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Some Cases o f  W ave  M o tion  d u e  to a  Subm

B y T. H . H a v e l o c k , F.R .S.

(Received May 14, 1917.)

1. A s far as I  am  aw are, on ly  one case of wave m otion  caused by a

subm erged obstacle has been  w orked  o u t in  an y  de ta il, nam ely  th e  tw o- 

d im ensional m otion  due  to a c irc u la r  c y lin d e r ; for th is  case, Prof. L am b has 

given a so lu tion  applicab le w hen  th e  cy lin d er is of sm all rad ius and  is a t a 

considerable depth .*  T he m ethod  can be ex ten ded  to bodies of d ifferent 

shape, and  m y  objec t in th is  p ape r is to  w ork o u t th e  sim p lest th ree-  

d im ensional case, th e  m otion of a subm erged  sphere.

The prob lem  I  have  considered  specia lly  is th e  w ave res istance  of the  

subm erged body. I n  th e  tw o-dim ensional case, th is  is ca lcu la ted  by considera

tions of energy  and  w ork applied  to  th e  tra in  of reg u la r waves. B u t for a 

m oving sphere  the  w ave system  is m ore com plicated , lik e  th e  w ell-know n 

wave p a tte rn  for a m oving p o in t d istu rbance , and  sim ilar m ethods a re  no t so 

easily  a p p l ie d ; I  have th ere fo re  ca lcu la ted  d irec tly  the  ho rizon tal re s u lta n t 

of th e  fluid p ressu re  on th e  sphere. B efore w ork ing  ou t th is  case, th e  

analysis for th e  c irc u la r  cy lin de r is rep ea ted , because i t  is necessary  to carry  

the  app rox im atio n  a s tage fu r th e r  th a n  in  Prof. L am b’s so lu tion  in o rder to 

verify  th a t  th e  re s u lta n t ho rizo n ta l p ressu re  on th e  cy linder is th e  sam e as 

th e  w ave resistance  ob ta ined  by th e  m ethod  of energy.

T he stages in  app ro x im atin g  to th e  ve loc ity  p o ten tia l m ay be described  in  

te rm s of successive im a g e s ; th e  firs t stage is th e  im age of a uniform  

stream  in  th e  subm erged body, th e  second stage fa  is th e  im age of fa  in  the  

free surface, th e  th ird  fa  is th e  im age of fa  in  th e  subm erged body, and  so 

on. I n  o rder to keep  th e  in teg ra ls  convergen t, a sm all fric tiona l coefficient is 

in trodu ced  in  th e  u sual m an n e r ; a fte r  the  ca lcu la tions have  been carried  out, 

th e  coefficient is m ade  zero. F u r th e r , the  so lu tion  for un iform  m otion is 

bu ilt  up  so th a t  expressions can be found for the  ve loc ity  po ten tia l a t any  

tim e a fte r  th e  s ta r tin g  of th e  m otion, a lth o u gh  only th e  final s teady  sta te  has 

been stud ied  in  detail. The w ave resistance  of a sphere  is found to have the 

form  const, x A3/2e_a/2 W i,i  (a), in  w hich a  is 2 w ith  / t h e  d e p th  of the  

sphere an d  c i ts  v e lo c ity ; W 1}i ( a )  is a confluent hypergeom etric  function . 

I n  order to  g raph  the  wave resistance  as a function  of the  velocity, 

expansions have been found for th is  p a rtic u la r  v a rie ty  of the  function

* H . L am b , ‘ A n n . d i  M a te m a tic a ,’ vol. 21, p. 237 ; a lso ‘ H y d ro d y n a m ic s ,’ 4 th e d . ,  p. 401.
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Wk, m (a ) ; i t  belongs to the  logarithm ic  case for w hich a genera l expansion is 

not available.

In  general form  th e  g raph  of th e  resistance  is very  sim ilar to th a t  of the  

c ircular cylinder.
Circular Cylinder.

