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Abstract: The topic of convex and nonconvex mapping has many applications in engineering and
applied mathematics. The Aumann and fuzzy Aumann integrals are the most significant interval and
fuzzy operators that allow the classical theory of integrals to be generalized. This paper considers the
well-known fuzzy Hermite–Hadamard (HH) type and associated inequalities. With the help of fuzzy
Aumann integrals and the newly introduced fuzzy number valued up and down convexity (UD-
convexity), we increase this mileage even further. Additionally, with the help of definitions of lower
UD-concave (lower UD-concave) and upper UD-convex (concave) fuzzy number valued mappings
(FNVMs), we have gathered a sizable collection of both well-known and new extraordinary cases
that act as applications of the main conclusions. We also offer a few examples of fuzzy number
valued UD-convexity to further demonstrate the validity of the fuzzy inclusion relations presented
in this study.
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1. Introduction

Many fields make use of the convexity of functions such as game theory, variational
science, mathematical programming theory, economics, and optimal control theory. Convex
analysis, a brand-new mathematics branch, started taking shape in the 1960s. Many writers
have employed related concepts of convexity during the past 20 years and generalized other
inequalities, including h-convex functions (see References [1–10]), log convex functions (see
References [11–19], and coordinated convex functions (see References [20,21]). Convexity
is a fundamental term in optimization theory applied in operations research, economics,
control theory, decision-making, and management. Several writers have expanded and
generalized integral inequalities using various convex functions; see Refs. [22,23]. For more
information, see [24–33] and references therein.

Calculating mistakes in a numerical analysis has always been difficult. The interval
analysis has received a lot of attention as a novel method for resolving uncertainty issues
because of its capacity to reduce calculation errors and make calculations meaningless.
Set-valued analysis, a set-centric approach to mathematics and topology, includes interval
analysis. It deals with interval variables rather than point variables, and the computation
results are expressed as intervals; therefore, it removes mistakes that lead to incorrect
conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to
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deal with data uncertainty in 1966. The work garnered a lot of attention from academics
and led to an improvement in calculation performance. They are helpful in many applica-
tions because of their capacity to be expressed as uncertain variables, including computer
graphics [35], automatic error analysis [36], decision analysis [37], etc. There are numerous
great applications and results for readers interested in interval analysis in other branches
of mathematics; see References [38–53].

On the other hand, a generalized convexity mapping has the potential to solve a wide
range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities
such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard
that are extended in the setting of interval-valued functions (IVM) have been constructed
using a variety of related classes of convexity. Chalco-Cano [54] established interval-based
inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type
inequalities for IVMs were developed by Costa in [55]. The Minkowski inequalities
for IVMs were one of the inequalities suggested by Beckenbach and Roman-Flores [56].
According to the literature assessment, the majority of authors used an inclusion connection,
similarly to in 2018, to evaluate inequality. These inequalities were created by Zhao et al. [57]
for the harmonic h-convex IVMs and the h-convex IVMs. The authors who came after
used both harmonical (h1, h2)-convex functions and (h1, h2)-convex functions to create these
inequalities; for more information, see Refs. [58–75].

Using the radius and interval midpoint, Bhunia and his co-author defined the center-
radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, harmonically
cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and his co-authors;
see References [77–88]. Our examination of the literature showed that inclusion and
fuzzy inclusion relations are the main sources of the majority of these discrepancies. The
fundamental benefit of the up and down fuzzy relation for up and down functions is
that the inequality term generated by employing these conceptions is more exact, and the
argument’s validity can be supported by intriguing examples of illustrated theorems. For
further study related to interval-valued functions and fuzzy mappings, see [89–111].

This study provides an introduced class of convexity based on the fuzzy inclusion
order and is known as UD-convex FNVMs, and is inspired by Refs. [56,57]. We create
new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen
inequality is developed. The study includes a variety of examples to help bolster the results
reached.

The article is formatted as follows, in order: Section 2 gives some background informa-
tion. Section 3 each provide an overview of the primary conclusions. A succinct conclusion
is explored in Section 4.

2. Preliminaries

We recall a few definitions, which can be found in the literature and that will be
relevant in the follow-up.

Let us consider that Xo is the space of all closed and bounded intervals of R, and that
S ∈ Xo is given by

S = [S∗, S∗] = {w ∈ R| S∗ ≤ w ≤ S∗, S∗, S∗ ∈ R}, (1)

If S∗ = S∗, then S is degenerate. In the follow-up, all intervals are considered non-
degenerate. If S∗ ≥ 0, then S is positive. We denote by X+

o = {[S∗, S∗] : [S∗, S∗] ∈ Xo
and S∗ ≥ 0} the set of all positive intervals.

Let
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We consider the Minkowski sum, S +O, product, S ×O, and difference, O − S , for
S ,O ∈ Xo, as

[O∗, O∗] + [S∗, S∗] = [O∗ + S∗, O∗ + S∗], (3)

[O∗, O∗]× [S∗, S∗] = [min{O∗S∗, O∗S∗, O∗S∗, O∗S∗}, max{O∗S∗, O∗S∗, O∗S∗, O∗S∗}] (4)

[O∗, O∗]− [S∗, S∗] = [O∗ − S∗, O∗ − S∗]. (5)

Remark 1.
(i) For given [O∗, O∗], [S∗, S∗] ∈ RI , the relation “ ⊇I ”, defined on RI by

[S∗, S∗] ⊇I [O∗, O∗] if and only if S∗ ≤ O∗, O∗ ≤ S∗, (6)

for all [O∗, O∗], [S∗, S∗] ∈ RI , is a partial interval inclusion relation. Moreover, [S∗, S∗] ⊇I
[O∗, O∗] coincides with [S∗, S∗] ⊇ [O∗, O∗] on RI . The relation “ ⊇I ” is of UD order [105].

