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Abstract: In this study, we apply a recently developed idea of up and down fuzzy-ordered relations
between two fuzzy numbers. Here, we consider fuzzy Riemann–Liouville fractional integrals to es-
tablish the Hermite–Hadamard-, Fejér-, and Pachpatte-type inequalities. We estimate fuzzy fractional
inequalities for a newly introduced class of h̄-preinvexity over fuzzy-number valued settings. For the
first time, such inequalities involving up and down fuzzy-ordered functions are proven using the
fuzzy fractional operator. The stated inequalities are supported by a few numerical examples that
will be helpful to validate our main results.
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1. Introduction

In the subject of inequality theory, researchers have established hundreds of inequality
types, which have various applications in mathematical analysis and applied mathematics.
Two inequalities that stand out among these types of inequalities in terms of their aesthetic
forms, applications, and functioning will be introduced first. A specific function class
with applications in statistics, convex programming, numerical analysis, and many other
domains are one of the fundamental ideas employed in much of the research on the subject
of inequalities. This article provides information on the Hermite–Hadamard inequality,
which is produced by employing convex functions and has a very complex structure with
inequalities.

In the classical approach, a real-valued mapping Ψ: K → R is called convex if

Ψ(sµ + (1− s)
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

) ≤ sΨ(µ) + (1− s)Ψ(
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), (1)

for all µ,
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∈ K, s ∈ [0, 1], where K is a convex set.
The HH-inequality [1,2] for convex mapping Ψ : K → R on an interval K = [ζ,
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 
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𝛹(𝔰𝜇 + (1 − 𝔰)ȥ) ≤ 𝔰𝛹(𝜇) + (1 − 𝔰)𝛹(ȥ),  (1)

for all 𝜇, ȥ ∈ 𝐾, 𝔰 ∈ [0, 1], where 𝐾 is a convex set. 
The 𝐻𝐻-inequality [1,2] for convex mapping 𝛹: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ѵ ] is 𝛹 ϛ ѵ ≤ ѵ ϛ 𝛹(𝜇)𝑑𝜇ѵϛ ≤ (ϛ)  (ѵ),  (2)

for all ϛ, ѵ ∈ 𝐾. 
Fejér considered the major generalizations of the 𝐻𝐻-inequality, which is known as 

the 𝐻𝐻–Fejér inequality. The following is a presentation of the Hermite–Hadamard–Fejér 
inequality, which has been proven using a weight function and is the generic form of the 
inequality (2) (see [3]). 

Let 𝛹: 𝐾 → ℝ be a convex mapping on a convex set 𝐾 and ϛ, ѵ ∈ 𝐾 with ϛ ≤ ѵ. Then, 𝛹 ϛ ѵ ≤ ℨ( )ѵϛ 𝛹(𝜇)ℨ(𝜇)𝑑𝜇ѵϛ ≤ (ϛ) (ѵ) ℨ(𝜇))𝑑𝜇ѵϛ   (3)

If ℨ(𝜇) = 1, then we obtain (2) from (3). With the support of inequality, a large num-
ber of inequalities can be found using the particular symmetric mapping ℨ(𝜇) for convex 
mappings (3). By taking into account various convex function types, various derivative 
and integral operators, new techniques, and other spaces, researchers working on these 
two well-known inequalities have generated generalizations, extensions, improvements, 
and iterations, see [4–13]. 

The Hermite–Hadamard inequality has been proposed for operator convex and gen-
eralized convex functions (see, for example, [14–28]). The Hermite–Hadamard inequali-
ties for the products of two operator preinvex functions were created by Barani [29] in 
2015. The Hermite–Hadamard-type inequalities for the operator h-preinvex functions 
were established by Wang and Sun [28] in 2017. The Hermite–Hadamard-type inequalities 
for the operator (p, h)-convex functions were proposed in 2022 by Omrani et al. [30]. Re-
search has expanded because of the variety and uses of Hermite–Hadamard inequalities 
(see, for example, [31–36] and [37–45]). 

A fundamental idea in applied sciences and mathematics is fractional calculus. Frac-
tional calculus is actively used by researchers to address a wide range of real-world prob-
lems. In the modern era, fractional analysis and inequality theory have coevolved. Over 
the years, much attention has been paid to various fractional versions of inequalities of 
the Hermite–Hadamard, Fejer, Ostrowski, and Pachpatte types, [46,47]. In addition to the 
aforementioned inequalities, several researchers have employed the Riemann–Liouville 
fractional integral operators to examine the Ostrowski inequality (see [48]), Simpson-type 
inequality (see [49]), and Hermite–Hadamard–Mercer inequalities (see [50]). The Her-
mite–Hadamard inequality and its Fejér analog were investigated by Katugampola et al. 
using fractional integral operators of the Katugampola type (see [51]). In order to illustrate 
alternate versions of the Hermite–Hadamard inequality, Fernandez and Mohammed (see 
[52]) used Atangana–Baleanu fractional operators, and Noor et al. (see [53]) demonstrated 
Hermite–Hadamard-type inequalities. The Caputo–Fabrizio fractional integrals were also 
used to study the Hermite–Hadamard inequality (see [54,55]). Butt et al. introduced new 
iterations of fractal-based Jensen- and Jensen–Mercer-type inequalities (see [56]). For log-
preinvex [57] and harmonically convex functions [58], new fractional forms of Hermite–
Hadamard–Mercer- and Pachpatte–Mercer-type inclusions have been created. Hermite–
Hadamard inequalities have been further generalized for convex interval-valued func-
tions [59] and convex fuzzy interval-valued functions [60]. For more information, see [61–
67]. 

Each described notion and its definitions, despite initially seeming to be comparable, 
are wholly different. In the context of interval-valued analysis, numerous academics have 
coupled a variety of convex functions with integral inequalities, leading to a number of 
notable findings. Román-Flores established Minkowski-type inequalities (see [68]), 
Chalco-Cano researched Ostrowski-type inequalities (see [69]), and Opial investigated 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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inequality, which has been proven using a weight function and is the generic form of the
inequality (2) (see [3]).

Let Ψ : K → R be a convex mapping on a convex set K and ζ,
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Let 𝛹: 𝐾 → ℝ be a convex mapping on a convex set 𝐾 and ϛ, ѵ ∈ 𝐾 with ϛ ≤ ѵ. Then, 𝛹 ϛ ѵ ≤ ℨ( )ѵϛ 𝛹(𝜇)ℨ(𝜇)𝑑𝜇ѵϛ ≤ (ϛ) (ѵ) ℨ(𝜇))𝑑𝜇ѵϛ   (3)

If ℨ(𝜇) = 1, then we obtain (2) from (3). With the support of inequality, a large num-
ber of inequalities can be found using the particular symmetric mapping ℨ(𝜇) for convex 
mappings (3). By taking into account various convex function types, various derivative 
and integral operators, new techniques, and other spaces, researchers working on these 
two well-known inequalities have generated generalizations, extensions, improvements, 
and iterations, see [4–13]. 

The Hermite–Hadamard inequality has been proposed for operator convex and gen-
eralized convex functions (see, for example, [14–28]). The Hermite–Hadamard inequali-
ties for the products of two operator preinvex functions were created by Barani [29] in 
2015. The Hermite–Hadamard-type inequalities for the operator h-preinvex functions 
were established by Wang and Sun [28] in 2017. The Hermite–Hadamard-type inequalities 
for the operator (p, h)-convex functions were proposed in 2022 by Omrani et al. [30]. Re-
search has expanded because of the variety and uses of Hermite–Hadamard inequalities 
(see, for example, [31–36] and [37–45]). 

