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Abstract We provide some characterizations for SOC-monotone and SOC-convex
functions by using differential analysis. From these characterizations, we particularly obtain
that a continuously differentiable function defined in an open interval is SOC-monotone
(SOC-convex) of order n ≥ 3 if and only if it is 2-matrix monotone (matrix convex), and
furthermore, such a function is also SOC-monotone (SOC-convex) of order n ≤ 2 if it is
2-matrix monotone (matrix convex). In addition, we also prove that Conjecture 4.2 proposed
in Chen (Optimization 55:363–385, 2006) does not hold in general. Some examples are
included to illustrate that these characterizations open convenient ways to verify the SOC-
monotonicity and the SOC-convexity of a continuously differentiable function defined on an
open interval, which are often involved in the solution methods of the convex second-order
cone optimization.
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1 Introduction

The second-order cone (SOC) in IRn , also called the Lorentz cone, is a set defined by

Kn := {
(x1, x2) ∈ IR × IRn−1 | ‖x2‖ ≤ x1

}
, (1)

where ‖ · ‖ denotes the Euclidean norm, and K1 denotes the set of nonnegative reals IR+. It
is known that Kn is a closed convex self-dual cone with nonempty interior int(Kn). For any
x, y ∈ IRn , we write x �Kn y if x − y ∈ Kn ; and write x �Kn y if x − y ∈ int(Kn). In other
words, we have x �Kn 0 if and only if x ∈ Kn and x �Kn 0 if and only if x ∈ int(Kn). The
relation �Kn is a partial ordering, but not a linear ordering in Kn , i.e., there exist x, y ∈ Kn

such that neither x �Kn y nor y �Kn x . To see this, let x = (1, 1), y = (1, 0), and then we
have x − y = (0, 1) /∈ K2, y − x = (0,−1) /∈ K2.

For any x = (x1, x2), y = (y1, y2) ∈ IR × IRn−1, we define their Jordan product as

x ◦ y = (〈x, y〉, y1x2 + x1 y2). (2)

we write x2 to mean x◦x and write x+y to mean the usual componentwise addition of vectors.
Then ◦,+, and e = (1, 0, . . . , 0)T ∈ IRn have the following basic properties (see [7,8]): (1)
e ◦ x = x for all x ∈ IRn . (2) x ◦ y = y ◦ x for all x, y ∈ IRn . (3) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y)

for all x, y ∈ IRn . (4) (x + y) ◦ z = x ◦ z + y ◦ z for all x, y, z ∈ IRn . Note that the Jordan
product is not associative. Besides, Kn is not closed under Jordan product.

We recall from [7,8] that each x = (x1, x2) ∈ IR × IRn−1 admits a spectral factorization,
associated with Kn , of the form

x = λ1(x) · u(1)
x + λ2(x) · u(2)

x , (3)

where λ1(x), λ2(x) and u(1)
x , u(2)

x are the spectral values and the associated spectral vectors
of x given by

λi (x) = x1 + (−1)i‖x2‖, u(i)
x = 1

2

(
1, (−1)i x̄2

)
for i = 1, 2, (4)

with x̄2 = x2‖x2‖ if x2 
= 0 and otherwise x̄2 being any vector in IRn−1 such that ‖x̄2‖ = 1. If
x2 
= 0, the factorization is unique. By the spectral factorization, for any f : IR → IR, we
can define a vector-valued function associated with Kn (n ≥ 1) by

f
soc

(x) = f (λ1(x))u(1)
x + f (λ2(x))u(2)

x , ∀x = (x1, x2) ∈ IR × IRn−1, (5)

and call it the SOC-function induced by f . If f is defined only on a subset of IR, then f
soc

is
defined on the corresponding subset of IRn . The definition is unambiguous whether x2 
= 0
or x2 = 0. The cases of f

soc
(x) = x1/2, x2, exp(x) were discussed in [7]. In fact, the above

definition (5) is analogous to one associated with the semidefinite cone; see [19,20].
Recently, the concepts of SOC-monotone and SOC-convex functions are introduced in

[5]. Especially, a function f : J → IR with J ⊆ IR is said to be SOC-monotone of order n if

x �Kn y �⇒ f
soc

(x) �Kn f
soc

(y) (6)

for any x, y ∈ dom f
soc ⊆ IRn , where dom f

soc
denotes the domain of the function f

soc
; and

f is said to be SOC-convex of order n if, for any x, y ∈ dom f
soc

,

f
soc

(λx + (1 − λ)y) �Kn λ f
soc

(x) + (1 − λ) f
soc

(y) λ ∈ [0, 1]. (7)

123



J Glob Optim (2009) 45:259–279 261

The function f is said to be SOC-monotone (respectively, SOC-convex) if it is SOC-
monotone of all order n (respectively, SOC-convex of all order n), and f is SOC-convex on
J if and only if − f is SOC-concave on J . The concepts of SOC-monotone and SOC-convex
functions are analogous to matrix monotone and matrix convex functions [2,10,11,14], and
are special cases of operator monotone and operator convex functions [1,3,12]. For example,
the function f is said to be n-matrix convex on J if

f (λA + (1 − λ)B) � λ f (A) + (1 − λ) f (B) λ ∈ [0, 1]
for arbitrary Hermitian n × n matrices A and B with spectra in J . It is clear that the set
of SOC-monotone functions and the set of SOC-convex functions are closed under positive
linear combinations and pointwise limits.