(ii) For given [O∗, O∗], [S∗, S∗] ∈ RI , the relation “ ≤I ”, defined on RI by [O∗, O∗] ≤I
[S∗, S∗] if and only if O∗ ≤ S∗, O∗ ≤ S∗ or O∗ ≤ S∗, O∗ < S∗, is a partial interval order
relation. Plus, we have [O∗, O∗] ≤I [S∗, S∗] that coincides with [O∗, O∗] ≤ [S∗, S∗] on RI .
The relation “ ≤I ” is of the left and right (LR) type [104,105].

Given the intervals [O∗, O∗], [S∗, S∗] ∈ Xo, their Hausdorff–Pompeiu distance is

dH([O∗, O∗], [S∗, S∗]) = max{|O∗ − S∗|, |O∗ − S∗|}. (7)

We have (Xo, dH) that is a complete metric space [94,102,103].

Definition 1 ([93,94]). A fuzzy subset L of R is a mapping S̃ : R→ [0, 1] , a denoted membership
mapping of L. We adopt the symbol to represent the set of all fuzzy subsets of R.

Let us consider S̃ ∈ . If the following properties hold, then S̃ is a fuzzy number:

(1) S̃ is normal if there exists w ∈ R and S̃(w) = 1;
(2) S̃ is upper semi-continuous on R if for a w ∈ R there exists ε > 0 and δ > 0 yielding

S̃(w)− S̃(y) < ε for all y ∈ R with |w− y| < δ;
(3) S̃ is a fuzzy convex, meaning that S̃((1−
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(4) S̃ is compactly supported, which means that cl

{
w ∈ R

∣∣∣ S̃(w)
〉

0
}

is compact.

The symbol o will be adopted to designate the set of all fuzzy numbers of R.

Definition 2. ([93,94]). For S̃ ∈ o, the
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∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

-level, or
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w ∈ R

∣∣∣ S̃(w)
〉
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∈ [0, 1], and
[
S̃
]0

=
{
w ∈ R

∣∣∣ S̃(w)
〉

0
}

.

Proposition 1. ([96]). Let S̃ , Õ ∈ o. The relation “ ≤F ”, defined on o by

S̃ ≤F Õ when and only when
[
S̃
]
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yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

∈ [0, 1], (9)

is an UD order relation.
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Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

×
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results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by � S̃
]
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∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

=
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S̃ , Õ
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(IA)
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b
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∫ z
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b
H∗(w)dw

 (14)

Definition 3 ([104]). Let H̃ : I ⊂ R→ o be a FNVM. The family of IVMs, for every
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∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
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�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 
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) are
continuous at w ∈ I.

Definition 5 ([95]). Let H̃ : [b, z] ⊂ R→ o be a FNVM. The fuzzy Aumann integral (FA-
integral) of H̃ over [b, z] is[

(FA)
∫ z
b H̃(w)dw

]
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membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 
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Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 
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[0, 1]. Moreover, H̃ is (FA)-integrable over [b, z] if (FA)

∫ z
b H̃(w)dw ∈ o.

Theorem 3 [96]. Let H̃ : [b, z] ⊂ R→ o be a FNVM, whose
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) are
integrable over [b, z]. Moreover, if H̃ is (FA)-integrable over [b, z], then we have[

(FA)
∫ z

b
H̃(w)dw

]
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∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 
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(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)dw,
∫ z

b
H∗(w,
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)dw
]
= (IA)

∫ z

b
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Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 
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�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

∈ [0, 1].
Breckner discussed the coming emerging idea of interval-valued convexity in [97].
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An I·V·M H : I = [b, z]→ Xo is called convex I·V·M if

H(
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Definition 6 ([89]). The FNVM H̃ : [b, z]→ o is called convex FNVM on [b, z] if

H̃(
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𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

-cuts define the family of inteval-
valued mappings H
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Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
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(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 
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Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 
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ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  
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∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

) is a concave mapping.

Remark 2. If H∗(w,
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∗ − 𝒮∗|}. (7) 
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Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 
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(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

) and

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

= 1, then we obtain the inequality (17).
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∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 
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ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
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≤𝐼 [�̃�]

ʚ
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is a LR order relation.  
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is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

= 1, then we obtain the classical definition of convex
mappings.

Now we have obtained some new definitions from the literature which will be helpful
to investigate some classical and new results as special cases of main results.

Definition 8. ([79]). Let H̃ : [b, z]→ o be a FNVM, whose
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-cuts define the family of IVMs
H
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H
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Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
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Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 
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⊇𝐼 [�̃�]
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, for every ʚ ∈ [0, 1], (9) 
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∈ [0, 1]. Then, H̃ is lower UD-convex (concave) FNVM on [b, z],
if and only if, for all
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∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

∈ [0, 1], H∗(w,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  
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∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

) is a convex (concave) mapping and H∗(w,
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(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

) is an
affine mapping.

Definition 9. ([79]). Let H̃ : [b, z]→ o be a FNVM, whose
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∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮
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ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

-cuts define the family of IVMs
H
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∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

: [b, z]→ X+
o ⊂ Xo are given by

H

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

(w) = [H∗(w,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

), H∗(w,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)], (22)
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�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
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is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 
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∈ [0, 1]. Then, H is upper UD-convex (concave) FNVM on
[b, z], if and only if, for all
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Remark 3. Both concepts “UD-convex FNVM” and classical “convex FNVM, see [41]”
behave alike when H̃ is lower UD-convex FNVM.

