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1. INTRODUCTION 

All spaces considered in this paper are assumed to be Tychonoff. A space X is said 

to be initially m-compact if every open cover of X of cardinality <C m has a finite 

subcover. Equivalently, X is initially 771-compact if every filterbase of cardinality 

^ m has a nonvoid adherence. X is said to be weakly initially m-compact if every 

open cover of cardinality i$ 771 has a finite subset with a dense union. X is called 

m-pseudocompact if every continuous image of X in Rm is compact. X is said to 

be m-pseudo compact in the sense of complete accumulation points (mpcap for short) 

if every family of ^ m open sets in X has a complete accumulation point, i .e. , a 

point each neighbourhood of which meets k members of the family where k is the 

cardinality of the family. 

When 77i is countable each of the properties of being weakly initially m-compact, 

m-pseudocompact, and mpcap is equivalent to being pseudocompact. See [7], [6], 

[2], and [5] for a discussion of initially m-compact, weakly initially m-compact, and 

m-pseudocompact spaces. 

It is shown that if m ^ c then the product of any collection of initially m-compact 

spaces is 771-pseudocompact; that a regular closed set in an m-pseudocompact space 

and a perfect irreducible preimage of an m-pseudocompact space may fail to be m-

pseudocompact. These s tatements are false in case m is countable. We also show 

tha t a weakly initially m-compact space is m-pseudocompact but that in general the 

converse is false. Further we show that the properties m-pseudocompactness and 

7n-pseudocompactness in the sense of complete accumulation points are in general 

incomparable. 

All undefined notation and terminology is as in [3]. 
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2 . m-PSEUDOCOMPACT SPACES 

A Gm-set in X is an intersection of ^ m open sets. A subset A of X is to be 
Gm'dense in X if every nonvoid Gm-set in X meets A. It is clear that A is Gm-dense 
in X if and only if it meets every nonvoid intersection of -̂  m zero sets in x. A 
family of sets is said to have the m-intersection property (m.i.p. for short) if every 
subset of ^ m members has a nonempty intersection. 

In the following theorem we collect some conditions equivalent to m-pseudo-
compactness. The equivalence of the conditions (a) and (d) is noted in [5]. The 
proof is left to the reader. 

Theorem 1. The following conditions on a space X are equivalent: 
(a) Every zero set filter in X has the m.i.p.; 

(b) every cozero cover of X of cardinality ^ m has a finite subcover; 
(c) every continuous image of X in a space of weight t$ m is compact; 
(d) X is m-pseudocompact; 

(e) X is Gm-dense in P(X). 

Corollary 1. The product of any collection of m-pseudocompact spaces is m-
pseudocompact iff it is pseudocompact. 

P r o o f . Necessity is obvious. To prove sufficiency, let X = fl*X,, where X, is 
m-pseudocompact for each i. Then X, is Gm-dense in fi(Xi) for each i which implies 
that 7rA't is Gm-dense in 7r/?(Xt). But irp(Xi) = f3(nXi) by Glickberg's Theorem 
(see [4]) since 7TX, is pseudocompact by assumption. Hence X is m-pseudocompact 
by Theorem 1 (e). • 

Corollary 2. If m J> c then the product of any collection of initially m-compact 
spaces is m-pseudocompact. 

P r o o f . Since an initially m-compact space is obviously m-pseudocompact it 
suffices to show, by Corollary 1, that the product is pseudocompact. It follows from 
Theorem 5 of [6] that an initially m-compact space is totally bounded if m ^ c. 

(Recall that a space is said to be totally bounded if the closure of every countable set 
is compact.) Since the product of any collection of totally bounded spaces is totally 
bounded and a totally bounded space is pseudocompact the assertion follows. D 

R e m a r k . It is well known that there are countably compact, i.e., initially 
u>-cotnpact, spaces whose product is not pseudocompact. (See, for example, [3]). 
The above result shows that the corresponding result is not valid for m ^ c. The 
familiar examples of pseudocompact spaces whose product is not pseudocompact are 
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subspaces of 0D containing D where D is a discrete space. The result below shows 

that examples of this kind do not exist for m^ c. 

Corollary 3. Let m ^ c, let {Di: i £ I}, be a collection of discrete spaces, and 
let {Xi: i £ 1} be a collection of m-pseudocompact spaces such that Di C X, C f3Di 
for each i. Then irXi is m-pseudocompact. 

