
Lawrence Berkeley National Laboratory
Recent Work

Title
SOME CHARACTERISTICS OF INTERFACES BETWEEN CAMAC AND SMALL COMPUTERS

Permalink
https://escholarship.org/uc/item/45m3z5nx

Author
Kirsten, Frederick A.

Publication Date
1973-02-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/45m3z5nx
https://escholarship.org
http://www.cdlib.org/

..!) ,I
'. I

To be published in IEEE Trans .. on
Nuclear Science

LBL-1577
Preprint <'. J

SOME CHARACTERISTICS OF INTERFACES BETWEEN
CAMAC AND SMALL COMPUTERS

Frederick A. Kirsten

February 19 73

Prepared for the U.S. Atomic Energy Commission
under Contract W -7405-ENG-48

For Reference

Not to be taken from this room

. ': :" ...
. ~ •. I f

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

. ,.

v .,,:;
• I

.-.)

SOME CHARACTERISTICS OF INTERFACES BETWEEN CAMAC AND SMALL COMPUTERS*

Frederick A. Kirsten
Lawrence Berkeley Laboratory
Berkeley, California 94720

Su11111ary

The typical CAMAC system is operated in conjunct­
ion with a small computer. In the usual case, the
computer acts as a repository for data generated by
CAMAC, and a 1 so contra 1 s and directs the CM~AC opera­
tions. This paper discusses some of the aspects of
the hardware interface, and also some of the inter­
action between the computer and the CAMAC system.

Introduction

CAMAC systems can be assembled in many shapes,
sizes, and configurations. The flexibility of CA~1AC,
which permits the accommodation of a wide range of
problems, is one of its greatest assets. !here exist,
in actuality or on paper, systems of all s1zes, from
those completely self-controlled and contained in a
single crate, to multibranch, multi-computer systems
involving a very high level of data interchange and
communication.

This paper concentrates on a specific, relatively
simple type of CAMAC system--namely, one whose crates
are interconnected by a single branch highway, and
controlled by a single source of system control--a
computer. However, reference is also given to systems
in which individual crates are interfaced directly to
the computer. The discussion centers around the pro­
blems of interaction and intercommunication between
computer and the CAMAC system, and the hardware nec­
essary to effect the interfacing.

It is assumed that the reader is familiar with
both the CAfMC Crate Data way, The CAMAC Branch High­
way, and the Crate Controller Type A. These are des­
cribed in the specifications 1 • 2 and in other papers
of this series.3-G In addition, familiarity with the
basic facilities of a typical small computer is
assumed.

The "Typical" Small Computer7

The computer interacts with CAMAC via what is
often called its "1/0 structure." This term refers to
capabilities of the computer to co11111unicate with de­
vices external to itself. (1/0 is the abbreviation
for Input/Output.) For the purposes of discussion,
the "typical" small computer is assumed to have the
following characteristics in its l/0 structure.

{a) A programmed l/0 facility. This refers to the
ability to transfer data between computer and exter­
.nal device under the complete step-by-step control of
the computer program. In general, the transfer of
each word, or the emission of each 1/0 corrmand, is the
result of one or more instructions in the program.

(b) A block transfer facility: This permits
transfers of blocks (large numbers of data words) in
such a way that the computer program is required to
issue only the initial instructions for the block.
The remainder of the operation proceeds under hardware
control.

*Work performed under the auspices of the U.S. Atomic
Energy Commission.

-1-

(c) An interrupt facilit~, which perm~ts the ex­
ternal device (CANAC) to ga1n the attent1on of the
computer program.

(d) An I/0 command repertoire, usually relatively
limited, by which specific 1/0 operations can be
commanded.