A fundamental idea in applied sciences and mathematics is fractional calculus. Frac-
tional calculus is actively used by researchers to address a wide range of real-world prob-
lems. In the modern era, fractional analysis and inequality theory have coevolved. Over 
the years, much attention has been paid to various fractional versions of inequalities of 
the Hermite–Hadamard, Fejer, Ostrowski, and Pachpatte types, [46,47]. In addition to the 
aforementioned inequalities, several researchers have employed the Riemann–Liouville 
fractional integral operators to examine the Ostrowski inequality (see [48]), Simpson-type 
inequality (see [49]), and Hermite–Hadamard–Mercer inequalities (see [50]). The Her-
mite–Hadamard inequality and its Fejér analog were investigated by Katugampola et al. 
using fractional integral operators of the Katugampola type (see [51]). In order to illustrate 
alternate versions of the Hermite–Hadamard inequality, Fernandez and Mohammed (see 
[52]) used Atangana–Baleanu fractional operators, and Noor et al. (see [53]) demonstrated 
Hermite–Hadamard-type inequalities. The Caputo–Fabrizio fractional integrals were also 
used to study the Hermite–Hadamard inequality (see [54,55]). Butt et al. introduced new 
iterations of fractal-based Jensen- and Jensen–Mercer-type inequalities (see [56]). For log-
preinvex [57] and harmonically convex functions [58], new fractional forms of Hermite–
Hadamard–Mercer- and Pachpatte–Mercer-type inclusions have been created. Hermite–
Hadamard inequalities have been further generalized for convex interval-valued func-
tions [59] and convex fuzzy interval-valued functions [60]. For more information, see [61–
67]. 

Each described notion and its definitions, despite initially seeming to be comparable, 
are wholly different. In the context of interval-valued analysis, numerous academics have 
coupled a variety of convex functions with integral inequalities, leading to a number of 
notable findings. Román-Flores established Minkowski-type inequalities (see [68]), 
Chalco-Cano researched Ostrowski-type inequalities (see [69]), and Opial investigated 
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𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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ζ
Z(µ))dµ (3)

If Z(µ) = 1, then we obtain (2) from (3). With the support of inequality, a large number
of inequalities can be found using the particular symmetric mapping Z(µ) for convex
mappings (3). By taking into account various convex function types, various derivative
and integral operators, new techniques, and other spaces, researchers working on these
two well-known inequalities have generated generalizations, extensions, improvements,
and iterations, see [4–13].

The Hermite–Hadamard inequality has been proposed for operator convex and gener-
alized convex functions (see, for example, [14–28]). The Hermite–Hadamard inequalities
for the products of two operator preinvex functions were created by Barani [29] in 2015.
The Hermite–Hadamard-type inequalities for the operator h-preinvex functions were es-
tablished by Wang and Sun [28] in 2017. The Hermite–Hadamard-type inequalities for the
operator (p, h)-convex functions were proposed in 2022 by Omrani et al. [30]. Research
has expanded because of the variety and uses of Hermite–Hadamard inequalities (see, for
example, [31–45]).

A fundamental idea in applied sciences and mathematics is fractional calculus. Frac-
tional calculus is actively used by researchers to address a wide range of real-world prob-
lems. In the modern era, fractional analysis and inequality theory have coevolved. Over
the years, much attention has been paid to various fractional versions of inequalities of
the Hermite–Hadamard, Fejer, Ostrowski, and Pachpatte types, [46,47]. In addition to the
aforementioned inequalities, several researchers have employed the Riemann–Liouville
fractional integral operators to examine the Ostrowski inequality (see [48]), Simpson-
type inequality (see [49]), and Hermite–Hadamard–Mercer inequalities (see [50]). The
Hermite–Hadamard inequality and its Fejér analog were investigated by Katugampola
et al. using fractional integral operators of the Katugampola type (see [51]). In order to illus-
trate alternate versions of the Hermite–Hadamard inequality, Fernandez and Mohammed
(see [52]) used Atangana–Baleanu fractional operators, and Noor et al. (see [53]) demon-
strated Hermite–Hadamard-type inequalities. The Caputo–Fabrizio fractional integrals
were also used to study the Hermite–Hadamard inequality (see [54,55]). Butt et al. intro-
duced new iterations of fractal-based Jensen- and Jensen–Mercer-type inequalities (see [56]).
For log-preinvex [57] and harmonically convex functions [58], new fractional forms of
Hermite–Hadamard–Mercer- and Pachpatte–Mercer-type inclusions have been created.
Hermite–Hadamard inequalities have been further generalized for convex interval-valued
functions [59] and convex fuzzy interval-valued functions [60]. For more information,
see [61–67].

Each described notion and its definitions, despite initially seeming to be compara-
ble, are wholly different. In the context of interval-valued analysis, numerous academics
have coupled a variety of convex functions with integral inequalities, leading to a num-
ber of notable findings. Román-Flores established Minkowski-type inequalities (see [68]),
Chalco-Cano researched Ostrowski-type inequalities (see [69]), and Opial investigated
Opial-type inequalities (see [70]). Zhao et al. (see [71]) also established a refinement of
the Hermite–Hadamard inequality and suggested the interval-valued h-convex function.
Zhang et al. (see [72]) and Costa et al. (see [73]) presented left–right interval-valued and
fuzzy interval-valued functions, respectively, to demonstrate Jensen’s inequalities. Recently,
Khan et al. introduced the novel versions of inequalities that are known as fuzzy frac-
tional Hermite–Hadamard, Fejér-, and Pachpatte-type inequalities for UD-convex FTVM
via fuzzy left and right Riemann–Liouville fractional integrals. Many more inequalities
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have been introduced related to real-valued, interval-valued, and fuzzy-number valued
mappings, (see [74–82]).

The article is structured as follows: We cover the necessary prerequisites and relevant
details for the accompanying integral inequalities and interval-valued analysis in Section 1.
Preinvexity and fuzzy UD-order functions are concepts that are explained in Section 2. We
derive the Hermite–Hadamard and any applicable inequalities for the h-preinvex functions
in fuzzy-number valued settings in Section 3. We offer a brief conclusion in Section 4
and go over a number of unanswered research problems that are relevant to the results of
this work.

2. Preliminaries

We recall a few definitions that can be found in the literature and will be relevant in
the follow-up.

Let us consider that Xo is the space of all closed and bounded intervals of R, and that
ℵ ∈ Xo is given by

ℵ = [ℵ∗, ℵ∗] = {w ∈ R| ℵ∗ ≤ w ≤ ℵ∗}, (ℵ∗, ℵ∗ ∈ R) (4)

If ℵ∗ = ℵ∗, then ℵ is degenerate. In the follow-up, all intervals are considered non-
degenerate. If ℵ∗ ≥ 0, then ℵ is positive. We denote by X+

o = {[ℵ∗, ℵ∗] : [ℵ∗, ℵ∗] ∈ Xo
and ℵ∗ ≥ 0}, the set of all positive intervals.

Let u ∈ R and u·ℵ be given by

u·ℵ =


[uℵ∗, uℵ∗] if u > 0,
{0} if u = 0,

[uℵ∗, uℵ∗] if u < 0.
(5)

We consider the Minkowski sum, ℵ+
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We have that (Xo, dH) is a complete metric space [77,79,82].

Definition 1. [76] A fuzzy subset L of R is a mapping ℵ̃ : R→ [0, 1] , denoting membership
mapping of L. We adopt the symbol ₤ to represent the set of all fuzzy subsets of R.
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Let us consider ℵ̃ ∈ ₤. If the following properties hold, then ℵ̃ is a fuzzy number:

1. ℵ̃ is normal if there exists w ∈ R and ℵ̃(w) = 1;
2. ℵ̃ is upper semi-continuous on R if for a w ∈ R there exist ε > 0 and δ > 0 yielding

ℵ̃(w)− ℵ̃(y) < ε for all y ∈ R with |w− y| < δ;
3. ℵ̃ is fuzzy convex, meaning that ℵ̃((1− u)w+ uy) ≥ min

(
ℵ̃(w), ℵ̃(y)

)
, for all w, y ∈ R,

and u ∈ [0, 1];
4. ℵ̃ is compactly supported, which means that cl

{
w ∈ R

∣∣∣ ℵ̃(w)
〉

0
}

is compact.

The symbol ₤o will be adopted to designate the set of all fuzzy numbers of R.

