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SOME CHARACTERISTICS OF INTERFACES BETWEEN CAMAC AND SMALL COMPUTERS* 

Frederick A. Kirsten 
Lawrence Berkeley Laboratory 
Berkeley, California 94720 

Su11111ary 

The typical CAMAC system is operated in conjunct­
ion with a small computer. In the usual case, the 
computer acts as a repository for data generated by 
CAMAC, and a 1 so contra 1 s and directs the CM~AC opera­
tions. This paper discusses some of the aspects of 
the hardware interface, and also some of the inter­
action between the computer and the CAMAC system. 

Introduction 

CAMAC systems can be assembled in many shapes, 
sizes, and configurations. The flexibility of CA~1AC, 
which permits the accommodation of a wide range of 
problems, is one of its greatest assets. !here exist, 
in actuality or on paper, systems of all s1zes, from 
those completely self-controlled and contained in a 
single crate, to multibranch, multi-computer systems 
involving a very high level of data interchange and 
communication. 

This paper concentrates on a specific, relatively 
simple type of CAMAC system--namely, one whose crates 
are interconnected by a single branch highway, and 
controlled by a single source of system control--a 
computer. However, reference is also given to systems 
in which individual crates are interfaced directly to 
the computer. The discussion centers around the pro­
blems of interaction and intercommunication between 
computer and the CAMAC system, and the hardware nec­
essary to effect the interfacing. 

It is assumed that the reader is familiar with 
both the CAfMC Crate Data way, The CAMAC Branch High­
way, and the Crate Controller Type A. These are des­
cribed in the specifications 1 • 2 and in other papers 
of this series.3-G In addition, familiarity with the 
basic facilities of a typical small computer is 
assumed. 

The "Typical" Small Computer7 

The computer interacts with CAMAC via what is 
often called its "1/0 structure." This term refers to 
capabilities of the computer to co11111unicate with de­
vices external to itself. (1/0 is the abbreviation 
for Input/Output.) For the purposes of discussion, 
the "typical" small computer is assumed to have the 
following characteristics in its l/0 structure. 

{a) A programmed l/0 facility. This refers to the 
ability to transfer data between computer and exter­
.nal device under the complete step-by-step control of 
the computer program. In general, the transfer of 
each word, or the emission of each 1/0 corrmand, is the 
result of one or more instructions in the program. 

(b) A block transfer facility: This permits 
transfers of blocks (large numbers of data words) in 
such a way that the computer program is required to 
issue only the initial instructions for the block. 
The remainder of the operation proceeds under hardware 
control. 

*Work performed under the auspices of the U.S. Atomic 
Energy Commission. 
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(c) An interrupt facilit~, which perm~ts the ex­
ternal device (CANAC) to ga1n the attent1on of the 
computer program. 

(d) An I/0 command repertoire, usually relatively 
limited, by which specific 1/0 operations can be 
commanded. 

• 
Comparison of Crate Controller 
and Branch Driver Interfacinq 

The interface between a computer and a CAMAC sys­
tem is usually placed either at the crate controllers 
of the individual crates, or at the branch driver of a 
branch highway system. Figure 1 shows an e~ample of 
each configuration. Th~ prime ou~pose of ~1ther of 
the two configurations 1s to prov1de a veh1cle for ~he 
conversations between computer and modules. The ma1n 
difference between the two is in the organizati?n of 
the conversation and paths. The branch system 1n 
Fig. la provides a single port through which the com­
puter "talks" to the entire system. The other system, 
shown in Fig. lb, has an interface at each cra~e .. Let 
us call it a "radial" system, since the commun1cat1on 
radiates from the single computer to the several crate 
controllers. For convenience we refer to the crate 
controllers of this type8 as Type U. 

A given collection of CAMAC modules c~n often be 
interfaced either way. Both ways are appl1cable to 
single-crate and multicrate ~ystems. Wh~ch method . 
is better depends on details of the part1cular appl1ca­
tion. Some bases for comparison are .given below. 

Fig. 1. 

~--rf-, 1 CAMAC 
Branch 

L---4..J/ Highway 

(al 

Computer 
l/0 bus 

Computer -interfacing 
crate controllers(type U) 

J/0 bus 

(b) 

Two examp 1 es of ho~1 a three-crate CA~1AC 
system may be configured: (a) using a 
CAMAC Branch Highway interconnection; 
and (b) using a computer l/0 bus to 
interconnect the crates. 