There has been systematic study on matrix monotone and matrix convex functions, and
moreover, characterizations for such functions have been explored; see [4,10,11,13,14] and
the references therein. To the contrast, the study on SOC-monotone and SOC-convex func-
tions just starts its first step. One reason is that they were viewed as special cases of operator
monotone and operator convex functions. However, we recently observed that SOC-monotone
and SOC-convex functions play an important role in the design of solutions methods for con-
vex second-order cone programs (SOCPs); for example, the proximal-like methods in [15]
and the augmented Lagrangian method introduced in Sect. 5. On the other hand, we all know
that the developments of matrix-valued functions have major contributions in the solution
of optimization problems. Thus, we hope similar systematic study on SOC-functions can be
exploited so that it can be readily adopted to optimization field. This is the main motivation
of the paper.

Although some work was done in [5] for SOC-monotone and SOC-convex functions,
the focus there is to provide some specific examples by the definition and it seems difficult
to exploit the characterizations there to verify whether a given function is SOC-convex or
not. In this paper, we employ differential analysis to establish some useful characterizations
which will open convenient ways to verify the SOC-monotonicity and the SOC-convexity of a
function defined on an open interval. Particularly, from these characterizations, we obtain that
a continuously differentiable function defined on an open interval is SOC-monotone (SOC-
convex) of order n ≥ 3 if and only if it is 2-matrix monotone (matrix convex), and such a
function is also SOC-monotone (SOC-convex) of order n ≤ 2 if it is 2-matrix monotone
(matrix convex). Thus, if such functions are 2-matrix monotone (matrix convex), then it must
be SOC-monotone (SOC-convex). It should be pointed out that the analysis of this paper can
not be obtained from those for matrix-valued functions. One of the reasons is that the matrix
multiplication is associative whereas the Jordan product is not.

Throughout the paper, 〈·, ·〉 denotes the Euclidean inner product, IRn denotes the space
of n-dimensional real column vectors, and IRn1 × · · · × IRnm is identified with IRn1+···+nm .
Thus, (x1, . . . , xm) ∈ IRn1 × · · · × IRnm is viewed as a column vector in IRn1+···+nm . Also,
I represents an identity matrix of suitable dimension; J is a subset of IR; and 0 is a zero
matrix or vector of suitable dimension. The notation T means transpose and C (i)(J ) denotes
the family of functions which are defined on J ⊆ IR to IR and have the i-th continuous
derivative. For a function f : IR → IR, f (i)(x) represents the i-th order derivative of f at
x ∈ IR, and the first-order and the second-order derivative of f are also written as f ′ and f ′′,
respectively. For any f : IRn → IR, ∇ f (x) denotes the gradient of f at x ∈ IRn and dom f
denotes the domain of f . For any differentiable mapping F = (F1, . . . , Fm)T : IRn → IRm ,
∇F(x) = [∇F1(x) · · · ∇Fm(x)] is an n × m matrix which denotes the transposed Jacobian
of F at x . For any symmetric matrices A, B ∈ IRn×n , we write A � B (respectively, A � B)
to mean A − B is positive semidefinite (respectively, positive definite).
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2 Preliminaries

In this section, we develop the second-order Taylor’s expansion for the vector-valued SOC-
function f

soc
defined as in (5) which is crucial in our subsequent analysis. To the end, we

assume that f ∈ C (2)(J ) with J being an open interval in IR and dom f
soc ⊆ IRn .

Given any x ∈ dom f
soc

and h = (h1, h2) ∈ IR × IRn−1, we have x + th ∈ dom f
soc

for any sufficiently small t > 0. We wish to calculate the Taylor’s expansion of the function
f

soc
(x + th) at x for any sufficiently small t > 0. In particular, we are interested in finding

matrices ∇ f
soc

(x) and Ai (x) for i = 1, 2, . . . , n such that

f
soc

(x + th) = f
soc

(x) + t∇ f
soc

(x)h + 1

2
t2

⎡

⎢
⎢
⎢
⎣

hT A1(x)h
hT A2(x)h

...

hT An(x)h

⎤

⎥
⎥
⎥
⎦

+ o(t2). (8)

For convenience, we omit the variable notion x in λi (x) for i = 1, 2 in the discussions below.
It is known that f

soc
is differentiable (respectively, smooth) if and only if f is differentiable

(respectively, smooth); see [6,8]. Moreover, there holds that

∇ f
soc

(x) =

⎡

⎢
⎢
⎣

b(1) c(1)
xT

2

‖x2‖
c(1) x2

‖x2‖ a(0) I + (b(1) − a(0))
x2xT

2

‖x2‖2

⎤

⎥
⎥
⎦ (9)

if x2 
= 0, and otherwise

∇ f
soc

(x) = f ′(x1)I (10)

where

a(0) = f (λ2) − f (λ1)