Definition 2. [76,77] For ℵ̃ ∈ ₤o , the 0 -level, or 0-cut, sets of ℵ̃ are
[
ℵ̃
]0

=
{
w ∈ R

∣∣∣ ℵ̃(w)
〉
0
}

for all 0 ∈ [0, 1], and
[
ℵ̃
]0

=
{
w ∈ R

∣∣∣ ℵ̃(w)
〉

0
}

.

Proposition 1. [78] Let ℵ̃, ˜
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degenerate. If ℵ∗ ≥ 0 , then ℵ  is positive. We denote by 𝕏 = ℵ∗, ℵ∗ : ℵ∗, ℵ∗ ∈𝕏  and ℵ∗ ≥ 0 , the set of all positive intervals. 

Let 𝔲 ∈ ℝ and 𝔲 ⋅ ℵ be given by 

 𝔲 ⋅ ℵ =  𝔲ℵ∗, 𝔲ℵ∗  if 𝔲 > 0,0         if 𝔲 = 0,𝔲ℵ∗, 𝔲ℵ∗   if 𝔲 < 0. (5)

We consider the Minkowski sum, ℵ + ϣ    , product, ℵ × ϣ, and difference, ϣ − ℵ, for ℵ, ϣ ∈ 𝕏 , as ϣ∗, ϣ∗ + ℵ∗, ℵ∗  = ϣ∗ + ℵ∗, ϣ∗ + ℵ∗ ,  (6)ϣ∗, ϣ∗ × ℵ∗, ℵ∗ = min ϣ∗ℵ∗, ϣ∗ℵ∗, ϣ∗ℵ∗, ϣ∗ℵ∗ , max ϣ∗ℵ∗, ϣ∗ℵ∗, ϣ∗ℵ∗, ϣ∗ℵ∗   (7)

 ϣ∗, ϣ∗ − ℵ∗, ℵ∗  = ϣ∗ − ℵ∗, ϣ∗ − ℵ∗ . (8)

Remark 1. (i) For the given ϣ∗, ϣ∗ , ℵ∗, ℵ∗ ∈ ℝ , the relation " ⊇ " is defined on ℝ  by ℵ∗, ℵ∗ ⊇ ϣ∗, ϣ∗  if and only if ℵ∗ ≤ ϣ∗, ϣ∗ ≤ ℵ∗, (9)

for all ϣ∗, ϣ∗ , ℵ∗, ℵ∗ ∈ ℝ , is a partial interval inclusion relation. 

Moreover, ℵ∗, ℵ∗ ⊇ ϣ∗, ϣ∗  coincides with ℵ∗, ℵ∗ ⊇ ϣ∗, ϣ∗  on ℝ .  The relation " ⊇ " is of UD order [72]. 
(ii) For the given ϣ∗, ϣ∗ , ℵ∗, ℵ∗ ∈ ℝ ,  the relation " ≤ " is defined on ℝ  by ϣ∗, ϣ∗ ≤ ℵ∗, ℵ∗  if and only if ϣ∗ ≤ ℵ∗, ϣ∗ ≤ ℵ∗ or ϣ∗ ≤ ℵ∗, ϣ∗ < ℵ∗, is a partial interval 
order relation. Plus, we have that ϣ∗, ϣ∗ ≤ ℵ∗, ℵ∗  coincides with ϣ∗, ϣ∗ ≤ ℵ∗, ℵ∗  on ℝ . The relation " ≤ " is of left and right (LR) type [72,73]. 

Given the intervals ϣ∗, ϣ∗ , ℵ∗, ℵ∗ ∈ 𝕏 , their Hausdorff–Pompeiu distance is 

]0). (16)

is a complete metric space, where H stands for the Hausdorff metric on a space of intervals.

Theorem 2. [77,78] If Ψ : [ζ,
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

] ⊂ R→ Xo is an I-V·M satisfying Ψ(w) = [Ψ∗(w), Ψ∗(w)],
then Ψ is Aumann integrable (IA-integrable) over [ζ,
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

] when and only when Ψ∗(w) and Ψ∗(w) are
integrable over [ζ,
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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], meaning

(IA)
∫
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quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

ζ
Ψ(w)dw =

∫
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𝛹(𝔰𝜇 + (1 − 𝔰)ȥ) ≤ 𝔰𝛹(𝜇) + (1 − 𝔰)𝛹(ȥ),  (1)

for all 𝜇, ȥ ∈ 𝐾, 𝔰 ∈ [0, 1], where 𝐾 is a convex set. 
The 𝐻𝐻-inequality [1,2] for convex mapping 𝛹: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ѵ ] is 𝛹 ϛ ѵ ≤ ѵ ϛ 𝛹(𝜇)𝑑𝜇ѵϛ ≤ (ϛ)  (ѵ),  (2)

for all ϛ, ѵ ∈ 𝐾. 
Fejér considered the major generalizations of the 𝐻𝐻-inequality, which is known as 

the 𝐻𝐻–Fejér inequality. The following is a presentation of the Hermite–Hadamard–Fejér 
inequality, which has been proven using a weight function and is the generic form of the 
inequality (2) (see [3]). 

Let 𝛹: 𝐾 → ℝ be a convex mapping on a convex set 𝐾 and ϛ, ѵ ∈ 𝐾 with ϛ ≤ ѵ. Then, 𝛹 ϛ ѵ ≤ ℨ( )ѵϛ 𝛹(𝜇)ℨ(𝜇)𝑑𝜇ѵϛ ≤ (ϛ) (ѵ) ℨ(𝜇))𝑑𝜇ѵϛ   (3)

If ℨ(𝜇) = 1, then we obtain (2) from (3). With the support of inequality, a large num-
ber of inequalities can be found using the particular symmetric mapping ℨ(𝜇) for convex 
mappings (3). By taking into account various convex function types, various derivative 
and integral operators, new techniques, and other spaces, researchers working on these 
two well-known inequalities have generated generalizations, extensions, improvements, 
and iterations, see [4–13]. 

The Hermite–Hadamard inequality has been proposed for operator convex and gen-
eralized convex functions (see, for example, [14–28]). The Hermite–Hadamard inequali-
ties for the products of two operator preinvex functions were created by Barani [29] in 
2015. The Hermite–Hadamard-type inequalities for the operator h-preinvex functions 
were established by Wang and Sun [28] in 2017. The Hermite–Hadamard-type inequalities 
for the operator (p, h)-convex functions were proposed in 2022 by Omrani et al. [30]. Re-
search has expanded because of the variety and uses of Hermite–Hadamard inequalities 
(see, for example, [31–36] and [37–45]). 

A fundamental idea in applied sciences and mathematics is fractional calculus. Frac-
tional calculus is actively used by researchers to address a wide range of real-world prob-
lems. In the modern era, fractional analysis and inequality theory have coevolved. Over 
the years, much attention has been paid to various fractional versions of inequalities of 
the Hermite–Hadamard, Fejer, Ostrowski, and Pachpatte types, [46,47]. In addition to the 
aforementioned inequalities, several researchers have employed the Riemann–Liouville 
fractional integral operators to examine the Ostrowski inequality (see [48]), Simpson-type 
inequality (see [49]), and Hermite–Hadamard–Mercer inequalities (see [50]). The Her-
mite–Hadamard inequality and its Fejér analog were investigated by Katugampola et al. 
using fractional integral operators of the Katugampola type (see [51]). In order to illustrate 
alternate versions of the Hermite–Hadamard inequality, Fernandez and Mohammed (see 
[52]) used Atangana–Baleanu fractional operators, and Noor et al. (see [53]) demonstrated 
Hermite–Hadamard-type inequalities. The Caputo–Fabrizio fractional integrals were also 
used to study the Hermite–Hadamard inequality (see [54,55]). Butt et al. introduced new 
iterations of fractal-based Jensen- and Jensen–Mercer-type inequalities (see [56]). For log-
preinvex [57] and harmonically convex functions [58], new fractional forms of Hermite–
Hadamard–Mercer- and Pachpatte–Mercer-type inclusions have been created. Hermite–
Hadamard inequalities have been further generalized for convex interval-valued func-
tions [59] and convex fuzzy interval-valued functions [60]. For more information, see [61–
67]. 