Cost. The three interfacin9 components shown in 
Figs.-----ra.-and lb are the branch driver, the Crate Con­
troller Type A (CCA), and the computer-interfacing 
Type U Crate Controller. Based on an estimate of the 
amount of logic required in each of the three, the 
branch driver will probably cost the most, the CCA 

Operational characteristics. With the branch 
highway scheme, intercrate communication can be accom­
plished completely outside the computer structure. 

the least, and the Type U somewhere in between. To 
implement a branch system, one branch driver and a 
CCA for eac:1 crate are needed. The radial system re­
quires one Type U Crate Controller for each crate. 
Either the radial or the branch system may have the 
lo~1er total component cost, depending on the number of 
crates in the system. 

This sometimes has benefits. For example, block trans­
fers of data involving modules from several crates can 
probably be handled more easily with the branch highway-­
the crate boundaries can be made transparent to the 
computer interface. On the other hand, simultaneous 
block transfers to two or more separate modules, using, 
e.g., interleaved cycles on two separate data channels, 
can possibly be done more easily in the radial system, 
particularly if the modules are in separate crates. 

Within a laboratory, the long-range cost of a set 
of CAMAC systems can be influenced by the amount of 
trading of components among the systems. For a system 
that never changes, one may consider only the initial 
cost. If systems are continually being broken apart 
and reconfigured, the initial cost may not be the prop­
er criterion. For example, to change the model of com­
puter used on a branch highway system, one needs to 
change only the branch driver, whereas, for a radial 
configuration, all Type U Crate Controllers have to be 
changed. 

Type U controllers usually can provide a closer 
coupling between the Look-at-Me's generated by the mod­
ules, and the interrupt structure of the computer than 
a branch coupler.l3 In a radial system, it is generally 
the case that the proper computer subprogram can be 
entered in less elapsed time and with fewer operations. 

CAMAC-Computer Communication 

Certain common problems arise whenever two data 
structures are interfaced. Thi-s is no less true if one 
of the data structures is CAMAC. In the following, we 

TABLE I 

Comparison of characteristics of CAtl!AC and I/0 structures of typi ca 1 sma 11 computers 

Topic 

Types of operations that may 
be carried out 

Basic cycle time 

Timing and logical control 
of operations 

Data word size 

Service requests/interrupts 

CAt·1AC characteristics 

Bidirectional data transfer 

Commands directed to modules [:'\ 
much larger command repertoire 
than in the average computer's 
I/0 structure] 

Look-at-Me service requests 

Cycle time ~ 1 ~sec 

Specified by CM1AC specifica­
tions 

Maximum word size = 24 bits. 
Actual word size (no. of bits 
that are actually significan~ 
depends on the module involved. 

At the Crate Controller, there 
are available up to 23 bits of 
service-request information. 
At the Branch Driver, there is 
1 bit (the BD signal) available 
at all times; after a GL cycle, 
there are 24 bits available. 
More can be obtained by add-
ressed commands · 

-2-

Characteristics of the I/0 structure 
of a typical small computer 

Bidirectional data transfer [two modes: 
Programmed I/0 (accumulator transfers), 
autonomous tran.sfers (e.g., data 
channel)] 

Commands directed to peripheral devices 
[different command structure from CAMAC] 

Interrupts or Data Channel cycle requests 

Cycle time varies from one computer to 
next, typically of the order of 1 ~sec 

Different for each computer (and 
different from CAMAC) 

Word size is generally less than 24 bits 

Service requests include: 
Interrupts: single-level or multiple 
levels 

Data Channel cycle requests: 
possibly on more than one channel; 
generally, transfer can be made to or 
from computer --

Direct memory access cycle request. 
The first can be spontaneous; the 
1 atter two must usually be "set up" by a 
preceding routine 

l_ 



discuss how some of these common problems relate to the 
CAMAC-computer interface. 

Table I compares some characteristics of CAMAC and 
the I/0 structures of typical small computers. The 
table substantiates that translations are necessary-­
from the I/0 "language" of the computer to the CAMAC 
"language," or vice versa. The entities to be t:ans­
lated include the size of data words, commands. (1.e., 
the significance of commands), and timing sequences. 