3. Fuzzy Number Hermite–Hadamard Inequalities

In this section, we propose Hermite–Hadamard and Hermite–Hadamard–Fejér in-
equalities for UD-convex FNVMs, and verify with the help of nontrivial examples.

Theorem 5. Let H̃ : [b, z]→ o be a UD-convex FNVM on [b, z], whose
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), then

H̃
(
b+ z

2

)
⊇F

1
z− b

� (FA)
∫ z

b
H̃(w)dw ⊇F

H̃(b) ⊕ H̃(z)
2

. (23)

If H̃(w) concave FNVM, then (23) is reversed.

Proof. Let H̃ : [b, z]→ o be a UD-convex FNVM. Then, by hypothesis, we have

2H̃
(
b+ z

2

)
⊇F H̃(
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∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

∈ [0, 1], we have

2H∗
(
b+ z

2
,
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∗, 𝒪∗ − 𝒮∗]. (5) 
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(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

),

2H∗
(
b+ z

2
,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)
≥ H∗(

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by b+ (1−
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yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

) +H∗((1−

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by )b+
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[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

).

Then
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∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)d
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more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 
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This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 
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conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 
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𝒮 ∈ 𝕏𝑜 is given by 
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If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥
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The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  
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ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 
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0
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is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮
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2
∫ 1

0 H
∗
(
b+ z

2
,
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Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by ≥
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∗(

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by b+ (1−

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by )z,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 
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of ℝ. 
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(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 
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(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)d
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It follows that

H∗
(
b+ z

2
,
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We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 
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Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 
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(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
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⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)
≤ 1
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Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 
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Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 
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]
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Thus,

H̃
(
b+ z

2

)
⊇F

1
z− b

� (FA)
∫ z

b
H̃(w)dw. (24)

In a similar way as above, we have

1
z− b

� (FA)
∫ z

b
H̃(w)dw ⊇F

H̃(b) ⊕ H̃(z)
2

. (25)

Combining (24) and (25), we have

H̃
(
b+ z

2

)
⊇F

1
z− b

� (FA)
∫ z

b
H̃(w)dw ⊇F

H̃(b) ⊕ H̃(z)
2

.
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Hence, the required result. �

Remark 4. The following are some exceptional cases which can be obtained from inequality (23):

If one laysH is lower UD-convex FNVM on [b, z], then one acquires the following
coming inequality, see [90]:

H
(
b+ z

2

)
≤F

1
z− b

� (FA)
∫ z

b
H(w)dw ≤F

H(b)⊕H(z)
2

(26)

If one takesH is lower UD-convex FNVM on [b, z] and
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following coming inequality, see [98]:

H
(
b+ z

2

)
≤I

1
z− b

(IA)
∫ z

b
H(w)dw ≤I

H(b) +H(z)
2

(27)

Let
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H
(
b+ z

2

)
⊇ 1

z− b
(IA)

∫ z

b
H(w)dw ⊇ H(b) +H(z)

2
. (28)
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). Then, from Theorem 5, we achieve the classical
Hermite–Hadamard inequality.

Example 1. Let w ∈ [2, 3], and the FNVM H̃ : [b, z] = [2, 3]→ o, defined by

H̃(w)(θ) =



θ − 2 +w

1
2

1−w

1
2

θ ∈

2−w

1
2 , 3

,

2 +w

1
2 − θ

w

1
2 − 1

θ ∈

3, 2 +w

1
2

,

0 otherwise,

(29)

Then,foreach
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membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 
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Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
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We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 
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Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 
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Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
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≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  
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, for every ʚ ∈ [0, 1], (9) 
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The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
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, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 
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)dw =
∫ 3

2

(
(1 +

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 
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�̃� ≤𝔽 �̃� when and only when [�̃�]
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∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮
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Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 
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is a LR order relation.  
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membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 
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Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 
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Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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0
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Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  
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]
,

Hence,

H̃
(
b+ z

2

)
⊇F

1
z− b

� (FA)
∫ z

b
H̃(w)dw ⊇F

H̃(b)⊕ H̃(z)
2

,

and Theorem 5 is verified.

Theorem 6. Let H̃ : [b, z]→ o be a UD-convex FNVM on [b, z], whose
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Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by b+ (1−
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connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by b+ (1−
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Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

∈ [0, 1], we have

2H∗
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∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
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(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
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∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by )b+

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
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[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
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∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 
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Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
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= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 
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0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
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ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  
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ʚ
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is an UD order relation. 
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∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)
.

In consequence, we obtain
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It follows that
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4
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1
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∫ b+z
2

b
H̃(w)dw. (31)

In a similar way as above, we have
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4

)
2

⊇F
1

z− b
� (FA)
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2

H̃(w)dw. (32)

Combining (31) and (32), we have[
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4

)]
2

⊇F
1

z− b
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By using Theorem 5, we have
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4
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Therefore, for every
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Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 
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(
b+ z

2

)
⊇F T2 ⊇F

1
z− b

� (FA)
∫ z

b
H̃(w)dw ⊇F T1 ⊇F

H̃(b) ⊕ H̃(z)
2

,

hence, the result follows. �

E x a m p l e 2 . W e c o n s i d e r t h e F N VM H̃ : [ b , z ] = [ 2 , 3 ] → o d e f i n e d b y ,
H
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]
, as in Example 1, then H̃(w) is
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∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 
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(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮
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We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
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We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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Remark 1. 
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∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
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∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
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∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
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∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 
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∗] × [𝒮∗, 𝒮
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∗𝒮∗, 𝒪∗𝒮
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∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 
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.

Hence, Theorem 6 is verified.

