2 − L) as L ↘ L2.

In Figure 13 we show two global bifurcation diagrams, one for α = 0.42 and one for
α = 0.49, in which these properties clearly show up. We also see the characteristic
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Figure 13. Sample bifurcation diagrams for de-stabilising nonlin-
earity. Notice that here the branches emanate from L1 and L2 in the
opposite direction as in the stabilising case. Left: α = .42 Middle:
α = .49. Right: Detail of α = .49 showing the same local behavior as
constructed in Section 4.

structure when 3L1 ≈ L2, which we studied in Sections 4 and 6. However, here it
“flipped over”.

Because the solution branches bifurcating from the points (kL1, 0) and (kL2, 0)
now point in the opposite direction from the one in the stabilizing case, direction,
we need to fix α < α∗

m,n to ensure that nL1 > mL2. Thus, in order to study the
solution set when 3L1 ≈ L2, we write

α = α∗
1 − ε for ε > 0,

and put

L = 3L1 + δLgap, where Lgap = L2 − 3L1.

Note that now Lgap < 0. Rescaling the equations as in Sections 4 and 5, we now
obtain the O(ε) system

(7.2)


ȧ = −a

{
10

9
(1− δ)− 3

2
a2 +

3

2
ab− 3b2

}
ḃ = −10δb− 1

2
a3 + 3a2b +

3

2
b3

when n = 3m. Reversing time, and setting t = −τ , we obtain the system (4.4)
where the dots now denote differentiation with respect to τ .

It is evident that for every δ ∈ [0, 1], the family of stationary solutions is the
same as that of (4.4), but, because L now decreases when δ increases, the bifucation
picture is the mirror image of the one in Section 4.

If n 6= 3m, the analysis is similar to the one in Section 5.
Finally, because all the nontrivial equilibrium solutions of (4.4) are either stable

nodes or saddles, the equilibrium solutions of (7.2) are all unstable nodes or saddles,
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and therefore all unstable. It is easily seen that the origin (a, b) = (0, 0) is now a
stable node.

Appendix A. Additional algebraic details

In order to prove the results of Section 4 it will be convenient to express the null

clines Γ
(2)
1 and Γ2 in terms of polar coordinates, writing

(A.1) a = r cos(θ) and b = r sin(θ).

By symmetry this is possible if the ray

Rτ = {(a, b) : b = τa, b > 0}, τ ∈ R

intersects each null cline at most at one point, and is never tangent to one of the
null clines. This is clearly the case for Γ2 which is an ellipse.

In fact, it is also the case for Γ
(2)
1 . Suppose to the contrary that for some τ0 the

ray Rτ0 is tangent to Γ
(2)
1 at the point (a0, b0). Then, at (a0, b0) we have (dropping

the subscript ”0”):

a3 − 6a2b− 3b3 = 20δb, and b = τa,

so that

(A.2) a2(1− 6τ − 3t3) = 20δτ,

as well as
3a2 − 12ab− 6a2τ − 9b2τ = 20δτ.

Because Γ
(2)
1 and Rτ are tangent, we also have

(A.3) 3a2(1− 6τ − 3τ 3) = 20δτ.

It follows that 1− 6τ − 3τ 3 = 0, so that τ = τ ∗
def
= 0.16444.... This would imply that

δ = 0, a contradiction.

As a corollary we conclude by continuity that Rτ intersects Γ
(2)
1 at most at one

point.

Thus, we can write Γ
(2)
1 as r1(θ) for θ0 < θ < π, where θ0 will be determined later,

and Γ2 as r2(θ) for 0 < θ < π. Substituting (A.1) we obtain the following equations:

(A.4) 20δ sin(θ) + r2
1F (θ) = 0 and

20

27
(1− δ) = r2

2G(θ), 0 < θ < π,

where
F (θ) = cos3(θ)− 6 cos2(θ) sin(θ)− 3 sin3(θ)

and
G(θ) = cos2(θ)− cos(θ) sin(θ) + 2 sin2(θ).

It follows from the equations in (A.4) that θ needs to be so restricted that F (θ) < 0
and G(θ) > 0. When we divide F (θ) by sin3(θ), the first condition can be expressed
as

cot3(θ)− 6 cot2(θ)− 3 < 0 =⇒ −∞ < cot(θ) < 1/τ ∗,
24



so that θ ∈ (θ∗, π), where θ∗ = cot−1(1/τ ∗). Because

G(θ) =

(
cos(θ)− 1

2
sin(θ)

)2

+
7

4
sin2(θ) > 0 for all θ ∈ [0, 2π)

the second condition poses no restriction on θ.
Thus,

(A.5) r2
1(θ) = −20δ

sin(θ)

F (θ)
and r2

2(θ) =
20

27
(1− δ)

1

G(θ)
.

At the points where the null clines intersect we have r1 = r2, so that

−20δ
sin(θ)

F (θ)
=

20

27
(1− δ)

1

G(θ)
,

or

(A.6) sin(θ)G(θ) + γF (θ) = 0, γ =
1− δ

27δ
.

If we divide by sin3(θ) and write x = cot(θ), we obtain the cubic polynomial equation

(A.7) H(x; γ)
def
= x2 − x + 2 + γ(x3 − 6x2 − 3) = 0, −∞ < t < 1/τ ∗.

Plainly,

H ′(x; γ) = 2x− 1− γ(3x2 − 12x) and H ′′(x; γ) = 2− γ(6x− 12).

Thus H ′(x; γ) = 0 if x ∈ {ξ−, ξ+}, where

ξ± =
1

3γ

(
6γ − 1±

√
(1− 6γ)2 + 3γ

)
.

It is easily verified that

H ′′(ξ−; γ) < 0 and H ′′(ξ+; γ) > 0.

Therefore equation (A.7) will have three zeros if H(ξ+; γ) < 0 < H(ξ−; γ), two zeros
if H(ξ−; γ) = 0 or H(ξ+; γ) = 0 and one zero if either H(ξ−; γ) < 0 or H(ξ+; γ) > 0.
These conditions can easily be translated into conditions on γ. An elementary
computation yields the values

γ1 = 0.69224... → δ1 = 0.050785...

and

γ3 = 0.206767 → δ3 = 0.15191...,

and that the null clines Γ
(2)
1 and Γ2 intersect at 3 points when δ ∈ (δ1, δ3). At δ = δ2,

one of these critical point lies on the b-axis, i.e., θ = π/2. Then x = cot(θ) = 0 and
we deduce from equation (A.7) that γ = 2/3 and hence δ2 = 0.05263158....
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Appendix B. Numerical approximation

In this paper we have used a continuation package for Matlab called MATCONT
[12] for the computation of all bifurcation diagrams. This solves the algebraic sys-
tem of equations corresponding to the finite difference approximation to the ODE
problem. Continuation is then done via pseudo-arclength parametrization.

The fourth-derivative is approximated with a five point stencil and the second
derivative with a three point stencil. Because of the symmetry properties of the
solutions, the numerical problem was solved on x ∈ [−L/2, L/2] with the boundary
conditions

u′(−L/2) = u′′′(−L/2) = 0 and u′(L/2) = u′′′(L/2) = 0.

Derivatives at the boundary are approximated with ghost points.
Because continuation is being done with respect to the interval length the spatial

grid spacing changes along the branches. In all cases the number of grid points N
was chosen such that the grid spacing h satisfied h = L/{2(N − 1)} < 1/10.
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