Timing oroblems are ofte~ solve~ by "staticiz~ng" 
the data and commands. This 1s part1cularly true 1f 
the I/0 structure uses a synchronous transf~r--i.e., it 
is timed by a computer clock, and cannot wa1t for CAMAC. 
This is done by providing registers accessible from 
either side of the interface. (A register is a one 
data-1vord or one command-word storage device, probably 
composed of one flip-flop for each bit involved.) The 
registers behave as "mailboxes." One entity, CAMAC or 
computer, deposits information in the registers, us~ng 
its own cycle timing and sequencing. The other ent1ty, 
using its own cycle timing quirks, can then pick up the 
information. One entity may completely finish an oper­
ation before the other begins, thus removing the nec­
essity for interlocking and synchronizing two different 
sets of cycle timing characteristics. 

If the I/O structure uses an asynchronous cycle-­
i.e., one that can be momentarily pause to wait for . 
CAMAC it may be possible to imbed the CM·1AC cycle Wlth­
in th~ I/0 cycle. If so, the "mailbox" techniql)_fb mH 
not be used. Examples are given in a reference. • 

In addition to the registers, an appropriately de­
signed control sequencer and organizer coordinates the 
interlocking of the complete operations of CAt•IAC and of 
the computer. 

A Typical Interface 

Figures 2 and 3 are simplified block diagrams 
showing the basic oarts of an examole of a CAMAC-computer 
interface. Figure 2 shows the parts primarily concerned 
with the transmission of data; Fig. 3 shows portions con­
cerned with the transmission of CAMAC commands and con­
trol features. 

It should be emphasized that this is an example. 
Some of the facilities described below will obviously 
need to be in all branch drivers. Other facilities or 
features can be included at the designer's option' 
The user therefore cannot assume that all branch drivers 
contain all features. For example, some perform pro­
grammed I/0 transfers only. Some have a very rudimen­
tary means of handling requests. 

Data-Oriented Parts 

Fiqure 2 illustrates the flow of data to and from 
the branch highway bidirectional Read/Write (BRW) bus, 
and to and from the computer. Some data are transferred 
between computer and interface via programmed I/0 
(accumulator) transfers under complete software control. 
This means every step of the process is specially con­
trolled by the computer program; the interface has a 
relatively simple task. Other data are transferred in 
block transfer mode [shown here as Data Channel (DCH) 
transfer.] In this mode, the computer program initial­
izes the system, but each individual data word in the 
block is transferred under autonomous (hardware) con­
trol. Depending on the computer, more or less of this 
hardware must be in the interface. 

Data Registers. Figure 2 shows two data registers, 
one for Programmed Input-Output (Prog I/0) transfers 
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Connect ions 
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I/0 bu.s 

via 
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gating 

logic 

and Interrupt \ 
requests to ' 

Block write operation 

24 way AND gate 

24 {24 -bit 
BRW bus 
of Branch 
Highway 

24 Bits in parall'el 

DCH cycle requests[ 

computer etc • .___ __ _. 

DC H = Do to chonnel 

Fig. 2. A block diagram showing some of the parts 
of a typical computer-branch highway 
interface that are concerned with the 
data bus (BRW) lines of the highway. It 
is assumed that the computer has a word 
size of N bits. 

and one for Data Channel (DCH) transfers. Two reg­
isters are necessary if a DCH cycle is to be inter­
leaved with steps of a Prog I/0 transfer. Each is 
a 24-bit register in order to accommodate the 24-bit 
CAMAC data word. Typical small computers have word 
sizes of 12, 16 or 18 bits. This makes it necessary to 
perform two computer I/0 transfer cycles to move the 
full 24 bits of data from the data register to com­
puter memory. The first transfer generally moves bits 
1 through n, where n is the computer word size; the 
second then moves bits (n+l) through 24. However, 
there are many cases where not all 24 bits are signifi­
cant. As an example, consider a 16-bit computer read­
ing a module which contains a 16-bit scaler. The 
CAMAC ooeration will move 24 bits from module to reg­
ister. ·However, since only 16 bits are useful, and 
since here n = 16, only one I/0 transfer need be made. 