2. The steady s ta te  for un iform  m otion of th e  cy linder m ay be a ttac k ed  

directly, as in  Prof. L am b’s so lution , b u t we sha ll adopt his suggestion of 

building i t  up from  sim ple oscillations. T ake th e  axis of x  in th e  free 

surface of the  w ater, and  th e  axis of y  v e rtica lly  upw ards. A  c ircu lar  

cylinder, of rad ius a, is m ak ing  sm all oscillations para lle l to  Ox w ith  veloc ity  

c cos at, the  axis of th e  cy linder being ho rizon tal and  perpend icu lar to Ox, 

and th e  m ean position of th e  cen tre  being the  po in t (0, —/ ) .  A  first 

appproxim ation  w hen the  dep th  /  is sufficiently large  is found by ignoring  

the surface effect a lto ge the r and  p u ttin g

(f) =  ca2 ( x / r 2) elrjt; r 2 =  r? -f (ij +  f ) 2. (1)

T his satisfies the  boundary condition a t the  surface of th e  cy linder. For the  

n e x t step, add a te rm  X x to th e  velocity p o ten tia l so as to  sa tisfy the  

conditions a t th e  free surface, b u t ignoring m eantim e th e  d istu rbance 

produced thereby  a t th e  surface  of the  cylinder. The te rm  X i m u st be a 

po ten tia l function  and i t  m u st sa tisfy  the  condition  for deep w ater, nam ely , 

0X iJdy — 0 for y  =  — oo ; these conditions a re fulfilled by

poo

X i =  eiat | a (k)  eKy sin  k x  die, (2)

w here a is a function  of k  to  be de term ined. This form  is chosen because we 

can satisfy  th e  conditions a t  th e  free surface by using an equ iva len t form  

for (1), since

x / r 2 =  ^ g-«(3'+/)gin Kxd.K ; £ / + / >  0. 

The surface e levation  is expressed sim ilarly by

poo
rj =  ei(rt /3 (k ) sin k x  dK. (4)

Jo

In  order to keep the  various in teg rals  convergent, we assum e th a t the  

liquid has a s light am ount of friction  proportional to v e lo c ity ; in the  sequel 

the  results  are simplified by m ak ing the  frictiona l coefficient tend  to zero. 

In  these circum stances the  pressure equation  is

p /p  =  const, —gy +  /*<£ — £ q2. (5)

H ence the conditions a t the  free surface are, neglecting the  square  of the 

velocity,
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+  =  co n s t.; —d(f>/dy =  dg/dt.
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522 P ro f . T. IP. H a v e lo c k . Cases o f

H ere  <£ is th e  ve loc ity  p o ten tia l a fte r  (2) has been added to (1) ; th u s  the  

equations for a and  (3 a re

ca?/ce~Kf —k u  =  icr/3

i(Tca2e~K/  +  ia a — g(3 +  

F rom  these we ob tain  th e  expressions for X i and  nam ely

X x = : ca te*  I*” l/X<X e~*</~y) sin  k x  die,
Jo gK — a ' + igcr

f°° 2k (g + ia)

Jo gic — ar'2
ca2eiai

' + ig a
e~K-f sin k x

( 6 )

(7)

(8)

The expression  for X x can  be d iv ided  in to  tw o p a rts  

X x
r  oo

— ca2elat I e~
J o

sin  KxdK-2ca?eiat P 9—  t Sm Kxd*. ' (9)
1 - a J — i f ia —gKJo

If  we regard  X x as th e  im age of th e  o sc illa ting  cy linder in  th e  free 

surface, we see from  the  form  of the  firs t in te g ra l in  (9) th a t  p a r t  of the  

im age is a negative  doub le t a t  th e  im age p o in t ( 0 , / ) .  W e ob tain  n e x t the  

velocity p o ten tia l of th e  m o tion  p roduced by  a sudden sm all d isp lacem ent of 

th e  cy linder, and we tak e  th is  to be e q u iv a len t to  a m om en tary  doub let of 

co ns tan t s tre n g th . Suppose th en  th a t  a t  a tim e  t  a doub let is suddenly  

created , m ain ta in ed  co n stan t for a tim e St , and  th e n  ann ih ila ted . The 

ve locity  p o ten tia l a t  an y  subseq uen t tim e t is g iven  by a F ourie r synthesis  of 

th e  p reced ing  re su lts  for an  osc illa ting  cylinder, and  we have

4> =  — I* êV(10)
7T Jo

w here [<£] is th e  sum  of (1) and  (9), o m ittin g  th e  fac tor eiat.

