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1. Introduction

When the terms “intelligence” or “intelligent” are used by scientists, they are re-
ferring to a large collection of human cognitive behaviors—people thinking. When
life scientists speak of the intelligence of animals, they are asking us to call to mind
a set of human behaviors that they are asserting the animals are (or are not) capable
of. When computer scientists speak of artificial intelligence, machine intelligence,
intelligent agents, or (as I chose to do in the title of this essay) computational intel-
ligence, we are also referring to that set of human behaviors. Although intelligence
meanspeople thinking, we might be able to replicate the same set of behaviors
using computation. Indeed, one branch of modern cognitive psychology is based
on the model that the human mind and brain are complex computational “engines,”
that is, we ourselves are examples of computational intelligence.

2. Turing’s Vision and the Turing Test for Humanoid Behavior

The idea, of course, is not new. It was discussed by Turing in the 1940s. In the
play about Turing’s life, Breaking the Code [Whitemore 1987], Turing is shown
visiting his old grammar school and delivering a talk to the boys, in which he offers
a vision of the thinking computer. The memories of those of Turing’s colleagues
of the 1940s who are still alive confirm that he spoke often of this vision. In 1950,
he wrote of it, in a famous article [Turing 1950], in which he proposed a test
(now called the Turing Test (TT)) for computational intelligence. In the test, a
human judgment must be made concerning whether a set of observed behaviors
is sufficiently similar to human behaviors that the same word—intelligent—can
justifiably be used. The judgment is about behavior not mechanism. Computers are
not like human brains, but if they perform the same acts and one performer (the
human) is labeled intelligent, then the other must be labeled intelligent also.

I have always liked the Turing Test because it gave a clear and tangible vision,
was reasonably objective, and made concrete the tie to human behavior by using
the unarticulated criteria of a human judge. Turing Award winner Jim Gray, who
works in fields of Computer Science other than AI, appears to agree. His list of
challenges for the future includes: “The Turing test: Win the imitation game 30% of
the time.” Significantly, he adds: “Read and understand as well as a human. Think
and write as well as a human,” [Gray 2003]. I will have more to say about necessary
conditions for these human activities later.

But there are problems with the Turing Test (TT). Human intelligence is very
multidimensional. However, the judge must fuse all of these dimensions into a
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single judgment about the “humanness” of the behavior. The computer scientists
who work in the areas called, or allied to, Artificial Intelligence usually must study
these dimensionsseparately. Successes along any one of the dimensions can only
be considered “partially intelligent” by Turing’s criterion. Imagine doing a TT of a
computational intelligence that was as good as an Einstein (who, after all, wasTime
magazine’s “Man of the Century”) in inducing and creating physical theories, but
was severely lacking in its ability to handle ordinary language. Still, an appropriate
strategy for a scientific field to conduct its inquiry is divide-and-conquer—study the
dimensions of intelligence more or less separately. We must be satisfied for a long
time to come with “partial intelligence” in our artifacts as a natural consequence of
this inevitable strategy.

In dividing-and-conquering, these are some examples of the many human be-
haviors that we either have divided out for study, or ought to (taken from a recent
paper by Gentner [2003]):

—The ability to draw abstractions from particulars.
—The ability to maintain hierarchies of abstraction.
—The ability to concatenate assertions and arrive at a new conclusion.
—The ability to reason outside the current context.
—The ability to compare and contrast two representations for consistency/

inconsistency.
—The ability to reason analogically.
—The ability to learn and use external symbols to represent numerical, spatial, or

conceptual information.
—The ability to learn and use symbols whose meanings are defined in terms of

other learned symbols.
—The ability to invent and learn terms for abstractions as well as for concrete

entities.
—The ability to invent and learn terms for relations as well as things.

3. Partially Intelligent Artifacts and What We Have Learned from Them

Although Turing’s vision is far from being achieved, very substantial progress has
been made in creating computational models of most of the dimensions of cognition
and in constructing software to realize these models. I will give two examples briefly,
and then follow with a third that is discussed at length.

In natural language processing, though our computational artifacts can not yet
“read and understand as well as a human,” computational linguists have devel-
oped superb models for the processing of human language grammars. Where they
have lagged is in the “understand” part: the semantics that attach real-world mean-
ings to the word- symbols, then use those meanings for knowledge organization
and inference.