GL register. A third register, involved only in 
data flow from CAMAC to computer is the GL register. 
During the Graded-L cycle, a 24-bit word carrying in­
formation on the status of L requests in the branch is 
generated on the BRW bus. The GL register saves this 
information. It may be made available to the computer 
via Prog I/0 transfer. In some branch driver designs, 
certain GL bits can be assigned to automatically 
cause computer interrupts. In some, an interrupt 
vector is included, which directs the computer to a 
service subprogram that is aopropriate for the particu­
lar CAMAC service request.l 3 Another option is to use 
certain GL bits to synchronize block transfers.12 When­
ever these. bits come up, another word is transferred. 



Interrupt if BX = 0 

Skip on BX 

Control of BX 

Initiate GL cycle 
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computer 
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appropriate 

gating 
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Request DCH cycle 

DCH command 
register 

~--r+~rl~--~BN 

~---f+r~~~~BA 

Prog ItO 
operation 

A simplified block diagram showing 
the parts of a typical computer -
branch highway interface that are 
concerned with branch highway commands. 

Command-Oriented Parts 

Figure 3 shows the parts of the typical interface 
that are concerned with issuing addressed CAM.L\C 
commands, with the BQ signals, and with the Look-at-t~e 
servicing. 

Command registers. As with the data, separate 
command registers are sho~m for Prog 1/0 and DCH trans­
fers in order to permit interleaved Prog l/0 and DCH 
cycles. In most cases, the CM~AC commands ar~ gener­
ated by the computer software, and are transm1tted by 
the computer to the command register in a form the com­
puter considers as data. Thus, the loading by the com­
puter of the command register is similar to loading the 
data register. 

To put it another way, the· command repertoire of 
the average computer l/0 structure is limited, and is 
much smaller than the CAMAC corrmand repertoire. Thus, 
there is often no way a direct translation from 1/0 
command to ~1AC command can be accomplished. See the 
referenceslO,l3 for examples of exceptions to this 
statement. 

A complete branch highway command requires 17 bits--
3 bits for Crate address, 5 for Station Number, 4 for 
Subaddress, and 5 for Function Code. Thus, double word 
transfers to load the Corrmand Register may be required 
fQr computer word sizes of 12 or 16 bits. Commands 
addressed to more than one crate or more than one 

station require special handling. 

Q responses. Certain CA~1AC commands require that 
the module give a Q response. On the branch highwa.v 
all Q responses from individual crates are gathered onto 
the BQ line. The state of the BQ line may be strobed 
into a one-bit BQ register during each Prog I/O-initiated 
CAMAC cycle and made available to the computer program. 
The program may test this register and may conditionally 
branch, depending on its state. A second one-bit BQ 
register may be required for Q-controlled block transfers. 

Operational Sequences 

In this section, the sequences of events in sev­
era 1 types of operations are brfefl.v explained, with 
emphasis p 1 aced on the i nterp.l ay between the computer 
and the CAf~AC system. 

Programmed 1/0 Data Transfers 

In these operations the object is to move data be­
bJeen (the accumulator of) the computer and a specific 
CA~11J.C address (e.g., a register in a module). The 
computer program is in control in that it specifies 
the direction of data flow, the CAf~AC address, and 
when the operation is to take place. Two examples are 
given in Table II. One is for a Write operation in which 
data move from computer to module. The other is for a 
Read operat1on, with data-flow in the opposite direction. 

Block Transfer Operations 

In block transfer operations, the object is to move 
blocks (many words) of data with the minimum interven­
tion on the part of the computer program. ~Jhereas the 
initiation of the block is under program control, the 
transfer of individual data words is controlled by re­
latively simple hardware logic.* Generally, the same 
CAMAC function code--e.g., F(O)--is used during the 
entire block. 

The CAMAC snecifications 1 define three modes of 
block transfer control using Q-responses. These are 
called: Address Scan, Stop and Repeat modes. The 
Address Scan mode is used to move data to or from a 
group of registers that reside in an array of modules. 
In this mode, a Q-response of 'l' indicates that the 
register addressed by the current command actually 
exists. A response of '0' says, "There's no (scan­
addressable) register at this location." These responses 
enable the Branch Driver to transfer data only to (or 
from) those CA~1AC addresses (CNAs) that c.ontai n regi st­
ers. 