C arry ing  ou t th is  in te g ra tio n  for th e  va lue  of </> in  (1) and  for the  first p a r t  

of (9) gives sim p ly  th e  m o m en tary  doub le t a t  th e  cen tre  of th e  cy linder and 

th e  negative  doublet a t  th e  im age point. These doub lets la s t for a sho rt 

tim e St  ; th e  subsequen t fluid m otion is c o n trib u ted  by th e  second p a rt of 

(9). F o r th is  we have to eva lua te  th e  rea l p a r t  of

‘oo gi<r ( t—r)

-5— :---------  dc : t —t  > 0.
o G*—IfJLG — gK

( 11)

W e ob tain  th e  va lue by co n tou r in te g ra tio n ; fu r th e r  we sim plify the  

re su lt  by neg lec ting  g?. W e sha ll m ake g  zero u ltim ate ly , b u t we m ust 

re ta in  i t  sufficiently to  keep  th e  in teg ra ls  c o n v e rg e n t; however, a t one or^ 

two stages, superfluous te rm s m ay be om itted  w hen i t  is clear th a t  the  final 

Limiting values w ill n o t be affected. W e find for (11) th e  value

— t t kYsin {«Y  t )},
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W ave M o tion  due  to a  Subm erged  Obstacle. 523

w riting  Y  for \ Z O I K)whenever i t  serves to sim plify  th e  no tation . H ence  

the velocity po ten tia l of th e  subsequent fluid m otion a fte r th e  cy linder has 

been g iven a sm all d isp lacem ent a t  tim e r  is

cf> =  2ca28re~̂(*~t) |  kVe~K sin 

F ina lly  we ob tain  th e  ve loc ity po ten tia l for a Cylinder in  un iform  m otion  

by su b s titu tin g  x  + c { t— t) for x, no ting  th a t  h e re af te r  x  w ill re fe r t

m oving origin im m ed ia te ly  over th e  cen tre  of the  c y lin d e r ; we then  

in teg ra te  w ith  respect to t  from  the  s ta r t  of the  m otion up  to th e  in s ta n t in 

question. W e could in  th is  w ay obtain resu lts  for any  stage of th e  m otion, 

b u t we lim it th e  discussion to th e  final s teady  sta te  ; for th is  we take  — oo as 

the  lower lim it in  in te g ra tin g  w ith  respec t to r. Before w riting  dow n the  

resu lt, we m u st rem em ber to in troduce  the  in teg ra ted  effect of th e  orig inal 

m om entary doub let in  (1) and  its  negative image, w hich were no t included  in  

(11) ; these clearly add up to  steady doublets. H ence  we find for th e  steady  

sta te

</> =  D —D i +  2 ca?f e~K̂ ~ ŷ (A  sin k x  +  B cos k x) lIk , 

w here D  rep resen ts  the doublet ca?xlr2 a t th e  po in t (

doublet a t the  po in t ( 0 , / ) ,  and

/c2Y (Y  4- c) /e2V ( Y —c)

k?(Y  +  c)2 +  4 y?

/akV /j,kV
K2 ( V - C f  +  l / , 2 K2 (V  +  +  I V '

(14 )

3. Before proceeding fu rth e r we m ay ob tain  the surface e levation from  (13) 

for comparison. The surface condition is now

H ence we have

—d(j)/dy — drjjdt =  —cdri/dx.

7] =  2a2f  / (x2+ f 2) —2a?ko |  (A  cos B sin k x) e~Kf  cIk , (15)

in which k0 =  y fc2. F u rth e r, since //, is to be sm all, we m ay om it irre lev an t 

term s and  p u t

A- — — Ko (k  — k0)/{k — (/co +  'i/i/c)} { (/c0—

B =  Ka(fl/c)/ {« —(«:o +  V C)} {K — (

The in tegral in (15) can-then  be w ritten  as

P  r  e - i KX

Jo X.K — Ko iiy,/c k —Ko + ifi/c y
*f d,K.

(16)

(17)

 D
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524 P ro f. T . H . H a v e lo c k . Cases o f

W e transform  these in teg ra ls  by  co n tou r in te g ra tio n  in th e  p lane  of a 

com plex variab le /c, tre a tin g  se para te ly  th e  cases of x  positive  and  x  n e g a tiv e ; 

a fte r m aking  g  zero in  th e  final resu lts  we ob tain

V

V

+ M K o e - ^ i n  * 0  + 2aV „ j "  .

4 %  +  2A ,  r  m c o s  s i n  mf  e-mxcim *  >  0 .
xi + f 2  J o  TO2 +  KT

x<  0,

(I

These agree w ith  L am b’s re su lts  for th e  c ircu la r  cy lind er in  a uniform  stream .

The wave resistance R  is derived  from  th e  reg u la r w aves in  th e  rear, by 

considering  th e  ra te  of increase  of en ergy  and  ta k in g  in to  accoun t the  

p ropagation  of energy  in  a reg u la r t ra in  ; we have

R  =  ±gp(am p litu d e )2 =  47r2̂ pa4/eo2e~2,!o/. 