We now obtain some HH-inequalities for the product of UD-convex FNVMs. These
inequalities are refinements of some known inequalities, see [57].
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Theorem 7. Let H̃, T̃ : [b, z]→ o be two UD-convex FNVMs on [b, z], whose
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), then

1
z− b

� (FA)
∫ z

b
H̃(w)⊗ T̃(w)dw ⊇F

M̃(b, z)
3

⊕ Ñ (b, z)
6

. (33)

where M̃(b, z) = H̃(b)⊗ T̃(b)⊕ H̃(z)⊗ T̃(z), Ñ (b, z) = H̃(b)⊗ T̃(z)⊕ H̃(z)⊗ T̃(b), and
M
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membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 
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for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 
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∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  
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∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  
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Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 
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yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 
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(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  
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)dw ≥ B∗((b, z),

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)
∫ 1

0 ς2dς + C∗((b, z),

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)
∫ 1

0 ς(1− ς)dς,

that is
1

z− b

[∫ z

b
H∗(w,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)× T∗(w,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)dw,
∫ z

b
H∗(w,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)× T∗(w,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)dw
]

⊇I

[
B∗((b, z),

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)

3
,
B∗((b, z),

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
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membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 
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�̃� ≤𝔽 �̃� when and only when [�̃�]
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ʚ
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If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)

3

]
+

[
C∗((b, z),

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)

6
,
C∗((b, z),

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)

6

]
.



Mathematics 2023, 11, 550 12 of 23

Thus,
1

z− b
� (FA)

∫ z

b
H̃(w)⊗ T̃(w)dw ⊇F

M̃(b, z)
3

⊕ Ñ (b, z)
6

.

And the theorem has been established. �

Example 3. Let [b, z] = [0, 2], and the FNVMs H, T : [b, z] = [0, 2]→ o, defined by

H(w)(θ) =


θ

w
θ ∈ [0, w],

2w− θ

w
θ ∈ (w, 2w],

0 otherwise,

T(w)(θ) =


θ −w

2−w
θ ∈ [w, 2],

8− ew − θ

8− ew − 2
θ ∈ (2, 8− ew],

0 otherwise.

Then, for each

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

∈ [0, 1], we haveH

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

(w) = [

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

w, (2−

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)w] and T

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 
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Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 
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ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 
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)w, are convex and concave mappings, respectively, and T∗(w,
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We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 
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𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 
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The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  
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= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 
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(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)
.

Note that
∆∗(b, z) = [H∗(b)× T∗(b) +H∗(z)× T∗(z)] = 4
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[105]. 

(ii) For given [𝒪∗, 𝒪
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∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

,

∆∗(b, z) = [H∗(b)× T∗(b) +H∗(z)× T∗(z)] = 2(2−
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∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)
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(1−
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We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 
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The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
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)
(
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[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

]
,

∇∗(b, z) = [H∗(b)× T∗(z) +H∗(z)× T∗(b)] = 4
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0
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Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 
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2,

∇∗(b, z) = [H∗(b)× T∗(z) +H∗(z)× T∗(b)] = 2(2−
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∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  
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∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
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is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)(7− 5
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∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 
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If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

).

Therefore, we have
1
3
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∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 
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The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  
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is a LR order relation.  
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+ 7
]]

,

and Theorem 7 has been demonstrated.
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Theorem 8. Let H̃, T̃ : [b, z]→ o be two UD-convex FNVMs, whose
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Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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ʚ
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results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by )b+
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The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  
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ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  
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�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 
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conclusion is explored in Section 4. 
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𝒮 ∈ 𝕏𝑜 is given by 
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ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  
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�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 
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who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by )T∗(b,
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∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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illustrated theorems. For further study related to interval-valued functions and fuzzy 
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order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 
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information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by T∗(z,
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∗], [𝒮∗, 𝒮
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We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 
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(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
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0} the set of all positive intervals.  
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inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 
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Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥
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(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 
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The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 
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0
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Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
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is a LR order relation.  
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information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by T∗(b,
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Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by )b+
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Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 
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(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 
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The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  
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information. Sections 3 each provide an overview of the primary conclusions. A succinct 
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We recall a few definitions, which can be found in the literature and that will be 
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Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 
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∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-
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= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
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new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 
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results reached. 
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information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 
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We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  
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∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪
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∗] coincides with [𝒮∗, 𝒮
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∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 
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∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
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∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 
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∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
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≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
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This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 
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results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by )H∗(b,
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∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

H∗(z,
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who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by T∗(b,
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Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮
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𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by b+ (1−
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= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 
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0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)
+H∗((1−

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by )b+

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by z,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)× T∗((1−

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by )b+

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by z,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 
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(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 
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The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  
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ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  
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�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 
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ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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applications because of their capacity to be expressed as uncertain variables, including 
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branches of mathematics; see References [38–53]. 
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inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by (1−
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Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
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0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  
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is a LR order relation.  
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ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  
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ʚ
, for every ʚ ∈ [0, 1], (8) 
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ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 
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results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by 2 + (1−
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Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 
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, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  
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[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)

]
.

Taking integration over [0, 1], we have

2H∗
(
b+ z

2
,
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membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 
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that is

2 H̃
(
b+ z

2

)
⊗ T̃

(
b+ z

2

)
⊇F

1
z− b

� (FA)
∫ z

b
H̃(w)⊗ T̃(w)dw ⊕ M̃(b, z)

6
⊕ Ñ (b, z)

3
.