The Repeat mode is used to move data to or from a 
single register. It is intended for situations where 
the register may not always be ready for the transfer. 
In this mode, the Branch Driver may repeatedly try to 
effect the transfer. A Q response of '1' from the 
module says the transfer was successfully accompl i.shed 
(as far as the module could tell). A response of '0' 
means "I wasn't ready, please try again." The Repeat 
mode is therefore one of several methods available for 
synchronizing the readiness of computer and module. 

The Stop mode is also used to move data to or from 
a single register. It is intended for situations where 
the number of words in the block is not initially known, 
and where the module is able to determine when the last 

*fhfS statement refers to this example. The algorithm 
described can also be executed under complete software 
control, using a series of Prog 1/0 data transfers. 
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TABLE II 

Examples of Sequences for Programmed I/0 Data Transfers 

Computer I/O operation 

I. WRITE--(Data flow from computer to CAf•IAC address) 

A. Load data into the "Prog I/0 data reg" 
in interface. (This may be a double 
transfer, if data word size > computer word 
size.) 

B. Load CAMAC command into "Proq I/0 corranand 
reg" in interface. (This may also be a double 
word transfer.) 

Wait for signal that Branch Highway cycle 
is done (e.9., Program loop using "Skip if BH 
cycle done"). 

D. Do next sequence -

II. READ (Data flow from CAMAC address to computer.) 

A. Load CAMAC command into "Prog I/0 command 
reg." 

Wait for signal that Branch Highway cycle 
is done. 

C. Examine BQ register if Q response defined 
for command used. BQ register may be tested by 
program using, e.g., "Skip if BQ = 1." Also 
check BX. 

D. If BX "1, and if oroper BQ response detected, 
transfer data from "Prog I/0 data reg." to computer. 

E. Do next sequence. 

CAMAC operation 

IDLE 

IDLE 

C. Execute Branch Highway cycle, 
transferring data loaded in A using 
CAMAC address loaded in B. 

IDLE 

B. Execute Branch Highway cycle, 
transferring data from CAMAC address 
given in A to "Prog I/0 data reg." 

IDLE 

word of the block has been moved. A Q-response of '1' 
indicates the word transferred is part of the block. 
The first time a '0' is received, it indicates the 
previous transfer was the last word of the block. 

For Scan Address, the limit could be specified either 
by Word Count or by the last CAMAC address which is to 
be scanned. Preferably both are included. 

Many branch driver designs include the hardware by 
which block transfers are coordinated. Inputs to this 
hardware segment include: 1) instructions from the 
program telling which mode of block transfer to use; 
and, 2) the BQ signal. Outputs from the segment in­
clude: 1) the decision whether the transfer of a data 
word has been effected; and 2) in the case of Scan 
Address mod~, CAr-1AC address updating signals, according 
to an algor1thm described elsewhere.3 

It is good practice to include in the interface a 
means of insuring that the block transfer will always 
be terminated within some safe limits. In the case 
Repeat or Stop, this may be by specifying a maximum 
number of words to be transferred (Word Count). In 
Stop mode, then, the block would be terminated either 
by hitting the Word Count limit or by a Q=O response. 
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Table III shows an example of the sequences of 
operations in executing the Stop mode of block trans­
fers. 

Since the computer program is not involved with 
the block after step C in the sequence of Table III, 
it must somehow be notified when the block is completed. 
This can be done by the interface either actively or 
passively. An active notification is accomplished by 
interrupting the computer. The sub-program that ser­
vices the interrupt takes any appropriate action. 
Passive notification may consist of setting a "Task 
done" flag. The program can test this flag at its 
leisure. 



TABLE III 

Example of sequences for a Q-controlled block transfer of data via data channel. The example depicts 
a Stop mode Read transfer, in which data move from modules to computer memory. 

Computer I/0 operation 

I. Set up operation with Prog I/0 transfers: 

A. Load appropriate CAi•1AC commands into 
"DCH command reg." Command is interpre­
ted by interface to learn direction of 
data transfer--e.g., F(O), Read Group 1 
Register, is transfer from module to 
computer. 