4. W e have  now  to ob ta in  th e  resistance  R  by d irec t sum m ation  of th e  

ho rizon tal com ponent of fluid p ressure  on th e  cylinder. I t  is c learly  

necessary to proceed to a  fu r th e r  s tage w ith  th e  ve loc ity po ten tia l, since we 

have  assum ed so fa r th a t  th e  surface  effect is neglig ib le  in  th e  neighbourhood 

of th e  cy linder. I f  we w rite  (13) as

=  D  +  X], (20)

th e  double t D  is th e  firs t approx im ation , sa tisfy ing  th e  bo undary  conditions 

on th e  c y lin d e r ; X i is th e  im age of th e  d ou b le t in  th e  free surface, found by 

sa tisfy ing  th e  cond itions there . T he n e x t step  is to  find X 2, the  im age of X i 

in  th e  cy linder, ig no ring  th e n  th e  effect of X 2 a t  th e  free surface. I t  follows 

th a t  X 2 is th e  im age of X i in  th e  cy linder, found  as if  th e  cy linder were a t  

re s t in  a field defined by  X i. T ak ing  po lar co -o rd ina tes w ith  th e  origin  a t  the  

cen tre  of th e  c ircu lar  section  of th e  cy linder, we have

#  =  r c o s $ ;  =  sin  ; (21)

also th e  conditions for X 2 are  th a t  i t  should  be a p o ten tia l function , the  

com ponen ts of ve loc ity  m u st van ish  as r  becom es infin ite, and

3 (X i +  X 2) /3 r  =  0, for =  a. (22)

B u t from  (13), X i consists of a sum m ation  of te rm s o f the  form

W e obtain  X 2 by  rep lac ing  each te rm  by th e  expressions

e- Kf  e,ca* sin 0/r COS cog Q j  r^

and  the  above cond itions for X 2 are  th e n  satisfied. T his process am ounts 

sim ply  to in v e rs io n ; we m ay  th in k  of X i as due to a line d istribu tion  of
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W ave M otion  due to a  Subm erged  Obstacle. 525

sources and X2 is th en  a circle of sources on th e  inverse  of th is  line w ith

respec t to the  cylinder. W e have  now for the  ve loc ity p o ten tia l to th is  stage
<#»

</> =  D  +  2 co?| erK { (A  — -|) sin k x  + B cos 
Jo

+  2 cci2|  e~Kf + Ka2ylr2 { ( A —| )  sin (tccdxjr2) +  B cos (ica2x / r2) } die. (23)

W e have p u t A  — \  for A  so as to include  un d e r th e  in te g ra l sign the  

doublet previously  denoted  by Di.

The m ethod could theo re tic a lly  be carried  on step  by s t e p ; how ever, we 

stop a t  th is stage because i t  is sufficient for ob ta in ing  th e  w ave resistance  

I t from the  p ressu re equation  to th e  sam e ap p rox im ation  as by the  energy 

m ethod.
r2n

W e have E  =  | apcos ; 

p / p =  —cd<p/dx—gy  +  — 

If  we w rite  (23) as <£ =  D +  Xi +  X 2) and  om it te rm s w hich  obviously • 

contribu te  no th ing  to the  va lue  of E , we have, w hen

£ =  - 4 ( x 1 + x 2 ) + M x 1 + x 2) - I s g & i )

=  (2 c /a )s in  (26)

where we have used (22) and  the value of D. F rom  (23 ), om ittin g  the  

doublets D and D i, w hich w ill from  sym m etry  give no co n tribu tion  to E  w hen 

ya is zero, we have  '

p  =  4 ca2j* 0-2k/+k« sin e |  2kc A sin 0 sin (0  — sin <f>

+  2«cB sin (27)

where <£ =  tea cos 6.S u b s titu tin g  in (24) we have an  expression  for E. W e 

m ay now change the  order of in teg ra tio n  and take  first th a t  w ith  respec t 

to 6; we can carry  th is out, a fte r  some transfo rm ation , by m eans of the  

in tegrals

eh cos ecos ^  sin q _  n 0j de  _  /  r  (»  + 1 ) ,

s ^ s j n  d +  nd)dd =  0, ( 28 )

where n is a positive, odd in teger. In  fac t the  in teg ra tion  w ith  respec t to 0 

gives simply 7 ma(/ccB -f yuA); hence we have

poo

E  =  47rpca4 k (kcB +p,A )e~2Kf  die, (29)

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

4
 A

u
g
u
st

 2
0
2
2
 



526 P ro f. T. H . H a v e lo c k . Cases o f

w here A and B are  given by (14), or by  (16) since we suppose sm all. T hus 

we have

-D . 4 T • f00 ______ /x/Cif/ce-W
t — irpea {K—(KQ +  i f i /c ) } { fc—(KQ--iftlc)}

=  kirpca? L im  p, {27riK^e~2K,,J/  fin ite  q u an tity }

=  4:7r2gzpaAc ~ 4e -  2̂ c2, (30)

w hich is th e  sam e as th e  prev ious exp ression  (19).