In computer vision, scene understanding is excellent in specific situations for
which knowledge of the context and the objects of the scene can be explicated. In-
deed, because computer “eyes” can be multispectral (and human eyes are not), some
computer vision programs can exceed human visual abilities. What is missing is
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keyed by the term,specific situations. Vision programs lack a breadth of knowledge
of contexts and objects.

4. Computational Intelligence Working on Very Hard Problems

As I chose my own path using the divide-and-conquer strategy, I chose to model
intelligent behavior of the most complex sort—reasoning tasks that were difficult for
skilled humans and indeed impossible for most humans. These were the software
artifacts that I later calledExpert Systems(ES). ES are called that because their
behavior, their performance on solving difficult tasks, rivals the best human experts
in certain specific areas (called domains).

In 1965, when this work began, this basic idea of high-performance
problem-solving was not new. In the mid 1950s, a statistician who was a colleague
of Turing in World War II, I. J. Good, speculated on progress toward “an ultrain-
telligent computer” [Good 1965]. Only a year or two later, Gelernter’s program
for proving theorems in plane geometry exhibited a better performance on a stan-
dardized test in plane geometry than any of the thousands of high-school students
taking the same test [Gelernter et al. 1963]. Four years later, Samuel’s program for
checker playing beat one of the best human players in the USA [Samuel 1963].
And, decades later, a chess-playing program beat the world’s chess champion.

The ES of 1965 and beyond were in one important dimension much more com-
plex. The ES examples of computational intelligence were constructed to per-
form their expert-level behavior in difficult real world areas whose context in-
cludes large bodies of knowledge. Examples include: medicine, various areas of
physical science and engineering, and the analysis and control of many business
and manufacturing processes. The ES for planning complex operations were es-
pecially powerful when compared with the best human behavior in the applica-
tion areas. As an example of high performance, one of these programs found im-
portant use in the NATO Air Operations Center during the Bosnian campaign.
Two others formed the basis for successful software companies in manufactu-
ring planning.

All of these ES examples of computational intelligence are examples ofpartially
intelligent artifacts. They were developed to satisfy the scientific need to under-
stand complex problem solving behavior and the engineering need to apply such
understanding. None would pass Turing’s Test. They are designed to be specific
to domains and to certain tasks within those domains. They lack breadth in their
available behaviors and have limited flexibility in their ability to interact with peo-
ple. Yet their task performance has been, in some cases, world-class. There have
been tens of thousands of them built. Each one constitutes an experiment on the
path to human-level complex problem solving—and beyond, to Good’s concept of
an “ultra-intelligent” computer.

What is the most important thing we have learned from all of these experiments?
The answer turns out to be simple, seemingly obvious in retrospect (but many
important scientific truths seem obvious in retrospect).

For an artifact, a computational intelligence, to be able to behave with high
levels of performance on complex intellectual tasks, perhaps surpassing hu-
man level, it must have extensive knowledge of the domain.Knowledge means
things likes terms for entities, descriptions of those entities, relationships that
organize the terms and entities for reasoning, symbolic concepts, abstractions,
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symbolic models of basic processes, fundamental data, a large body of re-
membered instances, analogies, heuristics for “good guessing,” among many
other things.

Computer scientists, with their typical backgrounds from logic and mathematics,
enjoy creating elegant and powerful reasoning methods. But the importance of
these methods pales in comparison with the importance of the body of domain
knowledge—the artifact’s knowledge base.

This is so important a result that it is almost a principle of AI. To push the point,
let me illustrate the obvious. As I write, I can look out my window and see the
Stanford Mathematics Department on my left and the Stanford Medical School on
my right. In the Math building are some of the most powerful reasoners in the world,
at least one of whom has won the Fields Medal. If I were, at this moment, to have a
threatening medical event, I would ask my CS colleagues to rush me to the Medical
School, not the Math Department. The powerful reasoning of the mathematicians
would be essentially totally ineffective compared with the knowledge of medicine
of the doctors in the Emergency Room of the Medical School’s hospital. For the
doctors to apply their knowledge effectively to my case will require some simple
reasoning, but not logically powerful and elegant methods.

In fact, I believe that we now have an overabundance of such methods that have
yet to receive adequate test of utility and integration into our AI software systems. To
use these methods effectively, the field faces a major challenge of experimentation
and system integration.