Hence, the required result. �

Example 4. We consider the FNVMs H̃, T̃ : [b, z] = [0, 2]→ o . Then, for each
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ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 
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𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
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ʚ
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Example 3, then H̃ and T̃ both are UD-convex mappings. We haveH∗(w,
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Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)dw =
1
2

2∫
0

(

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
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[105]. 
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∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
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∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 
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ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 
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∗ − 𝒮∗|}. (7) 
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Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  
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ʚ
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We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 
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(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
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= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 
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Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
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≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  
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, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 
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membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 
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(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 
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0
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Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  
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∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 
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0
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Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
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≤𝐼 [�̃�]

ʚ
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∇∗(b, z) = [H∗(b)× T∗(z) +H∗(z)× T∗(b)] = 4
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We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 
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The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
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0
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Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
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≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  
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If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 
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Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
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= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
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⊇𝐼 [�̃�]
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, for every ʚ ∈ [0, 1], (9) 
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∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
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∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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]]

,

and Theorem 8 has been demonstrated.

We now give HH-Fejér inequalities for UD-convex FNVMs. Firstly, we obtain the
second HH-Fejér inequality for UD-convex FNVM.

Theorem 9. Let H̃ : [b, z]→ o be a UD-convex FNVM with b < z, whose
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ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  
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∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 
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∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

: [b, z] ⊂ R→ X+
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H(w)�B(w)dw ⊇F [H(b)⊕H(z)]�

∫ 1

0
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relevant in the follow-up. 
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ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 
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ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
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down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by b+ (1−

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by )z)
≥ (

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by H∗(b,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 
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ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

))B(
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Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by b+ (1−
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Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪
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∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 
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𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  
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ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]
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, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)B((1−

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 
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∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

) +
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�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 
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Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 
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If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-
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membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 
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(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

) +
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Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

))B((1−
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After adding (36) and (37), and integrating over [0, 1], we get∫ 1
0 H∗(
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Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)B(

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by b+ (1−

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by )z)d

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by 

+
∫ 1

0 H∗((1−

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by )b+

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by z,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 
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∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
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∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)B((1−
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for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮
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[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
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(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮
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[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
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∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

){
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for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
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∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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ʚ
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is a LR order relation.  
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ʚ
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ʚ
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Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)B(
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∗] that coincides with [𝒪∗, 𝒪
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Given the intervals [𝒪∗, 𝒪
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𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)
∫ 1

0
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Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)
∫ 1

0
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(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 
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(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)
∫ 1

0

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by B(

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by b+ (1−

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by )z)d

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by + 2H∗(z,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
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yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 
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The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  
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ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 
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0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)
∫ 1

0
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= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
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𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  
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0
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ʚ
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ʚ
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is a LR order relation.  
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ʚ
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ʚ
, for every ʚ ∈ [0, 1], (9) 
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results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by B((1−
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(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 
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ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)B(
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∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  
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∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 
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We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  
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results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by B((1−

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by )b+

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by z)d

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by .

(38)

Since ∫ 1
0 H∗(

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by b+ (1−

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by )z,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 
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∗], [𝒮∗, 𝒮
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[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
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∗] ⊇ [𝒪∗, 𝒪
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∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)B(
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We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)B((1−
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Remark 1. 
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[𝒮∗, 𝒮
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∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)B(
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∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)B(w)dw

(39)

Then from (38), we have

1
z−b

∫ z
b H∗(w,
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We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 
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) +H∗(z,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)]
∫ 1

0

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 
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deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 
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numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 
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inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by B((1−
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1

z−b
∫ z
b H
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∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)B(w)dw ≥ [H∗(b,
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results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by B((1−
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(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
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order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 
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Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

-cuts define
the family of IVMs H
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yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
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0
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Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
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≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 
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) and B : [b, z]→ R, B(w) ≥ 0,
symmetric with respect to b+z

2 , and
∫ z
b B(w)dw > 0, then

H̃
(
b+ z

2

)
⊇F

1∫ z
b B(w)dw

� (FA)
∫ z

b
H̃(w)�B(w)dw. (40)

Proof. Since H̃ is a UD-convex, then for
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results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 
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inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 
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connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  
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∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
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∗] coincides with [𝒮∗, 𝒮
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[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
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∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  
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∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 
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inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by )b+
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[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  
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ʚ
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ʚ
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ʚ
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)),
(41)
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ʚ
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is a LR order relation.  
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ʚ
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ʚ
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ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 
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0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 
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Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 
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Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 
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ʚ
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ʚ
, for every ʚ ∈ [0, 1], (9) 
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) ∫ 1
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for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪
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∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪
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∗] that coincides with [𝒪∗, 𝒪
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∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 
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The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)B(
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Remark 1. 
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∗], [𝒮∗, 𝒮
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[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪
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∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 
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∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  
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∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 
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(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)B((1−
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Remark 1. 
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[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 
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∗], [𝒮∗, 𝒮
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∗] that coincides with [𝒪∗, 𝒪
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We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 
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𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 
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The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)B(

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by b+ (1−

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by ;)z)d

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by 

=
∫ 1

0 H∗((1−

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by )b+

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 23 
 

 

results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by z,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
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[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 
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∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
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∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 
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that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 
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inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by )b+
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Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 
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(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 
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(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)B((1−
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∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
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Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)B(
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ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  
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membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)B(w)dw,
∫ z
b H

∗(w,
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Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 
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)B(w)dw
]
,

that is

H̃
(
b+ z

2

)
⊇F

1∫ z
b B(w)dw

� (FA)
∫ z

b
H̃(w)�B(w)dw.