Sphere.

5. A  sphere of rad iu s a is a t  dep th  /  below  th e  surface and  is m ov ing  w ith  

un iform  velocity  c p a ra lle l to th e  ax is  of T he orig in  is in  th e  free surface, 

th e  ax is of z being d raw n  v e rtica lly  upw ards. A s before, th e  firs t a

m atio n  is a doub le t D  g iven by

<£ =  ca3a ;/2 r3 ; r2 — (31)

F or th e  purpose  of sa tisfy ing  th e  conditions a t  the  free surface  we have

</> =  D  =  — ^ca.3 ^- [ <?-K̂ + / ) J 0 {/cfz+/>0. (32)

T his suggests a t  once su itab le  form s for th e  n e x t app ro x im atio n  and  for th e  

free s u r fa c e ; th e  equations a re  sim ilar to (6 ) of th e  prev ious case, and  we 

ob ta in  in  th e  sam e w ay

4> =  D — D i +  X i, (3 3 )

w here  D i is a d ou b le t a t  the  im age p o in t (0, 0 , / )  and

X i =  co? | x/ifjfc) e~K V-̂  die | e~ J 0 [ t

The co rresponding  surface  e leva tion  is

(34)

7] — a?I e~KJ Jo {ie<\/(x2-{-y2)}/edK
Jo

r  30 roo

+ a?I y/{gie)e~*f tedie 1 e~ ^u J  o\^/cf (3

T he first te rm  rep re se n ts  th e  effect of th e  do ub le ts  D  and  D i. I t  can  be 

verified by app roxim ate m ethods th a t  th e  second te rm  inc ludes a m ain p a rt 

like  the  w ell-know n w ave p a tte rn  for sh ip  waves. Since th e  exp ression  in  

(35) gives fin ite  and  continuous va lues for th e  surface e levation , i t  m igh t be 

of in te re s t to  exam ine  some po in ts  in  d e ta i l ; for instance, th e  e levation  n ear  

the  lines corresponding to th e  lines of cusps for a m oving po in t d istu rbance. 

H ow ever, we pass now to th e  calcu lation  of the  re su lta n t horizontal p ressure
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W ave M otion  due  to a  Subm erged  Obstacle. 527

on the  sphere. W e have  to find X 2 th e  im age of X i in th e  sphere  ; for th is  

we first p u t X i in to  a d ifferen t form  by using

7rJo[/c {{x +  c i i f  +  y 2}^] =  | cos {k (x  + cu) cos <£} cos(/cy s in  0 )  (36 )
Jo

\

From  (36) and  (34), a fte r  carry in g  ou t th e  in teg ra tio n  w ith  respec t to  

we obtain
rx> r  7r

7rXi =  cas e~K(~f ~z) /cd/c {A sin {k x  cos <f>) +  B cos co
Jo Jo

x cos sin <£) cos <£ (37)

w here A  and B are  given by (14) a fte r  w ritin g  c cos <£ for

F o r convenience in th e  follow ing analysis, we tran s fe r the  orig in  to the 

cen tre  of th e  sphere, no ting  th a t  in (37) we sha ll have exp. ( — 2 in

place of exp. ( — k/-\- kz). A lso we use po lar co-ordina tes

x — r  cos a ; y  =  

The conditions for X 2 are  th a t  i t  m u st be a p o ten tia l function , the  

d isturbance due to i t  m u st u ltim ate ly  vanish  as we recede from  the  sphere, 

and on th e  sphere

a (X !  +  X 2) / e r  =  0. (38)

To avoid repe titio n  of expressions like  (37), we take  ou t of i t  a typ ical te rm  

and  w rite
X i =  eKZ sin {k x  cos cf>) cos ( sin c£). (39)

W e know  th a t the  function

r -\eKo?zir* sj n (jca?xcos <f)/ r 2) cos (fccd

satisfies the  first two conditions for X 2, bu t we find i t  does no t fulfil (38). 

A n additional te rm  is required , and i t  can be found in  the  follow ing way. 