B. Load "mode of transfer" into block 
transfer control register of interface. 
Mode is Scan Address, Repeat or Stop. 

C. Load Word count control register. 

Operation 
within interface CAMAC operation 

IDLE 

IDLE 

II. The transfer itself: Once the setup is done, data words are transferred, one per cycle, until the 
block transfer is done, All this is done under hardware control. The computer program is off 
doing something else. 

D. Branch highway cycle fetches 
data word from the module and 
delivers to interface. 

E. Examine the BQ register. 
If BQ = 1, do step F. if BQ = 0, 
go directly to step H. 

F. Data channel cycle sends data word 
to computer memory. 

G. If number of words trans­
ferred = Word count, go to step H. 
If less than Word count, go again 
to step D. 

III. When the transfer is done, the computer program is notified of that fact. 

H. Interrupt the computer. 

TABLE IV 

Examples of L requests and appropriate responses 

Type of module 

(a) Analog-to-Digital 
Converter 

(b) Scaler 

(c) Typewriter control 

(d) Magnetic tape 
Controller 

{e) Arbitrary module 

Meaning of request 

A data word is ready for 
transfer 

Scaler has overflowed 

Typing of previously received 
character is completed 

Previously received word has 
been recorded on tape 

No ~ignificance in this particular 
system 
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IDLE 

Proper service 
(besides resetting the 
L-reguest flag 

Transfer the data 

Increment a computer memory 
location that is used to 
count overflows. 

Send another character if 
there is one 

Initiate data-channel cycle 
to send another word 

Ignore it 

1 •. 
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Responses to Look-at-Me's 

r~odu 1 es have the facility to request service by 
means of the Look-at-Me signal. Different modules have 
different reasons for requesting service; they request 
different types of service; and the requests from 
different modules carry differing degrees of urgency. 
The computer and (or) computer interface have the duty 
of interpreting the requests and of initiating the 
proper action. 

To make this more explicit, let us examine some 
cases. Table IV lists some of the reasons why a mod­
ule might generate an L request, and what would be 
the appropriate service. 

The problem involved in matching the action to the 
request exists both in the crate controller-to-computer 
type of interface and in the branch driver-to-computer 
interface. Let us concentrate on the latter, which is 
somewhat more complex. 

The Branch Demand (BD) signal of the branch high­
l~ay is the summation of all service requests from all 
crates. By itself, it carries so little information 
that it almost inevitably results in further action. 
Figure 4 shows graphically the tree-1 ike structure that 
can be imagined as representing the L-source identifi­
cation process. The BD signal carries one bit of in­
formation. If there is more than one source of L 
requests, a GL cycle is executed. This immediately 
makes 24 bits of information available. On the basis 
of the GL word, the computer program must decide what 
computer action is required either to service the re­
quest, or, if insufficient data are in the GL word, to 
further identify the source of the L request. If there 
are 24 or fewer sources of L request, the search can 
stop here; the requesting module can probably be iden­
tified at this point. If there are more than 24 
sources, then the GL word indicates the direction the 
sofb1are search should take in order to reduce the 
searching time. 

Notifying the com~uter. As described above, there 
are certain tasks invo ved in identifying the source of 
an L request. In a particular interface, a given task 
may be allocated to hard~1are or software. To start at 
the bottom of the tree in Fig. 4, the computer can be 
notified of the existence of a BD in b1o ways. The 
'active' way is to request an interrupt. This gains 
the attention of the computer within a few microseconds. 
The passive way is to set a flag, and ~1ait for it to be 
tested when the program gets around to it. The delays 
involved depend on how pre-occupied the program is. 
The action taken by the program when it becomes aware 
of the BD is to instruct the interface to do a GL cycle. 
Fallowing this, the program wi 11 interpret the GL word 
and initiate the proper service. 

An alternative procedure for the interface is not 
to tell the computer about the BD, but rather to take a 
step of its own. This step is to do a BG {graded-L) 
operation. Having gotten the GL word, the interface 
has two choices. The first choice is to request an 
interrupt. (If we've gone this far, flags are too 
slow.) The purpose of this interrupt is to notify the 
computer that the GL-word is available. 