But the field faces a much greater challenge in the sphere of knowledge: knowl-
edge representation, and (especially) knowledge acquisition.

As early as 1977, two well-known MIT AI researchers wrote about AI’s “shift to
the knowledge-based paradigm” [Goldstein and Papert 1977]. The understanding
of what needs to be done is widespread, but the practice is not. Ask a computational
linguist why her natural language-processing system is not performing well on
some task, or what her system would require to understand the text in documents
on the WWW, and she will usually answer correctly “knowledge of the domain of
discourse.” But it is only in the last few years that the community of computational
linguists has begun to codify knowledge, developing the volunteer-built semantic
net known as Wordnet.

Computer scientists do not like the seemingly endless and painstaking task of
representing knowledge for use by computational intelligence. It is in small part the
logic of knowledge representation (they like that part) and in large part epistemology
(“that’s somebody else’s problem”). The enormous effort of the CYC research group
(www.cyc.com), led by Lenat, to codify a useable body of “common sense” general
knowledge has largely been done by graduates in philosophy, religion, and many
other disciplines, but not computer science. Yet CYC-like knowledge is precisely
the knowledge that will enable a computational intelligence to pass TT—if one ever
does, and I believe eventually one will.

5. Challenges and Grand Challenges

5.1. TURING’S TESTREVISITED. As I mentioned, Gray proposed the challenge
of a computational intelligence passing TT in its original form 30% of the time. The
facet of an intelligence being examined by TT is largely one of breadth, or span, of
human activity and concerns that are represented, implying for the computational
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intelligence a huge knowledge base. Acquiring such a large computer-useable
knowledge base is a Very Grand Challenge.

I propose this alternative to TT. Suppose we choose to test the facet of quality (the
complexity, the depth) of reasoning, that which distinguishes the Einstein from you
and me. This is a more manageable task, since computer scientists are much better
masters of reasoning processes than of knowledge bases. Here is a reformulation
of the TT that attempts to capture the facet of quality. To avoid possibly polluting
Turing’s legacy with this revision, let me call it the Feigenbaum Test (FT).

Two players play the FT game. One player is chosen from among the elite
practitioners in each of three preselected fields of natural science, engineering,
or medicine. (The number could be larger, but for this challenge not greater than
ten). Let’s say we choose the fields from among those covered in the US National
Academy Complex, and the player must be a member of the National Academy. For
example, we could choose astrophysics, computer science, and molecular biology.

In each round of the game, the behavior of the two players (elite scientist and
computer) is judged by another Academy member in that particular domain of
discourse, for example, an astrophysicist judging astrophysics behavior. Of course,
the identity of the players is hidden from the judge, as it is in TT. The judge poses
problems, asks questions, asks for explanations, theories, and so on—as one might
do with a colleague. Can the human judge choose, at better than chance level, which
is his National Academy colleague and which is the computer?

The game can be played several times to enhance the statistics of the test, using
different pairs of Academy members from the selected domain, one being a player
and one being a judge. To factor out the facet of intelligence related to full natural
language understanding, the framers of the game might decide at the outset that the
interactions will be conducted in the heavily jargonized and stylized language with
which practitioners in the selected domains usually communicate their problems
and issues.

Referring back to Gray’s criterion for success of the computational intelligence,
the challenge will be considered met if the computational intelligence (CI) “wins”
one out of three disciplinary judging contests, that is, one of the three judges is
not able to choose reliably between human and computer performer. Relative to
what has been accomplished in the Expert Systems area until now, in the building
of knowledge bases for science, engineering, and medicine, this is a formidable
Grand Challenge. But it is still far from the extraordinary grand challenge of the
ultraintelligent computer (UIC). Paradoxically, the UIC would be easily discernible
from the elite human performer. It would be offering inductions, problem solutions
and theories that were not yet reached by any human, yet were plausible, rigorous
upon explanation, and either correct or interesting enough to subject to experi-
mental test.

My guess is that, if we seriously attack the AI and epistemological issues un-
derlying success in the FT, the 100th anniversary issue of theJACMwill be able to
publish some UIC results.