•
Comparison of Crate Controller
and Branch Driver Interfacinq

The interface between a computer and a CAMAC sys­
tem is usually placed either at the crate controllers
of the individual crates, or at the branch driver of a
branch highway system. Figure 1 shows an e~ample of
each configuration. Th~ prime ou~pose of ~1ther of
the two configurations 1s to prov1de a veh1cle for ~he
conversations between computer and modules. The ma1n
difference between the two is in the organizati?n of
the conversation and paths. The branch system 1n
Fig. la provides a single port through which the com­
puter "talks" to the entire system. The other system,
shown in Fig. lb, has an interface at each cra~e .. Let
us call it a "radial" system, since the commun1cat1on
radiates from the single computer to the several crate
controllers. For convenience we refer to the crate
controllers of this type8 as Type U.

A given collection of CAMAC modules c~n often be
interfaced either way. Both ways are appl1cable to
single-crate and multicrate ~ystems. Wh~ch method .
is better depends on details of the part1cular appl1ca­
tion. Some bases for comparison are .given below.

Fig. 1.

~--rf-, 1 CAMAC
Branch

L---4..J/ Highway

(al

Computer
l/0 bus

Computer -interfacing
crate controllers(type U)

J/0 bus

(b)

Two examp 1 es of ho~1 a three-crate CA~1AC
system may be configured: (a) using a
CAMAC Branch Highway interconnection;
and (b) using a computer l/0 bus to
interconnect the crates.

Cost. The three interfacin9 components shown in
Figs.-----ra.-and lb are the branch driver, the Crate Con­
troller Type A (CCA), and the computer-interfacing
Type U Crate Controller. Based on an estimate of the
amount of logic required in each of the three, the
branch driver will probably cost the most, the CCA

Operational characteristics. With the branch
highway scheme, intercrate communication can be accom­
plished completely outside the computer structure.

the least, and the Type U somewhere in between. To
implement a branch system, one branch driver and a
CCA for eac:1 crate are needed. The radial system re­
quires one Type U Crate Controller for each crate.
Either the radial or the branch system may have the
lo~1er total component cost, depending on the number of
crates in the system.

This sometimes has benefits. For example, block trans­
fers of data involving modules from several crates can
probably be handled more easily with the branch highway-­
the crate boundaries can be made transparent to the
computer interface. On the other hand, simultaneous
block transfers to two or more separate modules, using,
e.g., interleaved cycles on two separate data channels,
can possibly be done more easily in the radial system,
particularly if the modules are in separate crates.

Within a laboratory, the long-range cost of a set
of CAMAC systems can be influenced by the amount of
trading of components among the systems. For a system
that never changes, one may consider only the initial
cost. If systems are continually being broken apart
and reconfigured, the initial cost may not be the prop­
er criterion. For example, to change the model of com­
puter used on a branch highway system, one needs to
change only the branch driver, whereas, for a radial
configuration, all Type U Crate Controllers have to be
changed.

Type U controllers usually can provide a closer
coupling between the Look-at-Me's generated by the mod­
ules, and the interrupt structure of the computer than
a branch coupler.l3 In a radial system, it is generally
the case that the proper computer subprogram can be
entered in less elapsed time and with fewer operations.

CAMAC-Computer Communication

Certain common problems arise whenever two data
structures are interfaced. Thi-s is no less true if one
of the data structures is CAMAC. In the following, we

TABLE I

Comparison of characteristics of CAtl!AC and I/0 structures of typi ca 1 sma 11 computers

Topic

Types of operations that may
be carried out

Basic cycle time

Timing and logical control
of operations

Data word size

Service requests/interrupts

CAt·1AC characteristics

Bidirectional data transfer

Commands directed to modules [:'\
much larger command repertoire
than in the average computer's
I/0 structure]

Look-at-Me service requests

Cycle time ~ 1 ~sec

Specified by CM1AC specifica­
tions

Maximum word size = 24 bits.
Actual word size (no. of bits
that are actually significan~
depends on the module involved.