Each described notion and its definitions, despite initially seeming to be comparable, 
are wholly different. In the context of interval-valued analysis, numerous academics have 
coupled a variety of convex functions with integral inequalities, leading to a number of 
notable findings. Román-Flores established Minkowski-type inequalities (see [68]), 
Chalco-Cano researched Ostrowski-type inequalities (see [69]), and Opial investigated 

ζ
Ψ∗(w)dw,

∫
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

ζ
Ψ∗(w)dw

. (17)
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Definition 3. [73] Let Ψ̃ : I ⊂ R → ₤o be a F-N·V·M. The family of I-V·Ms, for every 0 ∈
[0, 1], is Ψ0 : I ⊂ R→ Xo satisfying Ψ0(w) = [Ψ∗(w,0), Ψ∗(w,0)] for every w ∈ I. For
every 0 ∈ [0, 1], the lower and upper mappings of Ψ0 are the endpoint real-valued mappings
Ψ∗(·,0), Ψ∗(·,0) : I→ R .

Definition 4. [73] Let Ψ̃ : I ⊂ R → ₤o be a F-N·V·M. Then, Ψ̃(w) is continuous at w ∈ I,
if for every 0 ∈ [0, 1], Ψ0(w) is continuous when and only when Ψ∗(w,0) and Ψ∗(w,0) are
continuous at w ∈ I.

Definition 5. [77] Let Ψ̃ : [ζ,
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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] ⊂ R → ₤o be a F-N·V·M. The fuzzy Aumann integral (FA-
integral) of Ψ̃ over [ζ,
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said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

] is

[
(FA)

∫
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

ζ
Ψ̃(w)dw

]
0

= (IA)
∫
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

ζ
Ψ0(w)dw =

{∫
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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ζ
Ψ(w,0)dw : Ψ(w,0) ∈ S(Ψ0)

}
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ζ
Ψ̃(w)dw ∈ ₤o

Theorem 3. [78] Let Ψ̃ : [ζ,
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] ⊂ R → ₤o be a F-N·V·M, for which the 0-levels define the
family of I-V·Ms Ψ0 : [ζ,
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for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

] ⊂ R→ Xo satisfying Ψ0(w) = [Ψ∗(w,0), Ψ∗(w,0)] for every
w ∈ [ζ,
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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] when and only when Ψ∗(w,0) and
Ψ∗(w,0) are integrable over [ζ,
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by 
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⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

]. Moreover, if Ψ̃ is (FA)-integrable over [ζ,

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

], then we have

[
(FA)

∫
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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ζ
Ψ̃(w)dw

]
0

=

[∫
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quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

ζ
Ψ∗(w,0)dw,

∫
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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ζ
Ψ∗(w,0)dw

]
= (IA)

∫
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𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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ζ
Ψ0(w)dw (19)

for every 0 ∈ [0, 1].

Definition 6. [82] Let β > 0 and L([ζ,
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], ₤o) be the collection of all Lebesgue measurable fuzzy-
number valued mappings on [ζ,
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]. Then, the fuzzy left and right RL fractional integrals of order
β > 0 of Ψ ∈ L( [ζ,
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

], ₤o) are

Iβ
ζ+ Ψ̃(w) =

1
Γ(β)

∫ w

ζ
(w−m)β−1Ψ̃(m)dm, (w > ζ), (20)

and

Iβ
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

− Ψ̃(w) =
1

Γ(β)

∫
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

w
(m−w)β−1Ψ̃(m)dm, (w <
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

) (21)

respectively, where Γ(w) =
∫ ∞

0 mw−1e−mdm is the Euler gamma function. The fuzzy left and
right RL fractional integrals w based on left and right end point mappings are[

Iβ
ζ+ Ψ̃(w)

]0
= 1

Γ(β)

∫ w
ζ (w−m)β−1Ψ0(m)dm

= 1
Γ(β)

∫ w
ζ (w−m)β−1[Ψ∗(m, 0), Ψ∗(m, 0)]dm, (w > ζ)

(22)

where
Iβ
ζ+ Ψ∗(w, 0) =

1
Γ(β)

∫ w

ζ
(w−m)β−1Ψ∗(m, 0)dm, (w > ζ), (23)

and
Iβ
ζ+ Ψ∗(w, 0) =

1
Γ(β)

∫ w

ζ
(w−m)β−1Ψ∗(m, 0)dm, (w > ζ). (24)
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The RL fractional integral Ψ̃ of w based on left and right end point mappings can be defined in
a similar way.

Definition 7. [75] The FTVM Ψ̃ : [ζ,
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Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

]
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for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

∈ [ζ,
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

]. If (25) is reversed, then Ψ̃
is named as a concave FTVM on [ζ,
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

]. Ψ̃ is affine if and only if it is both convex and concave
FTVM.

Remark 2. If Ψ∗(
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

,0) = Ψ∗(
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)
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said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

,0) and 0 = 1, then we obtain the classical convex function.

Definition 8. [55] The FTVM Ψ̃ : [ζ,
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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] if

Ψ̃(µ + (1−q)φ(µ,q)) ≤F q� Ψ̃(µ)⊕ (1−q)� Ψ̃(
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

), (26)

for all µ,

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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]. Ψ̃ is affine if and only if it is both pre-invex and
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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] , then
inequality (27) is reversed.

Remark 3. [59] If one attempts to take }(q) = q, then from UD-}-pre-invex FTVM one
achieves UD-pre-invex FTVM, that is

Ψ̃(µ + (1−q)φ(µ,
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If one attempts to take }(q) ≡ 1, then from UD-}-pre-invex FTVM one achieves UD-P-
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Ψ̃(µ + (1−q)φ(µ,
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
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𝛹(ȥ)(𝛳) = ⎩⎪⎨
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Example 1. If we attempt to take }(q) = q, for q ∈ [0, 1] and the FTVM Ψ̃ :
[
0, 4

]
→ ₤o

defined by

Ψ̃(
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said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
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Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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𝛹(𝔰𝜇 + (1 − 𝔰)ȥ) ≤ 𝔰𝛹(𝜇) + (1 − 𝔰)𝛹(ȥ),  (1)

for all 𝜇, ȥ ∈ 𝐾, 𝔰 ∈ [0, 1], where 𝐾 is a convex set. 
The 𝐻𝐻-inequality [1,2] for convex mapping 𝛹: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ѵ ] is 𝛹 ϛ ѵ ≤ ѵ ϛ 𝛹(𝜇)𝑑𝜇ѵϛ ≤ (ϛ)  (ѵ),  (2)

for all ϛ, ѵ ∈ 𝐾. 
Fejér considered the major generalizations of the 𝐻𝐻-inequality, which is known as 

the 𝐻𝐻–Fejér inequality. The following is a presentation of the Hermite–Hadamard–Fejér 
inequality, which has been proven using a weight function and is the generic form of the 
inequality (2) (see [3]). 

Let 𝛹: 𝐾 → ℝ be a convex mapping on a convex set 𝐾 and ϛ, ѵ ∈ 𝐾 with ϛ ≤ ѵ. Then, 𝛹 ϛ ѵ ≤ ℨ( )ѵϛ 𝛹(𝜇)ℨ(𝜇)𝑑𝜇ѵϛ ≤ (ϛ) (ѵ) ℨ(𝜇))𝑑𝜇ѵϛ   (3)

If ℨ(𝜇) = 1, then we obtain (2) from (3). With the support of inequality, a large num-
ber of inequalities can be found using the particular symmetric mapping ℨ(𝜇) for convex 
mappings (3). By taking into account various convex function types, various derivative 
and integral operators, new techniques, and other spaces, researchers working on these 
two well-known inequalities have generated generalizations, extensions, improvements, 
and iterations, see [4–13]. 