Suppose th a t  on the  sphere we have

eKZ sin {k x  cos </>) cos {Kty sin <£) =  %AmY m (a, /3), (41)

w here the  righ t-hand  side is an  expansion in surface spherical harm onics. 

Then for the  te rm  (39), a ll the  conditions for X 2 are satisfied by

ar- \ eKa*z/r*sjn {kq?x co s  (j) jv 2) cos {kci2}] sin

(42 )

Suppose, sim ilarly , th a t on the  sphere we have

eKZ cos { k x  cos </>) cos {wy sin B mY w (a, (43)

VOL. XCIII.— A. • 2 S

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

4
 A

u
g
u
st

 2
0
2
2
 



528 P ro f. T. H . H a v e lo c k . Cases o j

T hen the  com plete expression for X 2 is 

7rX2 — ca3 |  e~2*f fcd/c j" ar~ 1 cos ( si n </>/r2) cos (p

x {A sin (tca2x  cos </>/r2) -f B cos cos <£/r2) }

—ca?I e~2«f/cd/c( S  (A A wl +  B B m) ( m +  l ) “ 1(a /rY tt+1
J 0  J 0  m

(4 4 )

W e have now
</> =  I ) — P i  +  X i  +

and  the  p ressu re  eq uation  is

p /p  — —c d

The wave resistance , or th e  re su lta n t ho rizon ta l p ressu re  on th e  sphere, is

f 7r 2tt
B  =  d a  1 a2p  sin  a cos a dp. (47)

Jo Jo

O m ittin g  te rm s w hich, from  sym m etry , w ill give no con tribu tio n  to K, we 

have
V_ =  _ r 3X  x  8 D 8 X  1 8 D 3 X  1 0D 0X

p cte ^  dr dr r2 da da r2 s in2 0/3

B u t w hen r  — a ,we have

0D /3/3  =  O; 0 D /3 a  =  — \c a  sin a ; 

hence p /p  =  (3c /2« ) sin  a3X /0 «  +  yaX.

W e m u s t now  su b s titu te  (49 ) in  (47) and  use th e  value  of X  given by the  

sum  of (37) and  (44) on th e  sphere  ; i t  is c lear th a t  we m ay om it the doub let 

D i as i t  w ill n o t affect th e  lim itin g  value  of R  w hen  p, is zero.

6. C onsider, in  th e  firs t place, th e  c o n tr ib u tio n  of th e  firs t te rm  in  the  

value  of p  g iven  in  (49). I n  th e  rep ea ted  in teg ra ls  w hich  are  obtained , we 

m ay  change th e  o rder of in teg ra tio n , and  we sha ll ca rry  ou t firs t th e  sum m a

tion  over th e  surface  of th e  sphere. W e  no tice  th a t, w hen r  =  the  first 

te rm  in  th e  value  of X 2 in (44) is equal to th e  va lue  of X i ; th e  add itional 

p a r t  of X 2 is th e  te rm  in vo lv ing  th e  expansions in  spherica l surface 

harm onics. Choose a ty p ic a l te rm  from  the  la t te r  p a rt, and  we find we have 

to eva lua te
11sin a cos a (dYm/da) d$, (50)

tak e n  over th e  surface of u n it sphere.

B u t th is  in te g ra l is equal to

— 3 1P2 (cos a)  Y m (a,  /3) dS.(51)

H ence, th e  only te rm  w hich  has a value d ifferen t from  zero is the  te rm  in 

Y 2, th e  surface  harm on ic of th e  second order. F rom  th e  m an n e r in which

(48)

(49)
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W ave M otion  due  to a  Subm erged  Obstacle. 529

the  expansions w ere in troduced , in  (41) and  (43), i t  follow s th a t  th e  c o n tr i

bution of th e  second te rm  in (44) is on e-th ird  of th a t  of th e  first te rm  ; 

hence, sum m ing up th e  re su lt so fa r  as the  firs t te rm  of (4 9 ) is concerned, we 

have
rn r2n [ it

t tE' =  —  5c2n4p e~2Kf  k c Ik cos  s i n  a  P 2 (cos a ) eKft Sill a Sill j3

JO Jo Jo J o

x cos ( tea sin a cos 

x {A sin (tea cos a  cos +  B cos cos cos 

T aking th e  in te g ra tio n  w ith  respec t to (3, we find i t  is equal to

(52)

7T
Ka sin a sin p  sin f3 =  2-7TI0 {tea sin cos <f>), (53)

w here I 0 (x) is the  Bessel function  J 0 (ix)  a re su lt  w h ic

d irec t expansion  and  in teg ra tion  te rm  by term . F o r the  in te g ra tio n  w ith  

respect to « th e  te rm  in  A  in (52) obviously gives zero, and  we are le ft w ith