At the Crate Controller, there
are available up to 23 bits of
service-request information.
At the Branch Driver, there is
1 bit (the BD signal) available
at all times; after a GL cycle,
there are 24 bits available.
More can be obtained by add-
ressed commands ·

-2-

Characteristics of the I/0 structure
of a typical small computer

Bidirectional data transfer [two modes:
Programmed I/0 (accumulator transfers),
autonomous tran.sfers (e.g., data
channel)]

Commands directed to peripheral devices
[different command structure from CAMAC]

Interrupts or Data Channel cycle requests

Cycle time varies from one computer to
next, typically of the order of 1 ~sec

Different for each computer (and
different from CAMAC)

Word size is generally less than 24 bits

Service requests include:
Interrupts: single-level or multiple
levels

Data Channel cycle requests:
possibly on more than one channel;
generally, transfer can be made to or
from computer --

Direct memory access cycle request.
The first can be spontaneous; the
1 atter two must usually be "set up" by a
preceding routine

l_

discuss how some of these common problems relate to the
CAMAC-computer interface.

Table I compares some characteristics of CAMAC and
the I/0 structures of typical small computers. The
table substantiates that translations are necessary-­
from the I/0 "language" of the computer to the CAMAC
"language," or vice versa. The entities to be t:ans­
lated include the size of data words, commands. (1.e.,
the significance of commands), and timing sequences.

Timing oroblems are ofte~ solve~ by "staticiz~ng"
the data and commands. This 1s part1cularly true 1f
the I/0 structure uses a synchronous transf~r--i.e., it
is timed by a computer clock, and cannot wa1t for CAMAC.
This is done by providing registers accessible from
either side of the interface. (A register is a one
data-1vord or one command-word storage device, probably
composed of one flip-flop for each bit involved.) The
registers behave as "mailboxes." One entity, CAMAC or
computer, deposits information in the registers, us~ng
its own cycle timing and sequencing. The other ent1ty,
using its own cycle timing quirks, can then pick up the
information. One entity may completely finish an oper­
ation before the other begins, thus removing the nec­
essity for interlocking and synchronizing two different
sets of cycle timing characteristics.

If the I/O structure uses an asynchronous cycle-­
i.e., one that can be momentarily pause to wait for .
CAMAC it may be possible to imbed the CM·1AC cycle Wlth­
in th~ I/0 cycle. If so, the "mailbox" techniql)_fb mH
not be used. Examples are given in a reference. •

In addition to the registers, an appropriately de­
signed control sequencer and organizer coordinates the
interlocking of the complete operations of CAt•IAC and of
the computer.

A Typical Interface

Figures 2 and 3 are simplified block diagrams
showing the basic oarts of an examole of a CAMAC-computer
interface. Figure 2 shows the parts primarily concerned
with the transmission of data; Fig. 3 shows portions con­
cerned with the transmission of CAMAC commands and con­
trol features.

It should be emphasized that this is an example.
Some of the facilities described below will obviously
need to be in all branch drivers. Other facilities or
features can be included at the designer's option'
The user therefore cannot assume that all branch drivers
contain all features. For example, some perform pro­
grammed I/0 transfers only. Some have a very rudimen­
tary means of handling requests.

Data-Oriented Parts

Fiqure 2 illustrates the flow of data to and from
the branch highway bidirectional Read/Write (BRW) bus,
and to and from the computer. Some data are transferred
between computer and interface via programmed I/0
(accumulator) transfers under complete software control.
This means every step of the process is specially con­
trolled by the computer program; the interface has a
relatively simple task. Other data are transferred in
block transfer mode [shown here as Data Channel (DCH)
transfer.] In this mode, the computer program initial­
izes the system, but each individual data word in the
block is transferred under autonomous (hardware) con­
trol. Depending on the computer, more or less of this
hardware must be in the interface.

Data Registers. Figure 2 shows two data registers,
one for Programmed Input-Output (Prog I/0) transfers

-3-

Connect ions
to

computer

I/0 bu.s

via

appropraiate

gating

logic

and Interrupt \
requests to '

Block write operation

24 way AND gate

24 {24 -bit
BRW bus
of Branch
Highway

24 Bits in parall'el

DCH cycle requests[

computer etc • .___ __ _.