The Hermite–Hadamard inequality has been proposed for operator convex and gen-
eralized convex functions (see, for example, [14–28]). The Hermite–Hadamard inequali-
ties for the products of two operator preinvex functions were created by Barani [29] in 
2015. The Hermite–Hadamard-type inequalities for the operator h-preinvex functions 
were established by Wang and Sun [28] in 2017. The Hermite–Hadamard-type inequalities 
for the operator (p, h)-convex functions were proposed in 2022 by Omrani et al. [30]. Re-
search has expanded because of the variety and uses of Hermite–Hadamard inequalities 
(see, for example, [31–36] and [37–45]). 

A fundamental idea in applied sciences and mathematics is fractional calculus. Frac-
tional calculus is actively used by researchers to address a wide range of real-world prob-
lems. In the modern era, fractional analysis and inequality theory have coevolved. Over 
the years, much attention has been paid to various fractional versions of inequalities of 
the Hermite–Hadamard, Fejer, Ostrowski, and Pachpatte types, [46,47]. In addition to the 
aforementioned inequalities, several researchers have employed the Riemann–Liouville 
fractional integral operators to examine the Ostrowski inequality (see [48]), Simpson-type 
inequality (see [49]), and Hermite–Hadamard–Mercer inequalities (see [50]). The Her-
mite–Hadamard inequality and its Fejér analog were investigated by Katugampola et al. 
using fractional integral operators of the Katugampola type (see [51]). In order to illustrate 
alternate versions of the Hermite–Hadamard inequality, Fernandez and Mohammed (see 
[52]) used Atangana–Baleanu fractional operators, and Noor et al. (see [53]) demonstrated 
Hermite–Hadamard-type inequalities. The Caputo–Fabrizio fractional integrals were also 
used to study the Hermite–Hadamard inequality (see [54,55]). Butt et al. introduced new 
iterations of fractal-based Jensen- and Jensen–Mercer-type inequalities (see [56]). For log-
preinvex [57] and harmonically convex functions [58], new fractional forms of Hermite–
Hadamard–Mercer- and Pachpatte–Mercer-type inclusions have been created. Hermite–
Hadamard inequalities have been further generalized for convex interval-valued func-
tions [59] and convex fuzzy interval-valued functions [60]. For more information, see [61–
67]. 

Each described notion and its definitions, despite initially seeming to be comparable, 
are wholly different. In the context of interval-valued analysis, numerous academics have 
coupled a variety of convex functions with integral inequalities, leading to a number of 
notable findings. Román-Flores established Minkowski-type inequalities (see [68]), 
Chalco-Cano researched Ostrowski-type inequalities (see [69]), and Opial investigated 

− ζ, for each 0 ∈ [0, 1].
Hence, Ψ̃(
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

) is UD-}-pre-invex FTVM.

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality

In the results that follow, we investigate how fuzzy fractional operators can be used to
apply up and down functions to integral inequalities; therefore, let us recap the generalized
H.H type inequality for h̄-pre-invex FTVMs first.

Theorem 5. Let Ψ̃ : [ζ, ζ+φ(
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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, ζ)
]
→ ₤o be an UD-h̄-pre-invex FTVM on [ζ, ζ+φ(
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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, ζ)],

whose 0-cuts define the family of TVMs Ψ0 : [ζ, ζ+φ(
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
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then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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by 
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then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 
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by 
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Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

,ζ))β �
[
Iβ
ζ+ Ψ̃(ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ))
]
�
∫ 1

0 q
β−1[}(q)− }(1−q)]dq
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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)
]
�
∫ 1

0 q
β−1[}(q)− }(1−q)]dq
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Proof. Let Ψ̃ : [ζ, ζ+φ(
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ)]→ ₤o be an UD-h̄-pre-invex FTVM. If Condition C holds
then, by hypothesis, we have
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named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ))⊕ Ψ̃(ζ+qφ(
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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, ζ)).

Therefore, for every 0 ∈ [0, 1], we have
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ), 0) + Ψ∗(ζ+qφ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 
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Multiplying both sides by qβ−1 and integrating the obtained result with respect to q
over (0, 1), we have

1
}( 1

2 )

∫ 1
0 q

β−1Ψ∗
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by 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

,ζ)
2 ,0

)
dq

≥
∫ 1

0 q
β−1Ψ∗(ζ+ (1−q)φ(
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ), 0)dq+
∫ 1

0 q
β−1Ψ∗(ζ+qφ(
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ),0)dq.

Let µ = ζ+ (1−q)φ(
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ) and
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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by 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
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ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 
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⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
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for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

,ζ)−
Ψ0(ζ)

]
⊇I [Ψ0(ζ) + Ψ0(ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

)
]
�
∫ 1
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β−1[}(q) + }(1−q)]dq
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the theorem has been proved. �

Remark 4. If one attempts to take β = 1, then from inequality (31) one achieves the result for
UD-h̄-pre-invex FTVM, see [59]:

1
2}( 1

2 )
� Ψ̃
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for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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0 }(q)dq.
(35)

If one attempt to take }(q) = q, then from inequality (31) one achieves the result for
UD-pre-invex FTVM, see [59]:
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by 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ))
2

(36)

Let one attempt to take β = 1 and }(q) = q. Then, from inequality (31) one acquires
the result for UD-pre-invex FTVM given in [59]:
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 
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Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, 0) and 0 = 1, then from inequality (31) one
acquires coming inequality given in [54]:

1
β}( 1

2 )
Ψ
(

2ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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,ζ)−
Ψ(ζ)
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, ζ))]
∫ 1

0 q
β−1[}(q) + }(1−q)]dq.

(38)

Let one attempt to take β = 1 = 0 and Ψ∗(
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then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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by 
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⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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, ζ))]
∫ 1

0
}(q)dq. (39)

Example 2. If we attempt to take β = 1
2 , }(q) = q, for all q ∈ [0, 1] and the FTVM

Ψ̃ : [ζ, ζ+φ(
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
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, ζ)] = [2, 2 +φ(3, 2)]→ ₤o, defined by

Ψ̃(
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named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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0, otherwise.

Then, for each 0 ∈ [0, 1], we have Ψ0(
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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quality (27) is reversed. 
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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𝛹(𝔰𝜇 + (1 − 𝔰)ȥ) ≤ 𝔰𝛹(𝜇) + (1 − 𝔰)𝛹(ȥ),  (1)
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for all ϛ, ѵ ∈ 𝐾. 
Fejér considered the major generalizations of the 𝐻𝐻-inequality, which is known as 

the 𝐻𝐻–Fejér inequality. The following is a presentation of the Hermite–Hadamard–Fejér 
inequality, which has been proven using a weight function and is the generic form of the 
inequality (2) (see [3]). 

Let 𝛹: 𝐾 → ℝ be a convex mapping on a convex set 𝐾 and ϛ, ѵ ∈ 𝐾 with ϛ ≤ ѵ. Then, 𝛹 ϛ ѵ ≤ ℨ( )ѵϛ 𝛹(𝜇)ℨ(𝜇)𝑑𝜇ѵϛ ≤ (ϛ) (ѵ) ℨ(𝜇))𝑑𝜇ѵϛ   (3)

If ℨ(𝜇) = 1, then we obtain (2) from (3). With the support of inequality, a large num-
ber of inequalities can be found using the particular symmetric mapping ℨ(𝜇) for convex 
mappings (3). By taking into account various convex function types, various derivative 
and integral operators, new techniques, and other spaces, researchers working on these 
two well-known inequalities have generated generalizations, extensions, improvements, 
and iterations, see [4–13]. 

The Hermite–Hadamard inequality has been proposed for operator convex and gen-
eralized convex functions (see, for example, [14–28]). The Hermite–Hadamard inequali-
ties for the products of two operator preinvex functions were created by Barani [29] in 
2015. The Hermite–Hadamard-type inequalities for the operator h-preinvex functions 
were established by Wang and Sun [28] in 2017. The Hermite–Hadamard-type inequalities 
for the operator (p, h)-convex functions were proposed in 2022 by Omrani et al. [30]. Re-
search has expanded because of the variety and uses of Hermite–Hadamard inequalities 
(see, for example, [31–36] and [37–45]). 