The second choice available to the interface is to 
interpret the GL-word itself. As a result of this in­
terpretation, the interface could be designed to do the 
following: 

(i) interrupt the computer on one or more levels 
of priority; 

-7-

(ii) request a data channel cycle to transfer 
data into the computer memory; 

(iii) request a data channel cycle to transfer 
data ~ the computer memory; 

(iv) execute an "increment contents of memory" 
cycle at a specified memory address. 

Some Branch Driver interfaces 11 • 12 have been designed 
with an internal memory and small control processor. 
This enables them to execute fairly complex algorithms, 
autonomously. With this type of interface in mind, the 
list is ended: 

(v) ~1ithout bothering the computer at all, issue 
the necessary CAI"AC commands to service the L-request, 
and to reset it. 

A Sequence. A possible sequence of events follow­
ing the init1ation of a typical L request follows. 
This sequence is ~1ritten after assuming certain choices 
in the design of the interface. The choices should be 
obvious. 

(a) Module X raises its L request(L(x)=l). 
(b) This results in the Branch Demand going to 

the true state (BD=l). 
(c) The hardware of the branch driver recognizes 

the BD, and executes a GL cycle as a result. The GL 
word appears in the GL register. Because of action 
(a), a certain bit in the GL word., bit Z, will be '1'. 

(d) The Branch Driver recognizes that bit Z is in 
the 1 state. Having been prewired to do so, it ini­
tiates the proper computer action. Let us imagine that 
this action is to interrupt the computer on priority 
level Y, setting into motion a service program. 

(e) The nature of the specific L request now being 
fully recognized, the service program does the appro­
priate servicing that the L request had originally 
asked for. 

(f) During the service program, the L flag in mod­
ule X is reset, perhaps with an F(lO)--Clear Look-at­
Me--command. (If the module is so designed, the L flag 
may have automatically been reset at the instant the 
servicing was done.) 

Additional 

~~~g~t~~ by_ 
soft wore 

The 24-bit__ 

GL word 

The 1- bit 

BD signal 

Fig. 4. This tree-like structure illustrates 
the possible steps in identifying 
the source of an L request. 



(g) After L from module X is reset; BD returns to 
0 unless another L from another module has appeared in 
the meantime.· 

Command Accepted, BX 

The Command Accepted signal was recently added to 
the CAMAC repertoire. The signal is transmitted in a 
manner similar to that of BQ. Each module generates 
an X response to every CAMAC Command addressed to that 
module. In essence, X='l' signals that the module re­
ceived, and could and did, obey the command. An X='O' 
signals the converse. The Dataway X line collects 
signals from the modules of the crate. The Crate 
Controller Type A-1 wire-OR's the X signals onto the 
BX line of the branch highway. The BX sional is, of 
course, then available to the branch driver. · 

In many systems, an X='O' response will be an in­
dication of a "serious" malfunction which should be 
brought to the attention of the computer at once. In 
such cases the computer should be interrupted upon 
BX=O. · 

In other systems, it is sufficient to set a BX 
flag, if BX=O,and let the software test the flag 
once in a while. 

In a few cases, BX=O is not necessarily an in­
dication of malfunction. For example, older modules 
may not have X implemented. They always return X=O. 
Certain normal operations during Scan Address block 
transfers also return X=O. For example, in Scan 
~ddress, the Branch Driver may address an empty station 
1n the process of discovering that it is empty. 

To cope properly with these circumstances, the 
example of the branch driver in Fig. 3 permits a 
choice of three modes of BX monitoring. The modes are: 

(1) Interrupt the computer immediately if a BX=O 
is received during a command cycle; 

(2) Save the BX response from the last command 
cycle in a flip-flop- and provide me.ans for the computer 
program to test it--via "Skip on BX," for example; 

(3) Completely ignore the BX response. 

. In the example, the computer program may select 
wh1ch o~ the th:ee modes is in use by directing the 
proper 1nstruct1on to the branch driver. 

Final Note 

The reader is reminded that this paper discusses 
some of the features that may be included in a CA~1AC­
computer interface. There are other possible features 
that have not been discussed. By the same token, not 

1 • 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

all the features that are discussed will necessarily 1~. 
be found in any particular design. Thus, the reader 
must not assume that all CAMAC systems behave like the 
hypothetica~ e~ample~ describe~. However, we hope that 
these descr1pt1ons w1ll help h1m to recognize and use 
the features that his equipment possesses. - Note: 

-t!-
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