DC H = Do to chonnel

Fig. 2. A block diagram showing some of the parts
of a typical computer-branch highway
interface that are concerned with the
data bus (BRW) lines of the highway. It
is assumed that the computer has a word
size of N bits.

and one for Data Channel (DCH) transfers. Two reg­
isters are necessary if a DCH cycle is to be inter­
leaved with steps of a Prog I/0 transfer. Each is
a 24-bit register in order to accommodate the 24-bit
CAMAC data word. Typical small computers have word
sizes of 12, 16 or 18 bits. This makes it necessary to
perform two computer I/0 transfer cycles to move the
full 24 bits of data from the data register to com­
puter memory. The first transfer generally moves bits
1 through n, where n is the computer word size; the
second then moves bits (n+l) through 24. However,
there are many cases where not all 24 bits are signifi­
cant. As an example, consider a 16-bit computer read­
ing a module which contains a 16-bit scaler. The
CAMAC ooeration will move 24 bits from module to reg­
ister. ·However, since only 16 bits are useful, and
since here n = 16, only one I/0 transfer need be made.

GL register. A third register, involved only in
data flow from CAMAC to computer is the GL register.
During the Graded-L cycle, a 24-bit word carrying in­
formation on the status of L requests in the branch is
generated on the BRW bus. The GL register saves this
information. It may be made available to the computer
via Prog I/0 transfer. In some branch driver designs,
certain GL bits can be assigned to automatically
cause computer interrupts. In some, an interrupt
vector is included, which directs the computer to a
service subprogram that is aopropriate for the particu­
lar CAMAC service request.l 3 Another option is to use
certain GL bits to synchronize block transfers.12 When­
ever these. bits come up, another word is transferred.

Interrupt if BX = 0

Skip on BX

Control of BX

Initiate GL cycle

To and
from

computer
Skip on 80, skip on BQ

1---..---so
1--1---4-BG

Connections
to

computer

ltD bus
via

appropriate

gating

logic

Fig. 3.

Request DCH cycle

DCH command
register

~--r+~rl~--~BN

~---f+r~~~~BA

Prog ItO
operation

A simplified block diagram showing
the parts of a typical computer -
branch highway interface that are
concerned with branch highway commands.

Command-Oriented Parts

Figure 3 shows the parts of the typical interface
that are concerned with issuing addressed CAM.L\C
commands, with the BQ signals, and with the Look-at-t~e
servicing.

Command registers. As with the data, separate
command registers are sho~m for Prog 1/0 and DCH trans­
fers in order to permit interleaved Prog l/0 and DCH
cycles. In most cases, the CM~AC commands ar~ gener­
ated by the computer software, and are transm1tted by
the computer to the command register in a form the com­
puter considers as data. Thus, the loading by the com­
puter of the command register is similar to loading the
data register.

To put it another way, the· command repertoire of
the average computer l/0 structure is limited, and is
much smaller than the CAMAC corrmand repertoire. Thus,
there is often no way a direct translation from 1/0
command to ~1AC command can be accomplished. See the
referenceslO,l3 for examples of exceptions to this
statement.

A complete branch highway command requires 17 bits--
3 bits for Crate address, 5 for Station Number, 4 for
Subaddress, and 5 for Function Code. Thus, double word
transfers to load the Corrmand Register may be required
fQr computer word sizes of 12 or 16 bits. Commands
addressed to more than one crate or more than one

station require special handling.

Q responses. Certain CA~1AC commands require that
the module give a Q response. On the branch highwa.v
all Q responses from individual crates are gathered onto
the BQ line. The state of the BQ line may be strobed
into a one-bit BQ register during each Prog I/O-initiated
CAMAC cycle and made available to the computer program.
The program may test this register and may conditionally
branch, depending on its state. A second one-bit BQ
register may be required for Q-controlled block transfers.

Operational Sequences

In this section, the sequences of events in sev­
era 1 types of operations are brfefl.v explained, with
emphasis p 1 aced on the i nterp.l ay between the computer
and the CAf~AC system.

Programmed 1/0 Data Transfers

In these operations the object is to move data be­
bJeen (the accumulator of) the computer and a specific
CA~11J.C address (e.g., a register in a module). The
computer program is in control in that it specifies
the direction of data flow, the CAf~AC address, and
when the operation is to take place. Two examples are
given in Table II. One is for a Write operation in which
data move from computer to module. The other is for a
Read operat1on, with data-flow in the opposite direction.