A fundamental idea in applied sciences and mathematics is fractional calculus. Frac-
tional calculus is actively used by researchers to address a wide range of real-world prob-
lems. In the modern era, fractional analysis and inequality theory have coevolved. Over 
the years, much attention has been paid to various fractional versions of inequalities of 
the Hermite–Hadamard, Fejer, Ostrowski, and Pachpatte types, [46,47]. In addition to the 
aforementioned inequalities, several researchers have employed the Riemann–Liouville 
fractional integral operators to examine the Ostrowski inequality (see [48]), Simpson-type 
inequality (see [49]), and Hermite–Hadamard–Mercer inequalities (see [50]). The Her-
mite–Hadamard inequality and its Fejér analog were investigated by Katugampola et al. 
using fractional integral operators of the Katugampola type (see [51]). In order to illustrate 
alternate versions of the Hermite–Hadamard inequality, Fernandez and Mohammed (see 
[52]) used Atangana–Baleanu fractional operators, and Noor et al. (see [53]) demonstrated 
Hermite–Hadamard-type inequalities. The Caputo–Fabrizio fractional integrals were also 
used to study the Hermite–Hadamard inequality (see [54,55]). Butt et al. introduced new 
iterations of fractal-based Jensen- and Jensen–Mercer-type inequalities (see [56]). For log-
preinvex [57] and harmonically convex functions [58], new fractional forms of Hermite–
Hadamard–Mercer- and Pachpatte–Mercer-type inclusions have been created. Hermite–
Hadamard inequalities have been further generalized for convex interval-valued func-
tions [59] and convex fuzzy interval-valued functions [60]. For more information, see [61–
67]. 

Each described notion and its definitions, despite initially seeming to be comparable, 
are wholly different. In the context of interval-valued analysis, numerous academics have 
coupled a variety of convex functions with integral inequalities, leading to a number of 
notable findings. Román-Flores established Minkowski-type inequalities (see [68]), 
Chalco-Cano researched Ostrowski-type inequalities (see [69]), and Opial investigated 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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by 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ)
2

, 0
)
= Ψ∗

(
5
2

, 0
)
= 2(1−0)

(
4 +
√

10
)
+ 120,

[Ψ∗(ζ,0) + Ψ∗(ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
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quality (27) is reversed. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

)
−1
2 .
(
(1−0)

(
2−

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 
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for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

− 2)
−1
2 .
(
(1−0)

(
2 +

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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and Theorem 5 is verified.

We get various fuzzy fractional integral inequalities connected to fuzzy-interval
fractional H·H-inequalities from Theorems 6 and 7 via products of two UD-}-pre-invex
FTVMs.

Theorem 6. Let Ψ̃, =̃ : [ζ, ζ+φ(
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
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Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

,ζ)−
Ψ̃(ζ)⊗ =̃(ζ)

]
⊇F ℵ̃(ζ, ζ+φ(
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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, ζ))�
∫ 1

0 q
β−1[}1(q)}2(q) + }1(1−q)}2(1−q)]dq

⊕M̃(ζ, ζ+φ(
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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, ζ))�
∫ 1

0 q
β−1[}1(q)}2(1−q) + }1(1−q)}2(q)]dq.

(40)
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𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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, ζ)) = Ψ̃(ζ)⊗ =̃(ζ)⊕ Ψ̃(ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ)) ⊗ =̃(ζ), and ℵ0(ζ, ζ+φ(
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, ζ)), 0)].

Proof. Since Ψ̃, =̃ both are UD-}1-pre-invex and UD-}2-pre-invex FTVM then, for each
0 ∈ [0, 1] we have

Ψ∗(ζ+ (1−q)φ(
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ), 0)

≤ }2(q)=∗(ζ,0) + }2(1−q)=∗(ζ+φ(
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ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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, ζ), 0).

From the definition of UD-h̄-pre-invex FTVMs it follows that 0̃ ≤F Ψ̃(
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𝛹(ȥ)(𝛳) = ⎩⎪⎨
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) and 0̃ ≤F
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said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ), 0)×=∗(ζ,0)
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ), 0)×=∗(ζ+φ(
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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, ζ), 0)
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Analogously, we have
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for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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by 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 
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for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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, ζ), 0)×=∗(ζ,0).

(42)

Adding (41) and (42), we have

Ψ∗(ζ+ (1−q)φ(
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quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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, ζ), 0)

≤ [}1(q)}2(q) + }1(1−q)}2(1−q)][Ψ∗(ζ,0)×=∗(ζ,0) + Ψ∗(ζ+φ(
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ), 0)×=∗(ζ+qφ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ), 0)

≥ [}1(q)}2(q) + }1(1−q)}2(1−q)][Ψ∗(ζ,0)×=∗(ζ,0) + Ψ∗(ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ), 0)×=∗(ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ), 0)]

+[}1(q)}2(1−q) + }1(1−q)}2(q)][Ψ∗(ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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, ζ), 0)].

(43)

Taking multiplication of (43) with qβ−1 and integrating the obtained result with
respect to q over (0,1), we have∫ 1

0 q
β−1Ψ∗(ζ+ (1−q)φ(
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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, ζ), 0)×=∗(ζ+qφ(
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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, ζ), 0)dq
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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, ζ)), 0)
∫ 1

0 q
β−1[}1(q)}2(q) + }1(1−q)}2(1−q)]dq

+M∗((ζ, ζ+φ(
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ), 0)dq
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∫ 1

0 q
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ)), 0)
∫ 1

0 q
β−1[}1(q)}2(q) + }1(1−q)}2(1−q)]dq

+M∗((ζ, ζ+φ(
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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, ζ)), 0)
∫ 1

0 q
β−1[}1(q)}2(q) + }1(1−q)}2(1−q)]dq

+M∗((ζ, ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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, ζ)), 0)
∫ 1

0 q
β−1[}1(q)}2(1−q) + }1(1−q)}2(q)]dq.

It follows that
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ), 0)×=∗(ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

,ζ)−
Ψ∗(ζ,0)×=∗(ζ,0), Iβ

ζ+Ψ∗(ζ+φ(
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ), 0)

×=∗(ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ), 0) + Iβ

ζ+φ(
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

,ζ)−
Ψ∗(ζ,0)×=∗(ζ, 0)]

⊇I [ℵ∗((ζ, ζ+φ(
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
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, ζ))
∫ 1

0 q
β−1[}1(q)}2(q) + }1(1−q)}2(1−q)]dq

+M0(ζ, ζ+φ(
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, ζ))
∫ 1

0 q
β−1[}1(q)}2(1−q) + }1(1−q)}2(q)]dq.
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ))⊗ =̃(ζ+φ(
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ))⊕ Iβ
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

,ζ)−
Ψ̃(ζ)⊗ =̃(ζ)
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ))�
∫ 1

0 q
β−1[}1(q)}2(q) + }1(1−q)}2(1−q)]dq

⊕M̃(ζ, ζ+φ(
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
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Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ))�
∫ 1

0 q
β−1[}1(q)}2(1−q) + }1(1−q)}2(q)]dq.

and the theorem has been established. �

Theorem 7. Let Ψ̃, =̃ :
[
ζ, ζ+φ(
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, ζ)
]
→₤o be two UD-}1-pre-invex and UD-}2-pre-invex

FTVMs, respectively, for which the 0-cuts define the family of TVMs.
Ψ0, =0 : [ζ, ζ+φ(
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for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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, ζ)] ⊂ R→ X+
C are given by Ψ0(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 
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⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

,ζ))β �
[
Iβ
ζ+ Ψ̃(ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)
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by 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 
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, ζ))�
∫ 1

0

[
qβ−1 + (1−q)β−1

]
}1(q)}2(1−q)dq

⊕ℵ̃(ζ, ζ+φ(
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quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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Proof. Consider Ψ̃, =̃ :
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, ζ)
]
→₤o are UD-}1-pre-invex and UD-}2-pre-invex

FTVMs. Then, by hypothesis, for each 0 ∈ [0, 1], we have

Ψ∗
(

2ζ+φ(
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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, ζ), 0)×=∗(ζ+ (1−q)φ(
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⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 
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⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 
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then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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quality (27) is reversed. 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ), , 0))
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ), , 0))

×(}2(q)=∗(ζ, 0) + }2(1−q)=∗(ζ+φ(
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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by 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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Taking multiplication of (45) with qβ−1 and integrating over (0, 1), we obtain
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said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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, ζ)) + Iβ

ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
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,ζ)−
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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, ζ)), 0)
∫ 1

0

[
qβ−1 + (1−q)β−1

]
}1(q)}2(1−q)dq

+ℵ∗((ζ, ζ+φ(
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ))×=∗(ζ+φ(
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

,ζ)−
Ψ∗(ζ)×=∗(ζ)
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ))
∫ 1

0

[
qβ−1 + (1−q)β−1

]
}1(1−q)}2(1−q)dq

+ℵ0(ζ, ζ+φ(
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
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by 
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⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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,ζ)−
Ψ̃(ζ)⊗ =̃(ζ)

]
⊕M̃(ζ, ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ))�
∫ 1

0

[
qβ−1 + (1−q)β−1

]
}1(q)}2(1−q)dq
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, ζ))�
∫ 1

0

[
qβ−1 + (1−q)β−1

]
}1(1−q)}2(1−q)dq.