P r o o f . It is clear from the proof of Corollary 2 that the product of m-pseudo
compact spaces each containing a dense totally bounded subspace is m-pseudocom
pact. Let Ai -= {p E ftDi: p is in the closure of some countable subset of Di}. Then 
Ai is totally bounded for each i. Since each singleton set in Ai is a Gm-set in f3Di 

and Xi is Gm-dense in /?K, it follows that Ai C K,. This concludes the proof. • 

E x a m p l e . Let m be uncountable. Then the space X = [0, l ] m — {p} where p 

is any point of [0, l ] m is fc-pseudocompact for any k < m but not Ar-pseudocompact 

for any k ^ m. Thus fc-pseudocompactness is in general weaker than m-pseudo-

compactness if k < m. 

3 . WEAKLY INITIALLY m-coiviPACT SPACES 

Recall that X is weakly initially ??i-compact if every open cover of X of cardinality 
^ m has a finite subset with a dense union. Equivalently X is weakly initially m-
compact if every open filter base in X of cardinality ^ m has an adherence point. 

Theorem 2. 
(a) A regular closed set in a weakly initially m-compact space is weakly initially 

m-compact. 
(b) The preimage under a perfect irreducible map of a weakly initially m-compact 

space is weakly initially m-compact. 
(c) A weakly initially m-compact space is m-pseudocompact. 

(d) An extremally disconnected m-pseudocompact space is weakly initially m-
compact. 

P r o o f , (a) The interiors in X of the members of an open filter base in a regular 
closed set form a filter base in X with the same adherence as the original filter base. 

(b) Let / : X —• Y be a perfect irreducible map from X onto a weakly initially 
m-compact space Y. Let U be an open filter base in X of cardinality ^ m. Then 
it follows from the closedness and irreducibility of / that V := {int/[U]: U £ U} is 
an open filter base in Y. Let y be an adherent point of V and let K — / _ 1 [p ] . Then 
an easy compactness argument shows that K contains an adherence point of U. 
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(c) Let X be a weakly initially m-compact space and let F be a zero set filter 

and let E be a subset F of cardinality ^ m. For each Z in E there is a countable 

family of cozero sets {Cn(Z): n £ N} such that C n + i ( Z ) C Cn(Z) for n £ N and 

f]Cn(Z) = Z. Then the family {Cn(Z): n £ N, Z £ E} is an open filter base in X 

of cardinality -<C m whose adherence is the intersection of E . Hence X is m-pseudo-

compact by Theorem 1. 

(d) Let X be an extremally disconnected m-pseudocompact space annd let U be 

an open filter base in X of cardinality <J m. Let V = {U: U £ U } . Then V is 

a family of zero (in fact clopen) sets in X whose intersection is nonvoid since X is 

m-pseudocompact. • 

E x a m p l e s . We now show that for m ^ c 

(1) a regular closed set in an m-pseudocompact space need not be m-pseudocom

pact; 

(2) an m-pseudocompact space need not be weakly initially m-compact; 

(3) a perfect irreducible preimage of an m-pseudocompact space need not be m-

pseudocompact. 

R. M. Stephenson, Jr. and J . E . Vaughan [8], show that for each m and each 

discrete space D of cardinality m, there are weakly initially m-compact subspaces X 

and y of (3D containing D whose intersection (and so X x Y) is not weakly initially 

m-compact . By Corollary 3, X x Y is m-pseudocompact. Thus an m-pseudocompact 

space need not be weakly initially 771-compact. Let Z be the diagonal o f X x V . Then 

Z is extremally disconnected and not weakly initially m-compact and hence not m-

pseudocompact by Theorem 2. Since Z is a regular closed set in X x Y this shows 

tha t a regular closed set in an m-pseudocompact space need not be one. Finally let 

E be the Gleason cover of X x y , i.e., an extremally disconnected space which is 

mapped onto X x Y by a perfect irreducible map. Then E is not m-pseudocompact, 

since otherwise, it would be weakly initially m-compact, by Theorem 2(d), which is 

impossible. Hence a perfect irreducible preimage of an m-pseudocompact space need 

not be one. 

4 . m-PSEUDOCOMPACTNESS IN THE SENCE OF COMPLETE ACCUMULATION POINTS 

W . W . Comfort and S. Negrepontis [1] define a space X to be pseudo-(k.k)-

compact, where k is an infinite cardinal number, if for each family {Ut: i < k} 

of nonvoid open sets indexed by ordinals less than k, there is x £ X such that for 

each neighbourhood V of x \{i < k: Ut; C\ V ^ 0} | = k. Recall that mpcap stands for 

m-pseudocompact in the sense of complete accumulation points . 
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T h e o r e m 3 . 