Block Transfer Operations

In block transfer operations, the object is to move
blocks (many words) of data with the minimum interven­
tion on the part of the computer program. ~Jhereas the
initiation of the block is under program control, the
transfer of individual data words is controlled by re­
latively simple hardware logic.* Generally, the same
CAMAC function code--e.g., F(O)--is used during the
entire block.

The CAMAC snecifications 1 define three modes of
block transfer control using Q-responses. These are
called: Address Scan, Stop and Repeat modes. The
Address Scan mode is used to move data to or from a
group of registers that reside in an array of modules.
In this mode, a Q-response of 'l' indicates that the
register addressed by the current command actually
exists. A response of '0' says, "There's no (scan­
addressable) register at this location." These responses
enable the Branch Driver to transfer data only to (or
from) those CA~1AC addresses (CNAs) that c.ontai n regi st­
ers.

The Repeat mode is used to move data to or from a
single register. It is intended for situations where
the register may not always be ready for the transfer.
In this mode, the Branch Driver may repeatedly try to
effect the transfer. A Q response of '1' from the
module says the transfer was successfully accompl i.shed
(as far as the module could tell). A response of '0'
means "I wasn't ready, please try again." The Repeat
mode is therefore one of several methods available for
synchronizing the readiness of computer and module.

The Stop mode is also used to move data to or from
a single register. It is intended for situations where
the number of words in the block is not initially known,
and where the module is able to determine when the last

*fhfS statement refers to this example. The algorithm
described can also be executed under complete software
control, using a series of Prog 1/0 data transfers.

-4-

l ..

)

TABLE II

Examples of Sequences for Programmed I/0 Data Transfers

Computer I/O operation

I. WRITE--(Data flow from computer to CAf•IAC address)

A. Load data into the "Prog I/0 data reg"
in interface. (This may be a double
transfer, if data word size > computer word
size.)

B. Load CAMAC command into "Proq I/0 corranand
reg" in interface. (This may also be a double
word transfer.)

Wait for signal that Branch Highway cycle
is done (e.9., Program loop using "Skip if BH
cycle done").

D. Do next sequence -

II. READ (Data flow from CAMAC address to computer.)

A. Load CAMAC command into "Prog I/0 command
reg."

Wait for signal that Branch Highway cycle
is done.

C. Examine BQ register if Q response defined
for command used. BQ register may be tested by
program using, e.g., "Skip if BQ = 1." Also
check BX.

D. If BX "1, and if oroper BQ response detected,
transfer data from "Prog I/0 data reg." to computer.

E. Do next sequence.

CAMAC operation

IDLE

IDLE

C. Execute Branch Highway cycle,
transferring data loaded in A using
CAMAC address loaded in B.

IDLE

B. Execute Branch Highway cycle,
transferring data from CAMAC address
given in A to "Prog I/0 data reg."

IDLE

word of the block has been moved. A Q-response of '1'
indicates the word transferred is part of the block.
The first time a '0' is received, it indicates the
previous transfer was the last word of the block.

For Scan Address, the limit could be specified either
by Word Count or by the last CAMAC address which is to
be scanned. Preferably both are included.

Many branch driver designs include the hardware by
which block transfers are coordinated. Inputs to this
hardware segment include: 1) instructions from the
program telling which mode of block transfer to use;
and, 2) the BQ signal. Outputs from the segment in­
clude: 1) the decision whether the transfer of a data
word has been effected; and 2) in the case of Scan
Address mod~, CAr-1AC address updating signals, according
to an algor1thm described elsewhere.3

It is good practice to include in the interface a
means of insuring that the block transfer will always
be terminated within some safe limits. In the case
Repeat or Stop, this may be by specifying a maximum
number of words to be transferred (Word Count). In
Stop mode, then, the block would be terminated either
by hitting the Word Count limit or by a Q=O response.