λ2 − λ1
, b(1) = f ′(λ2) + f ′(λ1)

2
, c(1) = f ′(λ2) − f ′(λ1)

2
. (11)

Therefore, we only need to derive the formula of Ai (x) for i = 1, 2, . . . , n in (8).
We first consider the case where x2 
= 0 and x2 + th2 
= 0. By the definition (5),

f
soc

(x + th) = 1

2
f (x1 + th1 − ‖x2 + th2‖)

⎡

⎣
1

− x2 + th2

‖x2 + th2‖

⎤

⎦

+1

2
f (x1 + th1 + ‖x2 + th2‖)

⎡

⎣
1

x2 + th2

‖x2 + th2‖

⎤

⎦

=
⎡

⎢
⎣

f (x1 + th1 − ‖x2 + th2‖) + f (x1 + th1 + ‖x2 + th2‖)
2

f (x1 + th1 + ‖x2 + th2‖) − f (x1 + th1 − ‖x2 + th2‖)
2

x2 + th2

‖x2 + th2‖

⎤

⎥
⎦

:=
[

�1

�2

]
. (12)
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To derive the Taylor’s expansion of f
soc

(x + th) at x with x2 
= 0, we first write out and
expand ‖x2 + th2‖. Notice that

‖x2 + th2‖ =
√

‖x2‖2 + 2t xT
2 h2 + t2‖h2‖2 = ‖x2‖

√

1 + 2t
xT

2 h2

‖x2‖2 + t2 ‖h2‖2

‖x2‖2 .

Therefore, using the fact that

√
1 + ε = 1 + 1

2
ε − 1

8
ε2 + o(ε2),

we may obtain

‖x2 + th2‖ = ‖x2‖
(

1 + t
α

‖x2‖ + 1

2
t2 β

‖x2‖2

)
+ o(t2), (13)

where

α = xT
2 h2

‖x2‖ , β = ‖h2‖2 − (xT
2 h2)

2

‖x2‖2 = ‖h2‖2 − α2 = hT
2 Mx2 h2,

with

Mx2 = I − x2xT
2

‖x2‖2 .

Furthermore, from (13) and the fact that (1 + ε)−1 = 1 − ε + ε2 + o(ε2), it follows that

‖x2 + th2‖−1 = ‖x2‖−1
(

1 − t
α

‖x2‖ + 1

2
t2

(
2

α2

‖x2‖2 − β

‖x2‖2

)
+ o(t2)

)
. (14)

Combining Eqs. (13) and (14) then yields that

x2 + th2

‖x2 + th2‖ = x2

‖x2‖ + t

(
h2

‖x2‖ − α

‖x2‖
x2

‖x2‖
)

+1

2
t2

((
2

α2

‖x2‖2 − β

‖x2‖2

)
x2

‖x2‖ − 2
h2

‖x2‖
α

‖x2‖
)

+ o(t2)

= x2

‖x2‖ + t Mx2

h2

‖x2‖

+1

2
t2

(

3
hT

2 x2xT
2 h2

‖x2‖4

x2

‖x2‖ − ‖h2‖2

‖x2‖2

x2

‖x2‖ − 2
h2hT

2

‖x2‖2

x2

‖x2‖

)

+ o(t2). (15)

In addition, from (13), we have the following equalities

f (x1 + th1 − ‖x2 + th2‖)
= f

(
x1 + th1 −

(
‖x2‖

(
1 + t

α

‖x2‖ + 1

2
t2 β

‖x2‖2

)
+ o(t2)

))

= f

(
λ1 + t (h1 − α) − 1

2
t2 β

‖x2‖ + o(t2)

)

= f (λ1) + t f ′(λ1)(h1 − α) + 1

2
t2

(
− f ′(λ1)

β

‖x2‖ + f ′′(λ1)(h1 − α)2
)

+ o(t2) (16)
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and

f (x1 + th1 + ‖x2 + th2‖)
= f

(
λ2 + t (h1 + α) + 1

2
t2 β

‖x2‖ + o(t2)

)

= f (λ2) + t f ′(λ2)(h1 + α) + 1

2
t2

(
f ′(λ2)

β

‖x2‖ + f ′′(λ2)(h1 + α)2
)

+ o(t2). (17)

For i = 0, 1, 2, we define

a(i) = f (i)(λ2) − f (i)(λ1)

λ2 − λ1
, b(i) = f (i)(λ2) + f (i)(λ1)

2
, c(i) = f (i)(λ2) − f (i)(λ1)

2
,

(18)

where f (i) means the i-th derivative of f and f (0) is the same as the original f . Then, by
the Eqs. (16)–(18), it can be verified that

�1 = 1

2

(
f (x1 + th1 + ‖x2 + th2‖) + f (x1 + th1 − ‖x2 + th2‖)

)

= b(0) + t
(

b(1)h1 + c(1)α
)

+ 1

2
t2

(
a(1)β + b(2)(h2

1 + α2) + 2c(2)h1α
)

+ o(t2)

= b(0) + t

(
b(1)h1 + c(1)hT

2
x2

‖x2‖
)