This completes the proof. �

Remark 5. From Theorem 9 and Theorem 10, we clearly see that:
If W(w) = 1, then we acquire the inequality (23).
If H is lower UD-convex FNVM on [b, z], then we acquire the following coming inequality,

see [90]:

H
(
b+ z

2

)
≤F

1∫ z
b W(w)dw

� (FA)
∫ z

b
H(w)�W(w)dw ≤F

H(b)⊕H(z)
2

. (44)

If H is lower UD-convex FNVM on [b, z] with
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∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
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We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 
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yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 
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ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 
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ʚ
⊇𝐼 [�̃�]

ʚ
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is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

= , then from (35) and (40) we acquire
the following coming inequality, see [99]:

H
(
b+ z

2

)
≤I

1
z− b

(IA)
∫ z

b
H(w)dw ≤I

H(b) +H(z)
2

. (45)

If H is lower UD-convex FNVM on [b, z] with
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H
(
b+ z

2

)
≤I

1∫ z
b W(w)dw

(IA)
∫ z

b
H(w)W(w)dw ≤I

H(b) +H(z)
2

. (46)

Let
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∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 
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(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
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≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  
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�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 
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= . Then from (35) and (40), we acquire the following inequality, see [56]:

H
(
b+ z

2

)
⊇ 1∫ z

b W(w)dw
(IA)

∫ z

b
H(w)W(w)dw ⊇ H(b) +H(z)

2
. (47)

Let
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1
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3
2
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1
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1
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3
2

, 2 +w

1
2

,
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then B(2−w) = B(w) ≥ 0, for all w ∈ [0, 2].
SinceH∗(w,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

) = (1−

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)
(

2−w
1
2

)
+ 3

2

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

andH∗(w,

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

) = (1 +

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)
(

2 +w
1
2

)
+ 3

2

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

. Now
we compute the following:

1
z− b

∫ z
b [H∗(w,
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ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)]B(w)dw =
1
2
∫ 2

0 [H∗(w,
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ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)]B(w)dw

=
1
2
∫ 1

0 [H∗(w,
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[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)]B(w)dw+
1
2
∫ 2

1 H∗(w,
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[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)B(w)dw,
1

z− b

∫ z
b [H

∗(w,
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∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)]B(w)dw =
1
2
∫ 2

0 [H
∗(w,
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∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)]B(w)dw

=
1
2
∫ 1

0 [H
∗(w,
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∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)]B(w)dw+
1
2
∫ 2
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[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 
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∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 
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∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
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∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪
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∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 
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(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

](√
w
)
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∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 
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∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)
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[105]. 
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∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

](√
2−w
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membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
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ʚ
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results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 
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applications because of their capacity to be expressed as uncertain variables, including 
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inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 
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connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  
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0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by 

=
[
4(1−

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 
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𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 
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(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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√
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results are expressed as intervals; therefore, it removes mistakes that lead to incorrect 

conclusions. Moore [34] first adapted an interval analysis to automatic error analysis to 

deal with data uncertainty in 1966. The work garnered a lot of attention from academics 

and led to an improvement in calculation performance. They are helpful in many 

applications because of their capacity to be expressed as uncertain variables, including 

computer graphics [35], automatic error analysis [36], decision analysis [37], etc. There are 

numerous great applications and results for readers interested in interval analysis in other 

branches of mathematics; see References [38–53]. 

On the other hand, a generalized convexity mapping has the potential to solve a wide 

range of issues in both a nonlinear and pure analysis. Recently, well-known inequalities 

such as Jensen, Simpson, Opial, Ostrowski, Bullen, and the famous Hermite–Hadamard 

that are extended in the setting of interval-valued functions (𝐼𝒱ℳ) have been constructed 

using a variety of related classes of convexity. Chalco-Cano [54] established interval-based 

inequalities for the Ostrowski type using a derivative of the Hukuhara type. Opial-type 

inequalities for 𝐼𝒱ℳs were developed by Costa in [55]. The Minkowski inequalities for 

𝐼𝒱ℳs were one of the inequalities suggested by Beckenbach and Roman-Flores [56]. 

According to the literature assessment, the majority of authors used an inclusion 

connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by 
√
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[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

)−
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Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 
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�̃� ≤𝔽 �̃� when and only when [�̃�]
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∫ 1

0
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∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

) +
√

2(1 +
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connection, similarly to in 2018, to evaluate inequality. These inequalities were created by 

Zhao et al. [57] for the harmonic h-convex 𝐼𝒱ℳs and the h-convex 𝐼𝒱ℳs. The authors 

who came after used both harmonical (ℎ1, ℎ2)-convex functions and (ℎ1, ℎ2)-convex 

functions to create these inequalities; for more information, see Refs. [58–75]. 

Using the radius and interval midpoint, Bhunia and his co-author defined the center-

radius order in 2014; see Ref. [76]. The following findings for the cr-h-convex, 

harmonically cr-h-convex, and cr-h-GL functions were developed in 2022 by Wei Liu and 

his co-authors; see References [77–88]. Our examination of the literature showed that 

inclusion and fuzzy inclusion relations are the main sources of the majority of these 

discrepancies. The fundamental benefit of the up and down fuzzy relation for up and 

down functions is that the inequality term generated by employing these conceptions is 

more exact, and the argument’s validity can be supported by intriguing examples of 

illustrated theorems. For further study related to interval-valued functions and fuzzy 

mappings, see [89–111]. 

This study provides an introduced class of convexity based on the fuzzy inclusion 

order and is known as 𝑈𝒟-convex ℱ𝒩𝒱ℳs, and is inspired by Refs. [56,57]. We create 

new H.H. inequalities with the aid of these innovative ideas, and eventually, the Jensen 

inequality is developed. The study includes a variety of examples to help bolster the 

results reached. 

The article is formatted as follows, in order: Section 2 gives some background 

information. Sections 3 each provide an overview of the primary conclusions. A succinct 

conclusion is explored in Section 4. 