-5-

Table III shows an example of the sequences of
operations in executing the Stop mode of block trans­
fers.

Since the computer program is not involved with
the block after step C in the sequence of Table III,
it must somehow be notified when the block is completed.
This can be done by the interface either actively or
passively. An active notification is accomplished by
interrupting the computer. The sub-program that ser­
vices the interrupt takes any appropriate action.
Passive notification may consist of setting a "Task
done" flag. The program can test this flag at its
leisure.

TABLE III

Example of sequences for a Q-controlled block transfer of data via data channel. The example depicts
a Stop mode Read transfer, in which data move from modules to computer memory.

Computer I/0 operation

I. Set up operation with Prog I/0 transfers:

A. Load appropriate CAi•1AC commands into
"DCH command reg." Command is interpre­
ted by interface to learn direction of
data transfer--e.g., F(O), Read Group 1
Register, is transfer from module to
computer.

B. Load "mode of transfer" into block
transfer control register of interface.
Mode is Scan Address, Repeat or Stop.

C. Load Word count control register.

Operation
within interface CAMAC operation

IDLE

IDLE

II. The transfer itself: Once the setup is done, data words are transferred, one per cycle, until the
block transfer is done, All this is done under hardware control. The computer program is off
doing something else.

D. Branch highway cycle fetches
data word from the module and
delivers to interface.

E. Examine the BQ register.
If BQ = 1, do step F. if BQ = 0,
go directly to step H.

F. Data channel cycle sends data word
to computer memory.

G. If number of words trans­
ferred = Word count, go to step H.
If less than Word count, go again
to step D.

III. When the transfer is done, the computer program is notified of that fact.

H. Interrupt the computer.

TABLE IV

Examples of L requests and appropriate responses

Type of module

(a) Analog-to-Digital
Converter

(b) Scaler

(c) Typewriter control

(d) Magnetic tape
Controller

{e) Arbitrary module

Meaning of request

A data word is ready for
transfer

Scaler has overflowed

Typing of previously received
character is completed

Previously received word has
been recorded on tape

No ~ignificance in this particular
system

-6-

IDLE

Proper service
(besides resetting the
L-reguest flag

Transfer the data

Increment a computer memory
location that is used to
count overflows.

Send another character if
there is one

Initiate data-channel cycle
to send another word

Ignore it

1 •.

)

Responses to Look-at-Me's

r~odu 1 es have the facility to request service by
means of the Look-at-Me signal. Different modules have
different reasons for requesting service; they request
different types of service; and the requests from
different modules carry differing degrees of urgency.
The computer and (or) computer interface have the duty
of interpreting the requests and of initiating the
proper action.

To make this more explicit, let us examine some
cases. Table IV lists some of the reasons why a mod­
ule might generate an L request, and what would be
the appropriate service.

The problem involved in matching the action to the
request exists both in the crate controller-to-computer
type of interface and in the branch driver-to-computer
interface. Let us concentrate on the latter, which is
somewhat more complex.

The Branch Demand (BD) signal of the branch high­
l~ay is the summation of all service requests from all
crates. By itself, it carries so little information
that it almost inevitably results in further action.
Figure 4 shows graphically the tree-1 ike structure that
can be imagined as representing the L-source identifi­
cation process. The BD signal carries one bit of in­
formation. If there is more than one source of L
requests, a GL cycle is executed. This immediately
makes 24 bits of information available. On the basis
of the GL word, the computer program must decide what
computer action is required either to service the re­
quest, or, if insufficient data are in the GL word, to
further identify the source of the L request. If there
are 24 or fewer sources of L request, the search can
stop here; the requesting module can probably be iden­
tified at this point. If there are more than 24
sources, then the GL word indicates the direction the
sofb1are search should take in order to reduce the
searching time.