27t  | Io {tea cos p  sin a) cos (
Jo

H ere  also we m ay expand in pow ers of kci and  in te g ra te  te rm  by te rm  ; 

i t  can be show n th a t th e  in te g ra l of th e  coefficient of ( vanishes excep t 

for th e  single te rm  /c2a2 ; th u s we find th a t  (54) reduces to

— (27r /  5)

7. W e have  now to consider the  te rm  fjiX. in  th e  va lue  for p  in  (49). W e 

m igh t om it th is  term , on general grounds, as g iving  no con trib u tio n  to E  

u ltim ate ly  w hen fx vanishes ; for X  is the  ve loc ity p o ten tia l for a sphere a t 

res t in  a given field Xi. H ow ever, i t  m ay be le f t in, and  we have a s im ilar 

calculation. T aking the  second in teg ra l in  (44), we find i t  is now only the  

te rm  in  Y i w hich c o u n ts ; hence th e  co n tribu tion  of th is  p a rt  is one-lialf of 

th a t  of the  first in teg ra l in  (44). F u rth e r , i t  is the  te rm  involving  A  w hich 

gives a value different from  zero w hen in teg ra tin g  w ith  respect to , and 

in stead  of (54) we have

j‘ir
27r I 0 (ica cos p  sin a )  sin ( icctcos p  cos a )  P i (co

which reduces to (47r/3) tea cos p.

8. C ollecting the  various results, we have now

E  =  —2 câp j e~2Y K2d/c j* ( B cos p  +  //A ) cos2 p  dp, (55)

a form  which m ay be com pared w ith  the  corresponding expression for the 

cylinder in (29).
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530 P ro f . T . H . H a v e lo c k . Cases

A  and B are g iven  by (14) w hen we rep lace c by  ccos<£; p u ttin g  these 

values in  (55), we see th a t  we m ay  change th e  o rder of in teg ra tio n . F u r th e r , 

as we m ake fx van ish  u ltim a te ly , we m ay use sim plified form s of A

corresponding  to (16). These give

-o , o « r 12a , j ,fx K2e~2*fdie
E  =  4 * „ C« w j o Se o ^ # J o (K _ Koaec^ )2 +  W c )2 se c ^ .

To ob tain  th e  lim itin g  va lue  for fx zero we 

expressions in  (3 0 ); or, a lte rn a tiv e ly , we m ay p u t  (//,/c) sec </> =  and  use 

th e  general re su lt

L im
n  - >  oo

f& /  (x) dx

J„ 1  + n 2(x— u)2
k  { / ( * - 0 ) + / ( «  +  0)}.

The a p p a re n t d ifficu lty w ith  re g a rd  to va lues of <f> near 7 r/2  is overcom e by 

no tic ing  th a t  w ith  th e  p a rtic u la r  fu n ctio n s invo lved  in  R  no e x tra  c o n tr ib u 

tion  arises from  such te rm s n ear  th e  u p p e r lim its  of th e  variables. C arry ing  

ou t the  in te g ra tio n  in  k  in  th is  way, and  chang ing  th e  rem ain in g  variab le by 

p u ttin g  ta n  </> =  t ,we ob ta in

R
poo

4t rg4Pa6c -&e - 2̂  J (1 + (56)

The rem ain in g  in te g ra l can be exp ressed  in  te rm s of know n  functions. 

Possib ly  th e  sim p lest m eth od  is to use th e  con fluent hypergeom etric  

function*  defined, for rea l positive  va lues of a  a n d  for rea l values of and  m  

for w hich k —m  — £ < 10 , by

p-a.12 k r00

w  k,m (a )  =  Y i k — h + m )Jo u ~k~i+m (1 +  u

W e have now  th e  w ave res istance  of th e  sphere  g iven by

R  =  l ' JT^gpaQf - s^ 2e - ^ w 1,1 ( « ) ;  a  =  2gfjc2. 