2. Preliminaries 

We recall a few definitions, which can be found in the literature and that will be 

relevant in the follow-up. 

Let us consider that 𝕏𝑜 is the space of all closed and bounded intervals of ℝ, and that 

𝒮 ∈ 𝕏𝑜 is given by 

𝒮 = [𝒮∗, 𝒮
∗] = {𝔴 ∈ ℝ| 𝒮∗ ≤ 𝔴 ≤ 𝒮∗, 𝒮∗, 𝒮

∗ ∈ ℝ}, (1) 

If 𝒮∗ = 𝒮
∗, then 𝒮 is degenerate. In the follow-up, all intervals are considered non-

degenerate. If 𝒮∗ ≥ 0, then 𝒮 is positive. We denote by 𝕏𝑜
+ = {[𝒮∗, 𝒮

∗]: [𝒮∗, 𝒮
∗] ∈ 𝕏𝑜  and 𝒮∗ ≥

0} the set of all positive intervals.  

Let ɷ ∈ ℝ and ɷ ⋅ 𝒮 be given by 
√
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∗] ⊇𝐼 [𝒪∗, 𝒪
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for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮
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[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮
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∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
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(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
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∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 
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∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 
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Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 

[
π

4
− 7

6

]
,

1
4

[
19
3

+
π

2

]
+

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

ɷ ⋅ 𝒮 = {

 
[ɷ𝒮∗, ɷ𝒮

∗] if ɷ > 0,

{0}       if ɷ = 0,
[ɷ𝒮∗, ɷ𝒮∗] if ɷ < 0.

 (2) 

We consider the Minkowski sum, 𝒮 + 𝒪, product, 𝒮 × 𝒪, and difference, 𝒪 − 𝒮, for 

𝒮, 𝒪 ∈ 𝕏𝑜, as 

[𝒪∗, 𝒪
∗] + [𝒮∗, 𝒮

∗]  = [𝒪∗ + 𝒮∗, 𝒪∗ + 𝒮∗], (3) 

[𝒪∗, 𝒪
∗] × [𝒮∗, 𝒮

∗] = [min{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗},max{𝒪∗𝒮∗, 𝒪
∗𝒮∗, 𝒪∗𝒮

∗, 𝒪∗𝒮∗}] (4) 

[𝒪∗, 𝒪
∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮
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∗] coincides with [𝒮∗, 𝒮
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[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
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ʚ
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Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 
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The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  
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ʚ
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for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
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≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
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∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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Hence, Theorem 9 is verified.

For Theorem 10, we have

H∗
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∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
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∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 
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∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮
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𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 
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(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
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0
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Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
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⊇𝐼 [�̃�]
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, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 
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ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  
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∗ − 𝒮∗|}. (7) 
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= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
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 (2) 
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∗] − [𝒮∗, 𝒮

∗]  = [𝒪∗ − 𝒮
∗, 𝒪∗ − 𝒮∗]. (5) 

Remark 1. 

(i) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ”, defined on ℝ𝐼 by 

[𝒮∗, 𝒮
∗] ⊇𝐼 [𝒪∗, 𝒪

∗] if and only if 𝒮∗ ≤ 𝒪∗, 𝒪
∗ ≤ 𝒮∗, (6) 

for all [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , is a partial interval inclusion relation. Moreover, 
[𝒮∗, 𝒮

∗] ⊇𝐼 [𝒪∗, 𝒪
∗] coincides with [𝒮∗, 𝒮

∗] ⊇ [𝒪∗, 𝒪
∗] on ℝ𝐼 . The relation “ ⊇𝐼 ” is of UD order 

[105]. 

(ii) For given [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ ℝ𝐼 , the relation “ ≤𝐼 ”, defined on ℝ𝐼 by 
[𝒪∗, 𝒪

∗] ≤𝐼 [𝒮∗, 𝒮
∗] if and only if 𝒪∗ ≤ 𝒮∗, 𝒪

∗ ≤ 𝒮∗ or 𝒪∗ ≤ 𝒮∗, 𝒪
∗ < 𝒮∗, is a partial interval 

order relation. Plus, we have [𝒪∗, 𝒪
∗] ≤𝐼 [𝒮∗, 𝒮

∗] that coincides with [𝒪∗, 𝒪
∗] ≤ [𝒮∗, 𝒮

∗] on 

ℝ𝐼 . The relation “ ≤𝐼 ” is of the left and right (LR) type [104,105].  

Given the intervals [𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗] ∈ 𝕏𝑜 , their Hausdorff–Pompeiu distance is 

𝑑𝐻([𝒪∗, 𝒪
∗], [𝒮∗, 𝒮

∗]) = max{|𝒪∗ − 𝒮∗|, |𝒪
∗ − 𝒮∗|}. (7) 

We have (𝕏𝑜 , 𝑑𝐻) that is a complete metric space [94,102,103]. 

Definition 1. [93,94] A fuzzy subset 𝐿 of ℝ is a mapping �̃�: ℝ → [0,1], a denoted 

membership mapping of 𝐿. We adopt the symbol ₤ to represent the set of all fuzzy subsets 

of ℝ. 