Notifying the com~uter. As described above, there
are certain tasks invo ved in identifying the source of
an L request. In a particular interface, a given task
may be allocated to hard~1are or software. To start at
the bottom of the tree in Fig. 4, the computer can be
notified of the existence of a BD in b1o ways. The
'active' way is to request an interrupt. This gains
the attention of the computer within a few microseconds.
The passive way is to set a flag, and ~1ait for it to be
tested when the program gets around to it. The delays
involved depend on how pre-occupied the program is.
The action taken by the program when it becomes aware
of the BD is to instruct the interface to do a GL cycle.
Fallowing this, the program wi 11 interpret the GL word
and initiate the proper service.

An alternative procedure for the interface is not
to tell the computer about the BD, but rather to take a
step of its own. This step is to do a BG {graded-L)
operation. Having gotten the GL word, the interface
has two choices. The first choice is to request an
interrupt. (If we've gone this far, flags are too
slow.) The purpose of this interrupt is to notify the
computer that the GL-word is available.

The second choice available to the interface is to
interpret the GL-word itself. As a result of this in­
terpretation, the interface could be designed to do the
following:

(i) interrupt the computer on one or more levels
of priority;

-7-

(ii) request a data channel cycle to transfer
data into the computer memory;

(iii) request a data channel cycle to transfer
data ~ the computer memory;

(iv) execute an "increment contents of memory"
cycle at a specified memory address.

Some Branch Driver interfaces 11 • 12 have been designed
with an internal memory and small control processor.
This enables them to execute fairly complex algorithms,
autonomously. With this type of interface in mind, the
list is ended:

(v) ~1ithout bothering the computer at all, issue
the necessary CAI"AC commands to service the L-request,
and to reset it.

A Sequence. A possible sequence of events follow­
ing the init1ation of a typical L request follows.
This sequence is ~1ritten after assuming certain choices
in the design of the interface. The choices should be
obvious.

(a) Module X raises its L request(L(x)=l).
(b) This results in the Branch Demand going to

the true state (BD=l).
(c) The hardware of the branch driver recognizes

the BD, and executes a GL cycle as a result. The GL
word appears in the GL register. Because of action
(a), a certain bit in the GL word., bit Z, will be '1'.

(d) The Branch Driver recognizes that bit Z is in
the 1 state. Having been prewired to do so, it ini­
tiates the proper computer action. Let us imagine that
this action is to interrupt the computer on priority
level Y, setting into motion a service program.

(e) The nature of the specific L request now being
fully recognized, the service program does the appro­
priate servicing that the L request had originally
asked for.

(f) During the service program, the L flag in mod­
ule X is reset, perhaps with an F(lO)--Clear Look-at­
Me--command. (If the module is so designed, the L flag
may have automatically been reset at the instant the
servicing was done.)