(a) A regular closed set in a mpcap space is mpcap. 

(b) A perfect irreducible preimage of an mpcap space is mpcap. 

(c) An initially m-compact space is mpcap. 

(d) A space is mpcap iff it is pseudo-(k, k)-compact for each k ^ m. 

(e) Let D C X C (3D, where D is discrete. Then X is mpcap iff every infinite 

subset of D of cardinality -̂  m iias a complete accumulation point in X. 

P r o o f . The proofs of parts (a) and (b) are similar to those of the corresponding 

parts of Theorem 2. 

(c) Recall tha t a space X is intially m-compact iff each infinite subset of cardinality 

^ 771 has a complete accumulation point. (See for example, [7].) Let X be an initially 

m-compact space and let U be an infinite family of open sets of cardinality k ^ m. 

Let U = {£/,: i < k} be a one to one indexing of U . Let / : k —• D be such 

tha t f(i) G Ui, for each i G k. Let A = {f(i): i G k} and for each a G A let 

c(a) = | / _ 1 [a]| . If \A\ = k or if c(a) = k for some a £ A then U has a complete 

accumulation point. So assume that | A | < k and c(a) < k for each a G A. We may 

assume that |^4| = cf k, the cofinality of k. We can define a function g: cf k —• A 

such that c(g(i)) < c(g(j)) whenever i < j < k and such that {c(g(i)) : i < cf k} is 

cofinal with k. We may assume that g is onto. Let x be a complete accumulation 

point of A, let V be a neighbourhood of x and let B = V fl A. Then |H | = cf k. 

Hence J2{c(b) :b £ B} = k. Hence |{i < k: V H U{ ?- 0 } | = k. Hence x is complete 

accumulation point of U . 

(d) The proof is similar to that of part (c) and is left to the reader. 

(e) If X is mpcap and A is an infinite subset of D of cardinality <C m then it 

must have a complete accumulation point since A is a union of singleton open sets 

of cardinality ^ m. Conversely let U be an infinite family of nonvoid open sets of 

cardinality ^ m. Let U = {U,: i < k} be a one to one indexing of U where k <J m. 

Let / : k —* D be such that f(i) G Ui for i < k. Proceed as in part (c) above. • 

E x a m p l e s . Let m ^ c. We give examples to show that 

(1) an mpcap space need not be m-pseudocompact (and hence not weakly initially 

m-compact) ; 

(2) an m-pseudocompact space need not be mpcap; 

(3) the product of two mpcap spaces need not be mpcap. 

Let D be a discrete space and let p G /3D. The type of p, T(p) := {/(p) : / is 

a mapping from (3D to (3D whose restriction to D is a permutation of D}. Let 

n(p) = min{ | j4 | : A G p } . For each infinite cardinal k ^ \D\, let p(k) be an ultrafilter 

on D such tha t n(p(k)) = k. Let X = D U I J { T ( P ( * 0 ) : k ^ m and k <^ \D\}. Then 
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any infinite subset of D of cardinality of k has a complete accumulation point in 

T(p(k)). Hence X is mpcap by Theorem 3. 

In particular if D is countable and p is any free ultrafilter on D then D U T(p) 

is mpcap for any m. If m ^ c then the space is not m-pseudocompact since any 

m-pseudocompact subset of (3D containing D is /3D itself. 

Let m >̂ c and let D be a discrete space of cardinality m. There exist weakly 

initially m-pseudocompact spaces X and Y of /3Z) containing D such tha t K fl Y 

contains no uniform ultrafilter (an ultrafilter each member of which has cardinal

ity m) . (See [8].) Then X D Y is not mpcap since D has no complete accumulation 

point in X C\Y. Hence X x Y is not mpcap since the diagonal of X x Y, which 

is a regular closed set in X x Y, is not mpcap. Hence the product of two mpcap 

spaces need not be mpcap. We also see that an m-pseudocompact space need not be 

mpcap . 

I conclude this discussion with two questions: 

(1) Are there m-pseudocompact spaces whose product is not m-pseudocompact 

where m > u>? 

(2) Are weakly initially m-compact spaces necessarily mpcap? 

In connection with question 2, we note that if D is a discrete space and D C X C 

(3D and X is m-pseudocompact (and hence weakly initially m-compact) then it is 

mpcap by Theorem 4. 
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