8. F o r  purposes of ca lcu la tion , we req u ire  expansions of W i,i(« ) . This 

function  belongs to  th e  logarithm ic  ty p e  of confluent hypergeom etric  function, 

and  general expansions a re  no t availab le  in  th is  case ; how ever, the y  can be 

ob tained  w itho u t difficulty fo r -W i,i .  In  th e  firs t place, th e  d ifferential 

equation  satisfied  by W u  is

da.2 \  4
0. (59)

W e use th e  o rd inary  m ethods for solving by m eans of pow er series. The 

roots of th e  ind ic ial equation  are and  — J  ; Renee one of the  fu ndam en ta l *

* E . T . W h it ta k e r ,  ‘ B u ll. A m e r. M a th . Soc.,’ vol. 10, p. 125 ; a lso  W h it ta k e r  a n d  

W a tso n , ‘M o d e rn  A n a ly s is ,’ C hap. X V I .
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W ave M otion  due  to a  Subm erged  Obstacle. 531

solutions will conta in  logarithm s. C alcula ting  th e  coefficients s tep  by  step , 

we ob tain  as a fundam en ta l system

y x _  a 3/2 (1  — a  +  a 2 -/-g-«3 +  p-gT-g-a4 • • *) "1

V* =  ^i l og-« +  a _3/2( —f  —f a  +  | a 3 — J

We know th a t  Wm  is a lin ear function  of and  ; however, i t  is s im p ler to 

ob tain  an expansion  d irec tly  and  use (60) to verify  it. F o r th is  purpose  we 

use the  equ iva len t contou r in teg ra l for th e  confluent hypergeom etric  function ,

W k, m

ake a/2 rooi r ( s ) r ( — s— k~*s — w  n

2 t  ri }_„i r ( ~ k - m  +  ls)T(~lc +  m +  \ )  ’  1 j

where th e  con tou r has loops if necessary, so th a t  th e  poles of T (s) and  those  

of r  ( — s — k —m  + 1) r  ( — s — k  +  m  + -|) 

in teg ra l can be eva lua ted  by th e  m ethod of residues. W hen  k ~  m =  1, the  

poles a t which th e  residues have to  be found are  sim ple poles a t s =  — — f ,

together w ith  double poles a t  s j = . . . .  The la t te r  series gives rise to

logarithm ic residues. C a rry ing  ou t th e  ca lcu lation , we obtain

w -  =  { « - a,2+l  1  “  !  r o ^ r  S + 9 )

+  i* r* (7 - 2 1 o g 2 - | )  +  f  “" ^ ( p  +  n r ^  +  S ) } ’ (62)

w here  y  is E u le r ’s c o n s ta n t 0*5772.... T he  coefficients m ay  be p u t  in to  

a lte rn a tiv e  fo rm s m ore su ited  for ca lcu la tio n  ; for in stan ce

___ r ( p
dpr  ( p + 1) r  ( p + -3)

1 . 3 . 5 . . . ( 2  p —1 ) 7r®

2^ . p  ! ( p  +  2 ) !
{ 7 - 2 1 o g 2 +  | - ^ - : r )

For num erical calculation  we have

W i ,  i  =  ^  7T 0 2 a 3/2g a/2 | . 4 , 3 ,  5 -L "I---- r  . +  — a +
3 a 2 a  2 36

Jffi

3 8 4 1280

f 7 -f- log -  «
1 * g - + S “ , + i T 2 “ , + -

(6 3 )

The expansion may be confirmed by com parison w ith  the  fundam en ta l 

solutions of the  differential equation  given in (60 ); we find th a t

(8/3)t t*Wi,i =  (2 lo g 2 —7 —^)2/!—?/2.

For large values of a th e  general asym ptotic  expansion of W*, m is a v a ila b le ; 

and in th is case we have

9 a/2 i  +  3 i + i L I .
4  a  32  a 2

15

128 ar.+ (6 4 )
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9. W ith  (63) and (64) we can now ca lcu la te  the  res istance  E  from  (58). 

Fo r a given dep th  / ,  th e  v aria tion  of th e  res istance  w ith  th e  veloc ity  is shown 

in  th e  follow ing curve, for which E  has been calcu la ted  for various values of

c ! V ( 9f \

532 Som e Cases o f  W ave  M otion  due  a  Subm erged  Obstacle.

The cu rve  is very  sim ilar in  form  to th e  tw o-dim ensional case of a c ircu lar 

cylinder. F o r sm all velocities, th a t  is a large, if we tak e  th e  first te rm  of the  

asym pto tic  expansion  (64), we have

E  =  j / )  . paFc~be~2vf/c\

which m ay  be compared  w ith  (30 ) for th e  cy linder. I t  is of in te re s t to 

notice th e  sim ilar law  of v a ria tio n  of wave resistance  w ith  speed for th e  few 

cases of rig id  bodies w hich  have  been w orked out. The m etho d  adop ted here 

can be applied  to bodies; of d ifferen t form s, and  i t  is hoped to  illu s tra te  la te r  

som e in terference  effects.
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