+ 1

2
t2hT A1(x)h + o(t2),

where

A1(x) =

⎡

⎢
⎢
⎣

b(2) c(2)
xT

2

‖x2‖
c(2) x2

‖x2‖ a(1) I + (
b(2) − a(1)

) x2xT
2

‖x2‖2

⎤

⎥
⎥
⎦ . (19)

Note that in the above expression for �1, b(0) is exactly the first component of f
soc

(x) and(
b(1)h1 + c(1)hT

2
x2‖x2‖

)
is the first component of ∇ f

soc
(x)h. Using the same techniques again,

1

2

(
f (x1 + th1 + ‖x2 + th2‖) − f (x1 + th1 − ‖x2 + th2‖)

)

= c(0) + t
(

c(1)h1 + b(1)α
)

+ 1

2
t2

(
b(1) β

‖x2‖ + c(2)(h2
1 + α2) + 2b(2)h1α

)
+ o(t2)

= c(0) + t
(

c(1)h1 + b(1)α
)

+ 1

2
t2hT B(x)h + o(t2), (20)

where

B(x) =

⎡

⎢
⎢
⎢
⎣

c(2) b(2)
xT

2

‖x2‖
b(2) x2

‖x2‖ c(2) I +
(

b(1)

‖x2‖ − c(2)

)

Mx2

⎤

⎥
⎥
⎥
⎦

. (21)

Using Eqs. (15) and (20), we obtain that

�2 = 1

2

(
f (x1 + th1 + ‖x2 + th2‖) − f (x1 + th1 − ‖x2 + th2‖)

) x2 + th2

‖x2 + th2‖
= c(0) x2

‖x2‖ + t

(
x2

‖x2‖ (c(1)h1 + b(1)α) + c(0)Mx2

h2

‖x2‖
)

+ 1

2
t2W + o(t2),
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where

W = x2

‖x2‖hT B(x)h + 2Mx2

h2

‖x2‖
(

c(1)h1 + b(1)α
)

+c(0)

(

3
hT

2 x2xT
2 h2

‖x2‖4

x2

‖x2‖ − ‖h2‖2

‖x2‖2

x2

‖x2‖ − 2
h2hT

2

‖x2‖2

x2

‖x2‖

)

.

Now we denote

d := b(1) − a(0)

‖x2‖ = 2(b(1) − a(0))

λ2 − λ1
, U := hT C(x)h

V := 2
c(1)h1 + b(1)α

‖x2‖ − c(0)2
xT

2 h2

‖x2‖3 = 2a(1)h1 + 2d
xT

2 h2

‖x2‖ ,

where

C(x) :=

⎡

⎢
⎢
⎣

c(2) (b(2) − a(1))
xT

2

‖x2‖
(b(2) − a(1))

x2

‖x2‖ dI + (
c(2) − 3d

) x2xT
2

‖x2‖2

⎤

⎥
⎥
⎦ . (22)

Then U can be further recast as

U = hT B(x)h + c(0)3
hT

2 x2xT
2 h2

‖x2‖4 − c(0) ‖h2‖2

‖x2‖2 − 2
xT

2 h2

‖x2‖2 (c(1)h1 + b(1)α).

Consequently,

W = x2

‖x2‖U + h2V .

We next consider the case where x2 = 0 and x2 + th2 
= 0. By definition (5),

f
soc

(x + th) = f (x1 + t (h1 − ‖h2‖))
2

⎡

⎣
1

− h2

‖h2‖

⎤

⎦ + f (x1 + t (h1 + ‖h2‖))
2

⎡

⎣
1
h2

‖h2‖

⎤

⎦

=
⎡

⎢
⎣

f (x1 + t (h1 − ‖h2‖)) + f (x1 + t (h1 + ‖h2‖))
2

f (x1 + t (h1 + ‖h2‖)) − f (x1 + t (h1 − ‖h2‖))
2

h2

‖h2‖

⎤

⎥
⎦ . (23)

Using the Taylor expansion of f at x1, we can obtain that

1

2

[
f (x1 + t (h1 − ‖h2‖)) + f (x1 + t (h1 + ‖h2‖))

]

= f (x1) + t f (1)(x1)h1 + 1

2
t2 f (2)(x1)h

T h + o(t2),

1

2

[
f (x1 + t (h1 − ‖h2‖)) − f (x1 + t (h1 + ‖h2‖))

]

= t f (1)(x1)h2 + 1

2
t2 f (2)(x1)2h1h2 + o(t2).

Therefore,

f
soc

(x + th) = f
soc

(x) + t f (1)(x1)h + 1

2
t2 f (2)(x1)

[
hT h

2h1h2

]
. (24)
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Thus, under this case, we have that

A1(x) = f (2)(x1)I, Ai (x) = f (2)(x1)

(
0 ēT

i−1
ēi−1 0

)
i = 2, . . . , n, (25)

where ē j ∈ IRn−1 is the vector whose j th component is 1 and the others are 0.
Summing up the above discussions, we may obtain the following conclusion.

Proposition 2.1 Let f ∈ C (2)(J ) with J being an open interval in IR and dom f
soc ⊆ IRn.