5.1.1. Grand Challenges2 and3. It is clear from what I have already said that
I believe the key, and indeed central, component of an intelligent system (a “CI”)
is its large knowledge base. Building it is the bottleneck engineering problem for
constructing CI. That fact has been known for more than two decades. The missing
science in this area of AI led to an explosion of research in machine learning.
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Initially, it was believed that the machine learning processes would learn symbolic
concepts built up out of symbolic entities, relations, and ontologies. For example,
in the late 1960s, I collaborated on the Meta-DENDRAL machine learning project,
the result of which was a publication in the mainline literature of chemistry of a
hitherto undiscovered symbolic model of the mass-spectral fragmentation of an
interesting family of organic molecules [Buchanan et al. 1976]. It was published
because it was a contribution to mass-spectral fragmentation theory.

In the years following, the machine learning field moved away from symbolic
concepts toward the border of statistics, where the entities and relations were sta-
tistical in nature. This work had a large impact and helped to fuel the new field
of data mining, but it had essentially no impact on the construction of the large
knowledge bases at the core of CI. A team like Lenat’s CYC team continued to
encode symbolic concepts manually, one by one. So the “missing science” is still
mostly missing. Challenges 2 and 3 below are my attempts to state lines of research
to fill this important, indeed crucial, near-void.

5.2. BUILD A LARGE KNOWLEDGE BASE BY READING TEXT, REDUCING
KNOWLEDGEENGINEERINGEFFORT BYONE ORDER OFMAGNITUDE. This Grand
Challenge is not novel. It is indeed implied by Gray’s subchallenge to read and
understand. It even has been tried in limited contexts, by Buchanan and others.
Reddy has stated the challenge this way: “Read a chapter of a text and answer the
questions at the back of the chapter.”

The intent here is to “educate” a knowledge base in the same way that we receive
most of our education. We “inherit” from our cultures a large part of what we know
via the written word (although some of our knowledge comes from experience and
apprenticeship). For most of what we know, symbolic learning is built up from prior
learned symbolic structures represented in our knowledge bases.

The challenge I want to pose is partly amachine learning challengeand partly
a challenge of engineering aneducational strategy.

Let me try to make the challenge a concrete one by reference to my Grand
Challenge 1. If the performance of the CI competing in the FT is excellent, this will
be largely attributable to its knowledge of its particular domain. For some specific
domain, later to be used in an FT, start this grand challenge by doing two things.

First, manually encode a novice-level understanding (symbolic representation)
of the domain, that is, humans will do the knowledge engineering. The novice-level
“view” of the domain can be taken directly from a well-regarded elementary text
of the domain, for example, an introduction to molecular biology.

Second, write the software for a system that will read the “next” text in the field,
augmenting as it reads the kernel novice-level knowledge base.

To make this a more practical prospect, some human intervention will be allowed.
The program’s natural language capabilities may not be fully able to cope with the
language used, so queries for clarification may need to be answered. Occasional
direct intervention into the symbolic structures may be needed to introduce a missed
concept or to correct a “misunderstanding” that found its way into the knowledge
base. (Note in passing that it is not my view that a CI must be perfect. To paraphrase
a famous quotation: “To err is the fate of all intelligence.” It is a consequence of
bounded rationality.)

The amount of knowledge base development and change introduced by the hu-
man intervention should not exceed ten percent of all the symbolic structures. This
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translates into speeding up the development of large knowledge bases by approxi-
mately one order of magnitude, which is grand enough for this grand challenge.

The introduction of domain concepts to the CI must occur in some order. There
will surely be preferred orderings (but probably not a unique one) in which the
more advanced readings should be presented. This is the part of the challenge
that involves the educational strategy. I view this as a challenge of engineering
design of an educational strategy because we have the opportunity of studying at
all times what is “inside the black box.” This is a luxury that educators do not
normally have.

Progress on this grand challenge will be measured by the performance of the CI
being educated by its reading. The grand challenge can be achieved incrementally.
Ultimate “victory,” of course, is to bring the CI to the state of knowledge with which
it can pass the FT. But other midpoints would indicate significant progress: human-
level performance at the end of a college major; at the end of a master’s degree; at
the granting of a Ph.D.; and so on up the normal levels of human performance.

If this were to succeed, it would lead to another Grand Challenge, but one that
is manageable given what had to have been done before. The educated CI would
continue to educate itself by reading the emerging literature of the domain. That is, it
would “keep up with the literature.” Human assistance will still be allowed, but less
than was allowed earlier. Indeed, one could think of this phase as “collaboration,”
since both human and CI will be learning the new material at the same time.