Let us consider �̃� ∈ ₤. If the following properties hold, then �̃� is a fuzzy number: 

(1) �̃� is normal if there exists 𝔴 ∈ ℝ and �̃�(𝔴) = 1; 

(2) �̃� is upper semi-continuous on ℝ if for a 𝔴 ∈ ℝ there exists 휀 > 0 and 𝛿 > 0 

yielding �̃�(𝔴) − �̃�(𝑦) < 휀 for all 𝑦 ∈ ℝ with |𝔴 − 𝑦| < 𝛿; 

(3) �̃� is a fuzzy convex, meaning that �̃�((1 − ɷ)𝔴 + ɷ𝑦) ≥ min (�̃�(𝔴), �̃�(𝑦)), for all 

𝔴, 𝑦 ∈ ℝ, and ɷ ∈ [0, 1]; 

(4) �̃� is compactly supported, which means that cl{𝔴 ∈ ℝ| �̃�(𝔴) > 0} is compact.  

The symbol ₤𝑜 will be adopted to designate the set of all fuzzy numbers of ℝ.  

Definition 2. [93,94] For �̃� ∈ ₤𝑜, the ʚ-level, or ʚ-cut, sets of �̃� are [�̃�]
ʚ
= {𝔴 ∈ ℝ| �̃�(𝔴) > ʚ} 

for all ʚ ∈ [0, 1], and [�̃�]
0
= {𝔴 ∈ ℝ| �̃�(𝔴) > 0}.  

Proposition 1. [96] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ≤𝔽 ”, defined on ₤𝑜 by 

�̃� ≤𝔽 �̃� when and only when [�̃�]
ʚ
≤𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (8) 

is a LR order relation.  

Proposition 2. [79] Let �̃�, �̃� ∈ ₤𝑜. The relation “ ⊇𝔽 ”, defined on ₤𝑜 by 

�̃� ⊇𝔽 �̃� when and only when [�̃�]
ʚ
⊇𝐼 [�̃�]

ʚ
, for every ʚ ∈ [0, 1], (9) 

is an UD order relation. 

If �̃�, �̃� ∈ ₤𝑜 and ʚ ∈ ℝ, then, for every ʚ ∈ [0, 1], 
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Hence, Theorem 10 has been verified.

4. Conclusions

This paper provides the introduced class UD-convex concept for FNVMs. The H.H.
and Jensen-type inequalities were developed utilizing this idea and a fuzzy-inclusion
relation. This study expands on several recent findings made by Zhao et al. [56,57] and
the writers who came after them, Refs. [61,62]. Furthermore, some nontrivial cases are
provided to verify our primary conclusions’ accuracy. In the future, it will be fascinating
to look into how analogous inequalities are established for other convexity types and by
employing various integral operators. Our study of interval integral operator-type integral
inequalities will broaden their practical applications because integral operators are widely
used in engineering technology, such as various forms of mathematical modeling, and
because different integral operators are suitable for different forms of practical problems.
Convex optimization theory may take a new turn as a result of this idea. Other researchers
working on a range of scientific subjects may probably find the idea useful.
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100. Khan, M.B.; Santos-García, G.; Treant, ǎ, S.; Soliman, M.S. New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings
and Related Inequalities via Fuzzy Riemann Integrals. Symmetry 2022, 14, 2322. [CrossRef]

101. Khan, M.B.; Macías-Díaz, J.E.; Soliman, M.S.; Noor, M.A. Some New Integral Inequalities for Generalized Preinvex Functions in
Interval-Valued Settings. Axioms 2022, 11, 622. [CrossRef]

102. Aubin, J.P.; Cellina, A. Differential Inclusions: Set-Valued Maps and Viability Theory, Grundlehren der Mathematischen Wissenschaften;
Springer: New York, NY, USA, 1984.

103. Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhäuser: Boston, MA, USA, 1990.
104. Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [CrossRef]
105. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020,

2020, 1–27. [CrossRef]
106. Liu, Z.H.; Loi, N.V.; Obukhovskii, V. Existence and global bifurcation of periodic solutions to a class of differential variational

inequalities. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 2013, 23, 1350125. [CrossRef]
107. Ashpazzadeh, E.; Chu, Y.-M.; Hashemi, M.S.; Moharrami, M.; Inc, M. Hermite multiwavelets representation for the sparse

solution of nonlinear Abel’s integral equation. Appl. Math. Comput. 2022, 427, 127171. [CrossRef]
108. Chu, Y.-M.; Ullah, S.; Ali, M.; Tuzzahrah, G.F.; Munir, T. Numerical investigation of Volterra integral equations of second kind

using optimal homotopy asymptotic methd. Appl. Math. Comput. 2022, 430, 127304.
109. Chu, Y.-M.; Inc, M.; Hashemi, M.S.; Eshaghi, S. Analytical treatment of regularized Prabhakar fractional differential equations by

invariant subspaces. Comput. Appl. Math. 2022, 41, 271. [CrossRef]
110. Zeng, S.-D.; Migórski, S.; Liu, Z.-H. Nonstationary incompressible Navier-Stokes system governed by a quasilinear reaction-

diffusion equation. Sci. Sin. Math. 2022, 52, 331–354.
111. Deveci, M.; Gokasar, I.; Castillo, O.; Daim, T. Evaluation of Metaverse integration of freight fluidity measurement alternatives

using fuzzy Dombi EDAS model. Comput. Ind. Eng. 2022, 174, 108773. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/fractalfract6010006
http://doi.org/10.3390/sym14112322
http://doi.org/10.3390/axioms11110622
http://doi.org/10.1016/j.fss.2017.02.001
http://doi.org/10.1016/j.fss.2019.06.002
http://doi.org/10.1142/S0218127413501253
http://doi.org/10.1016/j.amc.2022.127171
http://doi.org/10.1007/s40314-022-01977-1
http://doi.org/10.1016/j.cie.2022.108773

	Introduction 
	Preliminaries 
	Fuzzy Number Hermite–Hadamard Inequalities 
	Conclusions 
	References