Then, for given x ∈ dom f
soc

, h ∈ IRn and any sufficiently small t > 0,

f
soc

(x + th) = f
soc

(x) + t∇ f
soc

(x)h + 1

2
t2

⎡

⎢
⎢
⎢
⎣

hT A1(x)h
hT A2(x)h

...

hT An(x)h

⎤

⎥
⎥
⎥
⎦

+ o(t2),

where ∇ f
soc

(x) and Ai (x), i = 1, 2, . . . , n are given by (10) and (25) if x2 = 0; and
otherwise ∇ f

soc
(x) and A1(x) are given by (9) and (19), respectively, and for i ≥ 2,

Ai (x) = C(x)
x2i

‖x2‖ + Bi (x)

where

Bi (x) = veT
i + eiv

T , v =
[

a(1) d
xT

2

‖x2‖

]T

.

From Proposition 4.3 of [5] and Proposition 2.1, we readily have the following result.

Proposition 2.2 Let f ∈ C (2)(J ) with J being an open interval in IR and dom f
soc ⊆ IRn.

Then, f is SOC-convex if and only if for any x ∈ dom f
soc

and h ∈ IRn, the vector
⎡

⎢
⎢
⎢
⎣

hT A1(x)h
hT A2(x)h

...

hT An(x)h

⎤

⎥
⎥
⎥
⎦

∈ Kn .

3 Characterizations of SOC-monotone functions

Now we are ready to show our main result concerning the characterization of SOC-monotone
functions. We need the following technical lemmas for the proof. The first one is so-called
S-Lemma whose proof can be found in [16,18].

Lemma 3.1 Let A, B be symmetric matrices and yT Ay > 0 for some y. Then, the implica-
tion

[
zT Az ≥ 0 ⇒ zT Bz ≥ 0

]
is valid if and only if B � λA for some λ ≥ 0.

Lemma 3.2 Given θ ∈ IR, a ∈ IRn−1, and a symmetric matrix A ∈ IRn×n. Let Bn−1 :=
{z ∈ IRn−1| ‖z‖ ≤ 1}. Then, the following results hold:

(a) For any h ∈ Kn, Ah ∈ Kn is equivalent to A

[
1
z

]
∈ Kn for any z ∈ Bn−1.

(b) For any z ∈ Bn−1, θ + aT z ≥ 0 is equivalent to θ ≥ ‖a‖.
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(c) If A =
[

θ aT

a H

]
with H being an (n − 1) × (n − 1) symmetric matrix, then for any

h ∈ Kn, Ah ∈ Kn is equivalent to θ ≥ ‖a‖ and there exists λ ≥ 0 such that the matrix
[

θ2 − ‖a‖2 − λ θaT − aT H
θa − H T a aaT − H T H + λI

]
� O.

Proof (a) For any h ∈ Kn , suppose that Ah ∈ Kn . Let h =
[

1
z

]
where z ∈ Bn−1. Then

h ∈ Kn and the desired result follows. For the other direction, if h = 0, the conclusion
is obvious. Now let h := (h1, h2) be any nonzero vector in Kn . Then, h1 > 0 and

‖h2‖ ≤ h1. Consequently,
h2

h1
∈ Bn−1 and A

⎡

⎣
1
h2

h1

⎤

⎦ ∈ Kn . Since Kn is a cone, we

have

h1 A

⎡

⎣
1
h2

h1

⎤

⎦ = Ah ∈ Kn .

(b) For z ∈ Bn−1, suppose θ + aT z ≥ 0. If a = 0, then the result is clear since θ ≥ 0. If

a 
= 0, let z := −a/‖a‖. Clearly, z ∈ Bn−1 and hence θ + −aT a

‖a‖ ≥ 0 which gives

θ − ‖a‖ ≥ 0. For the other direction, the result follows from the Cauchy Schwarz
inequality:

θ + aT z ≥ θ − ‖a‖ · ‖z‖ ≥ θ − ‖a‖ ≥ 0.

(c) From part (a), Ah ∈ Kn for any h ∈ Kn is equivalent to A

[
1
z

]
∈ Kn for any z ∈ Bn−1.

Notice that

A

[
1
z

]
=

[
θ aT

a H

] [
1
z

]
=

[
θ + aT z
a + H z

]
.

Then, Ah ∈ Kn for any h ∈ Kn is equivalent to the following two things:

θ + aT z ≥ 0, for any z ∈ Bn−1 (26)

and

(a + H z)T (a + H z) ≤ (θ + aT z)2, for any z ∈ Bn−1. (27)

By part (b), (26) is equivalent to θ ≥ ‖a‖. Now, we write the expression of (27) as below:

zT (aaT − H T H)z + 2(θaT − aT H)z + θ2 − aT a ≥ 0, for any z ∈ Bn−1,

which can be further simplified as

[
1 zT

]
[

θ2 − ‖a‖2 θaT − aT H
θa − H T a aaT − H T H

] [
1
z

]
≥ 0, for any z ∈ Bn−1.