The test in this Grand Challenge would be simply an extension of the FT (EFT)
Biannually, the educated CI would take the FT. Do it twice. The criterion for passing
the FT would remain the same. To pass the EFT, the CI must pass the FT one time
in the four years (two repetitions) of the extension.

5.3. DISTILLING FROM THE WWW A HUGE KNOWLEDGEBASE, REDUCING THE
COST OF KNOWLEDGE ENGINEERING BY MANY ORDERS OFMAGNITUDE. The
WWW can be thought of as the world’s largest database, especially if one in-
cludes all the information that is accessible via links. It contains much of the
world’s current events, cultural history, and accumulated knowledge in textual and
other informational types. It is truly amirror of our human knowledge, or per-
haps more accurately a transformation of our knowledge. For knowledge engineers
trying to build CI that will pass TT or FT, it is the tempting apple on the tree
of knowledge.

However, the WWW is not a knowledge base. Except for supporting data, most of
what the WWW contains can not participate directly in inference making, problem
solving, and decision making that a CI must do. The WWW, simply put, does not
represent knowledge using any of the standard tools of knowledge engineering,
logic, and probabilistic inference. Therefore, the Grand Challenge for plucking this
treasured apple (perhaps the ultimate apple) from the tree would be to “make it so,”
to use the language of a popular science-fiction epic.

I would like to call this a Grand Vision, because the word “Challenge” suggests
that I have in mind a test for when the Challenge is met. Perhaps the methods being
studied in this Grand Vision can eventually be used to try to create the CI artifacts
that will pass my Grand Challenges 1 and 2, and that would convert the Grand
Vision into a Grand Challenge 3.

Work on this Grand Vision began in the late 1990s on an international scale. The
work is vigorously supported by the US government (DARPA) and the European
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Union (Framework), and has the considerable support of the WWW Consortium
(W3C) under the label of the Semantic Web. The conception is that the “sources
of knowledge” are widely distributed, and number in the hundreds of thousands,
perhaps millions of web page owners and their pages.

Tools are being created to (among other things):

—Facilitate the building of general and specific ontologies (logical structures for
organizing knowledge).

—Facilitate the integration of the ontologies built by many people (or programs) in
many places into logically consistent representations that will be highly efficient,
and will probably have to pass a human “editing” examination.

—Give the multitude of web page creators a markup language in which each can do
an extensive semantic markup of his/her textual submission (and perhaps other
information types). XML, of course, is a foundation stone. For AI scientists,
RDF (Resource Description Framework) follows naturally. The present work of
the DAML+OIL international project has the promise of eventual distribution
of user-friendly semantic processing and markup tools to all web page builders.
For more, consult www.semanticweb.org.

The semantic markups are just the raw material for a huge global knowledge
base. To implement the Grand Vision, knowledge engineers must build a system of
“semantics scrapers” that will access the semantic markups, integrate them appro-
priately into the growing knowledge base, and set up the material for the scrutiny
of an editorial process.

Will this work? Or is the apple too far up the tree to be plucked in our era of
computer science and engineering research? We will know within the next decade.

6. Concluding Remarks: Manifest Destiny

In this essay, I have given challenges and Grand Challenges (only a few) for re-
searchers doing Computational Intelligence, that is, in the AI area of computer
science. It would have been an uncomfortable high-wire act for me to have tried
to set challenges in other areas of CS. But far beyond personal questions of in-
tellectual sure-footedness, I hold a strong belief that Computation Intelligence is
the destiny of CS. I hold no professional belief more strongly than this. I call
computational intelligence the manifest destiny of computer science.

I learned the term “manifest destiny” when I studied American History as a young
student. In the early 19th Century, when the small population of the new United
States extended only to the Appalachian Mountains of the east, great visionaries like
Thomas Jefferson imagined a USA that encompassed all territories to the far ocean
at the continent’s western edge. That vision, motivating generations of settlers and
policy makers, was called the Manifest Destiny.

Computational Intelligenceis the manifest destiny of computer science, the goal,
the destination, the final frontier. More than any other field of science, our computer
science concepts and methods are central to the quest to unravel and understand one
of the grandest mysteries of our existence, the nature of intelligence. Generations of
computer scientists to come must be inspired by the challenges and grand challenges
of this great quest.
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