Hence, the required result. �

In upcoming outcomes, we will obtain new versions of H·H-Fejér inequality using a
fuzzy Riemann–Liouville fractional integral. A nontrivial example is also given to discuss
the validation of the first and second fuzzy fractional H·H-Fejér inequalities for UD-}-pre-
invex FTVM.

Theorem 8. Let Ψ̃ :
[
ζ, ζ+φ(
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, ζ)
]
→ ₤o be an UD-}-pre-invex FTVM with ζ <
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𝛹(𝔰𝜇 + (1 − 𝔰)ȥ) ≤ 𝔰𝛹(𝜇) + (1 − 𝔰)𝛹(ȥ),  (1)

for all 𝜇, ȥ ∈ 𝐾, 𝔰 ∈ [0, 1], where 𝐾 is a convex set. 
The 𝐻𝐻-inequality [1,2] for convex mapping 𝛹: 𝐾 → ℝ on an interval 𝐾 = [ϛ, ѵ ] is 𝛹 ϛ ѵ ≤ ѵ ϛ 𝛹(𝜇)𝑑𝜇ѵϛ ≤ (ϛ)  (ѵ),  (2)

for all ϛ, ѵ ∈ 𝐾. 
Fejér considered the major generalizations of the 𝐻𝐻-inequality, which is known as 

the 𝐻𝐻–Fejér inequality. The following is a presentation of the Hermite–Hadamard–Fejér 
inequality, which has been proven using a weight function and is the generic form of the 
inequality (2) (see [3]). 

Let 𝛹: 𝐾 → ℝ be a convex mapping on a convex set 𝐾 and ϛ, ѵ ∈ 𝐾 with ϛ ≤ ѵ. Then, 𝛹 ϛ ѵ ≤ ℨ( )ѵϛ 𝛹(𝜇)ℨ(𝜇)𝑑𝜇ѵϛ ≤ (ϛ) (ѵ) ℨ(𝜇))𝑑𝜇ѵϛ   (3)

If ℨ(𝜇) = 1, then we obtain (2) from (3). With the support of inequality, a large num-
ber of inequalities can be found using the particular symmetric mapping ℨ(𝜇) for convex 
mappings (3). By taking into account various convex function types, various derivative 
and integral operators, new techniques, and other spaces, researchers working on these 
two well-known inequalities have generated generalizations, extensions, improvements, 
and iterations, see [4–13]. 

The Hermite–Hadamard inequality has been proposed for operator convex and gen-
eralized convex functions (see, for example, [14–28]). The Hermite–Hadamard inequali-
ties for the products of two operator preinvex functions were created by Barani [29] in 
2015. The Hermite–Hadamard-type inequalities for the operator h-preinvex functions 
were established by Wang and Sun [28] in 2017. The Hermite–Hadamard-type inequalities 
for the operator (p, h)-convex functions were proposed in 2022 by Omrani et al. [30]. Re-
search has expanded because of the variety and uses of Hermite–Hadamard inequalities 
(see, for example, [31–36] and [37–45]). 

A fundamental idea in applied sciences and mathematics is fractional calculus. Frac-
tional calculus is actively used by researchers to address a wide range of real-world prob-
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inequality (see [49]), and Hermite–Hadamard–Mercer inequalities (see [50]). The Her-
mite–Hadamard inequality and its Fejér analog were investigated by Katugampola et al. 
using fractional integral operators of the Katugampola type (see [51]). In order to illustrate 
alternate versions of the Hermite–Hadamard inequality, Fernandez and Mohammed (see 
[52]) used Atangana–Baleanu fractional operators, and Noor et al. (see [53]) demonstrated 
Hermite–Hadamard-type inequalities. The Caputo–Fabrizio fractional integrals were also 
used to study the Hermite–Hadamard inequality (see [54,55]). Butt et al. introduced new 
iterations of fractal-based Jensen- and Jensen–Mercer-type inequalities (see [56]). For log-
preinvex [57] and harmonically convex functions [58], new fractional forms of Hermite–
Hadamard–Mercer- and Pachpatte–Mercer-type inclusions have been created. Hermite–
Hadamard inequalities have been further generalized for convex interval-valued func-
tions [59] and convex fuzzy interval-valued functions [60]. For more information, see [61–
67]. 

Each described notion and its definitions, despite initially seeming to be comparable, 
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coupled a variety of convex functions with integral inequalities, leading to a number of 
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Chalco-Cano researched Ostrowski-type inequalities (see [69]), and Opial investigated 

, for

which the 0-cuts define the family of TVMs. Ψ0 : [ζ, ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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quality (27) is reversed. 
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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, ζ))dq
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Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
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, ζ))dq.

(46)

If Ψ̃ is pre-incave FTVM , then inequality (46) is reversed.

Proof. Let Ψ̃ be an UD-h̄-pre-invex FTVM and qβ−1Z(ζ+ (1−q)φ(
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, ζ)) ≥ 0. Then, for
each 0 ∈ [0, 1], we have

qβ−1Ψ∗(ζ+ (1−q)φ(
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ))
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by 
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⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
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for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 
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+
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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, ζ))dq

+Ψ∗(ζ+φ(
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𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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, ζ), 0)
∫ 1

0 q
β−1[}(q) + }(1−q)]Z(ζ+qφ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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, ζ))dq.

(49)



Fractal Fract. 2023, 7, 171 17 of 24

Taking right hand side of inequality (49), we have∫ 1
0 q

β−1Ψ∗(ζ+ (1−q)φ(
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ), 0)Z(ζ+qφ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ))dq

+
∫ 1

0 q
β−1Ψ∗(ζ+qφ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ), 0)Z(ζ+qφ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 
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⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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by 
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for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
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by 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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by 
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said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
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ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

,ζ)−
Ψ̃Z(ζ)

] (51)

If Ψ̃ is pre-incave FTVM , then inequality (51) is reversed.

Proof. Since Ψ̃ is an UD-h̄-pre-invex FTVM, then for 0 ∈ [0, 1], we have

Ψ∗
(

2ζ+φ(
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

,ζ)
2 , 0

)
≤ }

(
1
2

)
(Ψ∗(ζ+ (1−q)φ(
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ)) = Z(ζ+qφ(
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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, ζ)) then by multiplying (52)
by qβ−1Z(ζ+qφ(
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, ζ)) and integrating it with respect to q over [0, 1], we obtain

Ψ∗
(

2ζ+φ(
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2 , 0
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said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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by 
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⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
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for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

= ζ+qφ(
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ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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, ζ). Then, for the right hand side of inequality (54), we have∫ 1
0 q

β−1Ψ∗(ζ+ (1−q)φ(
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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, ζ), 0)Z(ζ+qφ(
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 
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said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
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for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 
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Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 
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Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Then, from (54), (53) we have
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 
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said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

,ζ)
2 , 0

)
, Ψ∗

(
2ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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by 
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⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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Ψ̃Z(ζ)
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

) = 1, then from (46) and (51) one achieves Theorem 5.