Observe that z ∈ Bn−1 is the same as

[
1 zT

]
[

1 0
0 −I

] [
1
z

]
≥ 0.
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Thus, by applying the S-Lemma (Lemma 3.1), there exists λ ≥ 0 such that
[

θ2 − ‖a‖2 θaT − aT H
θa − H T a aaT − H T H

]
− λ

[
1 0
0 −I

]
� O

This completes the proof of part (c). ��

Theorem 3.1 Let f ∈ C (1)(J ) with J being an open interval and dom f
soc ⊆ IRn. Then,

(i) when n = 2, f is SOC-monotone if and only if f ′(τ ) ≥ 0 for any τ ∈ J ;
(ii) when n ≥ 3, f is SOC-monotone if and only if the 2 × 2 matrix

⎡

⎢
⎣

f (1)(t1)
f (t2) − f (t1)

t2 − t1
f (t2) − f (t1)

t2 − t1
f (1)(t2)

⎤

⎥
⎦ � O for all t1, t2 ∈ J.

Proof By the definition of SOC-monotonicity, f is SOC-monotone if and only if

f
soc

(x + h) − f
soc

(x) ∈ Kn (28)

for any x ∈ dom f
soc

and h ∈ Kn such that x + h ∈ dom f
soc

. By the first-order Taylor
expansion of f

soc
, i.e.,

f
soc

(x + h) = f
soc

(x) + ∇ f
soc

(x + th)h for some t ∈ (0, 1),

it is clear that (28) is equivalent to ∇ f
soc

(x + th)h ∈ Kn for any x ∈ dom f
soc

and h ∈ Kn

such that x + h ∈ dom f
soc

, and some t ∈ (0, 1). Let y := x + th = µ1v
(1) + µ2v

(2) for
such x, h and t . We next proceed the arguments by the two cases of y2 
= 0 and y2 = 0.

Case (1): y2 
= 0. Under this case, we notice that

∇ f
soc

(y) =
[

θ aT

a H

]
,

where

θ = b̃(1), a = c̃(1) y2

‖y2‖ , and H = ã(0) I + (b̃(1) − ã(0))
y2 yT

2

‖y2‖2 ,

with

ã(0) = f (µ2) − f (µ1)

µ2 − µ1
, b̃(1) = f ′(µ2) + f ′(µ1)

2
, c̃(1) = f ′(µ2) − f ′(µ1)

2
. (29)

In addition, we also observe that

θ2 − ‖a‖2 = (b̃(1))2 − (c̃(1))2, θaT − aT H = 0

and

aaT − H T H = −(ã(0))2 I +
(
(c̃(1))2 − (b̃(1))2 + (ã(0))2

) y2 yT
2

‖y2‖2 .

Thus, by Lemma 3.2, f is SOC-monotone if and only if

(a) b̃(1) ≥ |c̃(1)|;
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(b) and there exists λ ≥ 0 such that the matrix
⎡

⎣
(b̃(1))2 − (c̃(1))2 − λ 0

0 (λ − (ã(0))2)I +
(
(c̃(1))2 − (b̃(1))2 + (ã(0))2

) y2 yT
2

‖y2‖2

⎤

⎦ � O.

When n = 2, (a) together with (b) is equivalent to saying that f ′(µ1) ≥ 0 and f ′(µ2) ≥ 0.
Then we conclude that f is SOC-monotone if and only if f ′(τ ) ≥ 0 for any τ ∈ J .

When n ≥ 3, (b) is equivalent to saying that (b̃(1))2 −(c̃(1))2 = λ ≥ 0 and λ−(ã(0))2 ≥ 0,
i.e., (b̃(1))2 − (c̃(1))2 ≥ (ã(0))2. Therefore, (a) together with (b) is equivalent to

⎡

⎢
⎣

f (1)(µ1)
f (µ2) − f (µ1)

µ2 − µ1
f (µ2) − f (µ1)

µ2 − µ1
f (1)(µ2)

⎤

⎥
⎦ � O

for any x ∈ IRn, h ∈ Kn such that x + h ∈ dom f
soc

, and some t ∈ (0, 1). Thus, we conclude
that f is SOC-monotone if and only if

⎡

⎢
⎣

f (1)(t1)
f (t2) − f (t1)

t2 − t1
f (t2) − f (t1)

t2 − t1
f (1)(t2)

⎤

⎥
⎦ � O for all t1, t2 ∈ J.

Case (2): y2 = 0. Now we have µ1 = µ2 and ∇ f
soc

(y) = f (1)(µ1)I = f (1)(µ2)I .

Hence, f is SOC-monotone is equivalent to f (1)(µ1) ≥ 0, which is also equivalent to
⎡

⎢
⎣

f (1)(µ1)
f (µ2) − f (µ1)

µ2 − µ1
f (µ2) − f (µ1)

µ2 − µ1
f (1)(µ2)

⎤

⎥
⎦ � O

since f (1)(µ1) = f (1)(µ2) and f (µ2)− f (µ1)
µ2−µ1

= f (1)(µ1) = f (1)(µ2) by the Taylor formula
and µ1 = µ2. Thus, similar to Case (1), the conclusion also holds under this case. ��

From Theorem 3.1 and [11, Theorem 6.6.36], we immediately have the following results.