Additional

~~~g~t~~ by_ 
soft wore 

The 24-bit__ 

GL word 

The 1- bit 

BD signal 

Fig. 4. This tree-like structure illustrates 
the possible steps in identifying 
the source of an L request. 



(g) After L from module X is reset; BD returns to 
0 unless another L from another module has appeared in 
the meantime.· 

Command Accepted, BX 

The Command Accepted signal was recently added to 
the CAMAC repertoire. The signal is transmitted in a 
manner similar to that of BQ. Each module generates 
an X response to every CAMAC Command addressed to that 
module. In essence, X='l' signals that the module re­
ceived, and could and did, obey the command. An X='O' 
signals the converse. The Dataway X line collects 
signals from the modules of the crate. The Crate 
Controller Type A-1 wire-OR's the X signals onto the 
BX line of the branch highway. The BX sional is, of 
course, then available to the branch driver. · 

In many systems, an X='O' response will be an in­
dication of a "serious" malfunction which should be 
brought to the attention of the computer at once. In 
such cases the computer should be interrupted upon 
BX=O. · 

In other systems, it is sufficient to set a BX 
flag, if BX=O,and let the software test the flag 
once in a while. 

In a few cases, BX=O is not necessarily an in­
dication of malfunction. For example, older modules 
may not have X implemented. They always return X=O. 
Certain normal operations during Scan Address block 
transfers also return X=O. For example, in Scan 
~ddress, the Branch Driver may address an empty station 
1n the process of discovering that it is empty. 

To cope properly with these circumstances, the 
example of the branch driver in Fig. 3 permits a 
choice of three modes of BX monitoring. The modes are: 

(1) Interrupt the computer immediately if a BX=O 
is received during a command cycle; 

(2) Save the BX response from the last command 
cycle in a flip-flop- and provide me.ans for the computer 
program to test it--via "Skip on BX," for example; 

(3) Completely ignore the BX response. 

. In the example, the computer program may select 
wh1ch o~ the th:ee modes is in use by directing the 
proper 1nstruct1on to the branch driver. 

Final Note 

The reader is reminded that this paper discusses 
some of the features that may be included in a CA~1AC­
computer interface. There are other possible features 
that have not been discussed. By the same token, not 

1 • 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

all the features that are discussed will necessarily 1~. 
be found in any particular design. Thus, the reader 
must not assume that all CAMAC systems behave like the 
hypothetica~ e~ample~ describe~. However, we hope that 
these descr1pt1ons w1ll help h1m to recognize and use 
the features that his equipment possesses. - Note: 

-t!-

References 

"CAMAC - A f•iodular Instrumentation System for 
Data Handling - Revised Description and 
Specification." Identical versions of this 
document have been issued by the U.S. AEC Nif~ 
Committee and by the European ESONE Committee. 
They are: U.S. AEC Report TID-25875, July 1972; 
and Euratom Report EUR-4100e, 1972. 

"CAf.1AC - Organization of t·1ulti -Crate System, 
Specification of the Branch High1~ay and CAMAC 
Crate Controller Type A. Identical versions 
of this document have been issued by the U.S. 
AEC NIN Committee, and by the European ESONE 
Committee. They are: U.S. AEC Report 
TID-25876, ~larch 1972; and Euratom Report 
EUR-4600e, 1972. 

F. A. Kirsten, "Operational Characteristics 
of the CAMAC Dataway." LBL-1575, Februarv 1973 
(See note) -

F. A. Kirsten, "A Short Description of the CAt·1AC 
Branch Highway." LBL-1576, February 1973 
(See note) 

R. S. Larsen, "CAMAC Data way and Branch Hi gtiway 
Signal Standards." (See note) 

S. Dhawan, "The CA1~AC Crate Contra ll er Type A." 
(See note) 

I. Flores, "Computer Organization." Prentice­
Hall, Inc., Englewood Cliffs, N.J., 1969 
Chapters 1,2,3,5 and 6. 

J. J. Eichholz, F. R. Lenkszus, and M.G. Strauss 
"Versatile CAMAC Crate Contra 11 er for Computer- ' 
Based Data Acquisition Systems." IEEE Tr<·ns. 
Nuclear Science vol NS-18, No. 1, Feb. 1971, 
pp.292-8. 

S. Dhawan, "On the Design of CA~1AC Branch 
Drivers." IEEE Trans Nuclear Science, vol 
NS-19, No. 1, Feb. 1972, pp.721-725. 

H. Halling, K. Zwoll, and K. D. Muller, "Versatile 
PDP-11 CAt-1AC Crate Controller for Nuclear Data 
Acquisition and Processing." IEEE Trans. on 
Nuclear Science, vol NS-19, No. 1, Feb. 1972, 
pp.699-703. 

J. A. Buchanan, H. V. Jones, "CAf1AC Multi-
r~i croprogrammed I/0 Processor, IEEE Trans. on 
Nuclear Science, vol NS-19, No. 1, Feb. 1972, 
pp.682-688. 

L. R. Biswell and R. E. Rajala, "tvlicroprogrammed 
Branch Driver (i"lBD) for a PDP-11 Computer." 
Los Alamos Scientific Laboratory Report LA4916 
April 1972 (Unpublished) ' 

~eferences 3-6 will be published in the April 1973 
1ssue of IEEE Transactions on Nuclear Science. 
This issue will be called "CAMAC Tutorial Issue." 



.. .J ) ·' 'I 

r-----------------LEGALNOTICE------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 



TECHNICAL INFORMATION DIVISION 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 