If one attempts to take }(q) = q, then from (46) and (51) one achieves the following
inequality.
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 
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,ζ)−
Z(ζ)

]
(55)

Let one attempt to take }(q) = q and β = 1. Then, from (46) and (51) one achieves
coming inequality for UD-pre-invex FTVM, see [59].

Ψ̃
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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In the results that follow, we investigate how fuzzy fractional operators can be used 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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). Then, from (46) and (51) one
achieves the following inequality for UD-pre-invex FTVM given in [59]:
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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, 0) and 1 = 0 and }(q) = q, then from (46)
and (51) one achieves the following inequality given in [81]:
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said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ)) + Iβ

ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
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by 
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Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, 0) and β = 1 = 0 and }(q) = q, then from
(46) and (51) one achieves the classical HH-Fejér inequality.

If one attempts to take Ψ∗(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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, 0) and Z(
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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) = β = 1 = 0 and }(q) = q,
then from (46) and (51) one achieves the classical HH-inequality.

Example 3. If we attempt to take FTVM Ψ̃ : [0, 2]→₤o defined by,

Ψ̃(
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then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 
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Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, 3
2
]
,

2+
√

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
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named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

,0) are }-pre-invex functions for each 0 ∈
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 
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to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, θ ∈ [0, 1],
√
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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, θ ∈ (1, 2],
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

) ≥ 0, for all
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
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for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 
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⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

, ζ)) + Iβ

ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
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for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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, for each 0 ∈ [0, 1].

Hence, (46) is verified.
For (51), we have

Iβ
ζ+ Ψ∗Z(ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)
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by 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

= 1√
π

[
(1−0)

(
2π + 4−8

√
2

3

)
+ 3

2·π0
]

Iβ
ζ+ Ψ∗Z(ζ+φ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 22 
 

 

Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 
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In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
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Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)
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for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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Definition 8. [55] The ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is named as a pre-invex ℱ𝔗𝒱ℳ on invex inter-
val [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ≤𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ),  (26)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where all 𝛹(𝜇) ≥𝔽 0 for all 𝜇 ∈ [ϛ, ѵ]. If (26) is reversed, then 𝛹 is 
named as a pre-incave ℱ𝔗𝒱ℳ on [ϛ, ѵ]. 𝛹 is affine if and only if it is both pre-invex and pre-incave ℱ𝔗𝒱ℳs. 

Definition 9. [59] Let ℏ ∶ [0, 1] ⊆ [ϛ, ѵ] → ℝ  such that ℏ ≢ 0. Then, ℱ𝔗𝒱ℳ 𝛹: [ϛ, ѵ] → ₤  is 
said to be 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 ℏ(𝓆) ⊙ 𝛹(𝜇) ⊕ ℏ(1 − 𝓆) ⊙ 𝛹(    ȥ    ),   (27)

for all 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1], where 𝛹(𝜇) ≥𝔽 0. If 𝛹 is up and ℏ-pre-incave on [ϛ, ѵ], then ine-
quality (27) is reversed. 

Remark 3. [59] If one attempts to take ℏ(𝓆) = 𝓆, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-pre-invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝓆 ⊙ 𝛹(𝜇) ⊕ (1 − 𝓆) ⊙ 𝛹(ȥ), ∀ 𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (28)

If one attempts to take ℏ(𝓆) ≡ 1, then from 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ one achieves 𝑈𝐷-𝑃-pre-
invex ℱ𝔗𝒱ℳ, that is 𝛹 𝜇 + (1 − 𝓆)ɸ(𝜇, ȥ) ⊇𝔽 𝛹(𝜇) ⊕ 𝛹(ȥ), ∀  𝜇, ȥ ∈ [ϛ, ѵ], 𝓆 ∈ [0, 1].  (29)

Theorem 4. [59] Let ℏ: [0, 1] ⊆ [ϛ, ѵ] → ℝ be an anon-negative real-valued function such that ℏ ≢ 0  and let 𝛹: [ϛ, ѵ] → ₤  be a ℱ𝔗𝒱ℳ , for which the ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ѵ] → 𝕏 ⊂ 𝕏  and are given by 𝛹ʊ(ȥ) = [𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)],   (30)

for all ȥ ∈ [ϛ, ѵ] and for all ʊ ∈ [0, 1]. Then, 𝛹 is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ѵ] if and only if, 
for all ʊ ∈ [0, 1], 𝛹∗(ȥ, ʊ) is a ℏ-pre-invex function and 𝛹∗(ȥ, ʊ) is a ℏ-pre-incave function. 

Example 1. If we attempt to take ℏ(𝓆) = 𝓆, for 𝓆 ∈ [0, 1] and the ℱ𝔗𝒱ℳ 𝛹: [0, 4] → ₤  defined 
by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 
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by 

𝛹(ȥ)(𝛳) = ⎩⎪⎨
⎪⎧ ȥ            𝛳 ∈ 0, 2𝑒ȥ

ȥ ȥ    𝛳 ∈ (2𝑒ȥ , 4𝑒ȥ ] 0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

then, for each ʊ ∈ [0, 1], we have 𝛹ʊ(ȥ) = 2ʊ𝑒ȥ , 2(2 − ʊ)𝑒ȥ . Since endpoint functions 𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ) are ℏ-pre-invex functions with respect to ɸ(ѵ, ϛ) = ѵ − ϛ, for each ʊ ∈ [0, 1]. Hence, 𝛹(ȥ) is 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ. 

3. Fuzzy Riemann–Liouville Fractional Integral Hermite–Hadamard Type Inequality 
In the results that follow, we investigate how fuzzy fractional operators can be used 

to apply up and down functions to integral inequalities; therefore, let us recap the gener-
alized 𝐻. 𝐻 type inequality for ℏ-pre-invex ℱ𝔗𝒱ℳs first. 

Theorem 5. Let 𝛹: [ϛ, ϛ + ɸ(ѵ, ϛ)] → ₤  be an 𝑈𝐷-ℏ-pre-invex ℱ𝔗𝒱ℳ on [ϛ, ϛ + ɸ(ѵ, ϛ)], whose ʊ -cuts define the family of 𝔗𝒱ℳ s 𝛹ʊ: [ϛ, ϛ + ɸ(ѵ, ϛ)] ⊂ ℝ → 𝕏  are given by 𝛹ʊ(ȥ) =[𝛹∗(ȥ, ʊ), 𝛹∗(ȥ, ʊ)] for all ȥ ∈ [ϛ, ϛ + ɸ(ѵ, ϛ)] and for all ʊ ∈ [0, 1]. If ɸ satisfies Condition C and 𝛹 ∈ 𝐿([ϛ, ϛ + ɸ(ѵ, ϛ)], ₤ ), then 

,ζ)−
Z(ζ)

]
= 3(1−0)

√
π + 3

2
√

π0.
(62)

From (61) and (62), we have[
(1−0)

√
π + 3

2
√

π0, 3(1−0)
√

π + 3
2
√

π0
]

⊇I
1√
π

[
(1−0)

(
2π + 4−8

√
2

3

)
+ 3

2·π0, (1−0)
(

2π + 8
√

2−4
3

)
+ 3

2·π0
]
, for each 0 ∈ [0, 1].

4. Conclusions

Fuzzy-number valued mapping is a good method for incorporating uncertainty into
prediction systems. We demonstrated fractional versions of the Hermite–Hadamard-, Fejér-,
and Pachpatte-type inequalities using a novel concept from [59]. We showed that our results
can lead to a few new results for the h-preinvex mapping and the h-convex mapping in
fuzzy-number valued settings. The well-known Riemann–Liouville fractional integral
was used in a novel method for solving UD-fuzzy ordered inequalities. Some numerical
examples were also looked at to help explain the findings. Future work could adapt
this strategy to include other fractional operators such as tempered, Atangana–Baleanu,
Caputo–Fabrizio, and generalized fractional integral operators. Various non-symmetric
functions can also be used using these methods.

Future presentations of various inequalities, including those of the Hermite–Hadamard,
Ostrowski, Jensen–Mercer, Bullen, and Simpson types, can be obtained using this new this
idea. A variety of interval-valued quantum calculus, fuzzy calculus, and fractional calculus
can all be used to establish related inequalities.
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