Corollary 3.1 Let f ∈ C (1)(J ) with J being an open interval in IR. Then,

(a) f is SOC-monotone of order n ≥ 3 if and only if it is 2-matrix monotone, and f is
SOC-monotone of order n ≤ 2 if it is 2-matrix monotone.

(b) Suppose that n ≥ 3 and f is SOC-monotone of order n. Then, f ′(t0) = 0 for some t0 ∈ J
if and only if f (·) is a constant function on J .

Note that the SOC-monotonicity of order 2 does not imply the 2-matrix monotonicity.
For example, f (t) = t2 is SOC-monotone of order 2 on (0,+∞) by Example 3.2 (a) in [5],
but by [11, Theorem 6.6.36] we can verify that it is not 2-matrix monotone. Corollary 3.1
(a) implies that a continuously differentiable function defined on an open interval must be
SOC-monotone if it is 2-matrix monotone. In addition, from the following proposition, we
also have that the compound of two simple SOC-monotone functions is SOC-monotone.

Proposition 3.1 If f : J1 → J and g : J → IR with J1, J ⊆ IR are SOC-monotone on J1

and J , respectively, then the function g ◦ f : J1 → IR is SOC-monotone on J .

Proof It is easy to verify that for all x, y ∈ IRn , x �Kn y if and only if λi (x) ≥ λi (y) with
i = 1, 2. In addition, g is monotone on J since it is SOC-monotone. From the two facts, we
immediately obtain the result. ��
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4 Characterizations of SOC-convex functions

In this section, we exploit Peirce decomposition to derive some characterizations for SOC-
convex functions. Let f ∈ C (2)(J ) with J being an open interval in IR and dom f

soc ⊆ IRn .
For any x ∈ dom f

soc
and h ∈ IRn , if x2 = 0, then from Proposition 2.1 we have that
⎡

⎢
⎢
⎢
⎣

hT A1(x)h
hT A2(x)h

...

hT An(x)h

⎤

⎥
⎥
⎥
⎦

= f (2)(x1)

[
hT h

2h1h2

]
.

Since (hT h, 2h1h2) ∈ Kn , from Proposition 2.2 it follows that f is SOC-convex if and only
if f (2)(x1) ≥ 0. By the arbitrariness of x1, f is SOC-convex if and only if f is convex on J .

In what follows, we assume that x2 
= 0. Let x = λ1(x)u(1)
x + λ2(x)u(2)

x , where u(1)
x

and u(2)
x are given by (4) with x̄2 = x2‖x2‖ . Let u(i)

x = (0, υ
(i)
2 ) for i = 3, . . . , n, where

υ
(3)
2 , . . . , υ

(n)
2 is any orthonormal set of vectors that span the subspace of IRn−2 orthogonal

to x2. It is easy to verify that the vectors u(1)
x , u(2)

x , u(3)
x , . . . , u(n)

x are linearly independent.
Hence, for any given h = (h1, h2) ∈ IR × IRn−1, there exists µi , i = 1, 2, . . . , n such that

h = µ1
√

2u(1)
x + µ2

√
2u(2)

x +
n∑

i=3

µi u
(i)
x .

From (19), we can verify that b(2) + c(2) and b(2) − c(2) are the eigenvalues of A1(x) with
u(2)

x and u(1)
x being the corresponding eigenvectors, and a(1) is the eigenvalue of multiplicity

n −2 with u(i)
x = (0, υ

(i)
2 ) for i = 3, . . . , n being the corresponding eigenvectors. Therefore,

hT A1(x)h = µ2
1(b

(2) − c(2)) + µ2
2(b

(2) + c(2)) + a(1)
n∑

i=3

µ2
i

= f (2)(λ1)µ
2
1 + f (2)(λ2)µ

2
2 + a(1)µ2, (30)

where

µ2 = ∑n
i=3 µ2

i .

Similarly, we can verify that c(2) + b(2) − a(1) and c(2) − b(2) + a(1) are the eigenvalues of
⎡

⎢
⎢
⎣

c(2) (b(2) − a(1))
xT

2

‖x2‖
(b(2) − a(1))

x2

‖x2‖ dI + (
c(2) − d

) x2xT
2

‖x2‖2

⎤

⎥
⎥
⎦

with u(2)
x and u(1)

x being the corresponding eigenvectors, and d is the eigenvalue of multiplicity
n − 2 with u(i)

x = (0, υ
(i)
2 ) for i = 3, . . . , n being the corresponding eigenvectors. Notice

that C(x) in (22) can be decomposed the sum of the above matrix and
⎡

⎣
0 0

0 −2d
x2xT

2

‖x2‖2

⎤

⎦ .
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Consequently,

hT C(x)h = µ2
1(c

(2) − b(2) + a(1)) + µ2
2(c

(2) + b(2) − a(1)) − d(µ2 − µ1)
2 + dµ2. (31)

In addition, by the definition of Bi (x), it is easy to compute that

hT Bi (x)h = √
2h2,i−1(µ1(a

(1) − d) + µ2(a
(1) + d)), (32)

where h2i = (h21, . . . , h2,n−1). From Eqs. (30)–(32) and the definition of Ai (x) in Proposi-
tion 2.1, we thus have

n∑

i=2

(hT Ai (x)h)2 = [hT C(x)h]2 + 2‖h2‖2(µ1(a
(1) − d) + µ2(a

(1) + d))2

+ 2(µ2 − µ1)h
T C(x)h(µ1(a

(1) − d) + µ2(a
(1) + d))

= [hT C(x)h]2+2

(
1

2
(µ2−µ1)

2+µ2
)

(µ1(a
(1) − d)+µ2(a

(1) + d))2

+2(µ2 − µ1)h
T C(x)h(µ1(a

(1) − d) + µ2(a
(1) + d))

= [hT C(x)h + (µ2 − µ1)(µ1(a
(1) − d) + µ2(a

(1) + d))]2

+2µ2(µ1(a
(1) − d) + µ2(a

(1) + d))2

= [− f (2)(λ1)µ
2
1 + f (2)(λ2)µ

2
2 + dµ2]2

+2µ2(µ1(a
(1) − d) + µ2(a

(1) + d))2. (33)

On the other hand, by Proposition 2.2, f is SOC-convex if and only if

A1(x) � O and
n∑

i=2

(hT Ai (x)h)2 ≤ (hT A1(x)h)2. (34)

From (30) and (33)–(45), we have that f is SOC convex if and only if A1(x) � O and
[
− f (2)(λ1)µ

2
1 + f (2)(λ2)µ

2
2 + dµ2

]2 + 2µ2(µ1(a
(1) − d) + µ2(a

(1) + d))2

≤
[

f (2)(λ1)µ
2
1 + f (2)(λ2)µ

2
2 + a(1)µ2

]2
. (35)

When n = 2, it is clear that µ = 0. Then, f is SOC-convex if and only if

A1(x) � O and f (2)(λ1) f (2)(λ2) ≥ 0.

From the previous discussions, we know that b(2) − c(2) = f (2)(λ1), b(2) + c(2) = f (2)(λ2)

and a(1) = f (1)(λ2)− f (1)(λ1)
λ2−λ1

are all eigenvalues of A1(x). Thus, f is SOC-convex if and only
if

f (2)(λ2) ≥ 0, f (2)(λ1) ≥ 0, f (1)(λ2) ≥ f (1)(λ1),

which by the arbitrariness of x is equivalent to saying that f is convex on J .
When n ≥ 3, if µ = 0, then from the discussions above, we know that f is SOC-convex

if and only if f is convex. If µ 
= 0, without loss of generality, we assume that µ2 = 1. Then
the inequality (46) above is equivalent to

4 f (2)(λ1) f (2)(λ2)µ
2
1µ

2
2 + (a(1))2 − d2

+2 f (2)(λ2)µ
2
2(a

(1) − d) + 2 f (2)(λ1)µ
2
1(a

(1) + d)

−2
(
µ2

1(a
(1) − d)2 + µ2

2(a
(1) + d)2 + 2µ1µ2((a

(1))2 − d2)
)

≥ 0 for any µ1, µ2. (36)
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Now we show that A1(x) � O and (36) holds if and only if f is convex on J and

f (2)(λ1)(a
(1) + d) ≥ (a(1) − d)2, (37)

f (2)(λ2)(a
(1) − d) ≥ (a(1) + d)2. (38)

Indeed, if f is convex on J , then by the discussions above A1(x) � O clearly holds. If the
inequalities (37) and (38) hold, then by the convexity of f we have a(1) ≥ |d|. If µ1µ2 ≤ 0,
then we readily have the inequality (36). If µ1µ2 > 0, then using a(1) ≥ |d| yields that

f (2)(λ1) f (2)(λ2)µ
2
1µ

2
2 ≥ (a(1))2 − d2.

Combining with Eqs. (37)–(38) thus leads to the inequality (36). On the other hand, if A1(x) �
O , then f must be convex on J by the discussions above, whereas if the inequality (36) holds
for any µ1, µ2, then by letting µ1 = µ2 = 0 yields that

a(1) ≥ |d|. (39)

Using the inequality (39) and letting µ1 = 0 in (36) then yields (37), whereas using (39) and
letting µ2 = 0 in (36) leads to (38). Thus, when n ≥ 3, f is SOC-convex if and only if f is
convex on J and (37) and (38) hold. We notice that (37) and (38) are equivalent to

1

2
f (2)(λ1)

[ f (λ1)− f (λ2)+ f (1)(λ2)(λ2−λ1)]
(λ2−λ1)2 ≥ [ f (λ2)− f (λ1)− f (1)(λ1)(λ2−λ1)]2

(λ2−λ1)4

and

1

2
f (2)(λ2)

[ f (λ2)− f (λ1)− f (1)(λ1)(λ2−λ1)]
(λ2 − λ1)2 ≥ [ f (λ1)− f (λ2) + f (1)(λ2)(λ2−λ1)]2

(λ2−λ1)4 .

Therefore, f is SOC-convex if and only if f is convex on J , and

1

2
f (2)(t0)

[ f (t0) − f (t) − f (1)(t)(t0 − t)]
(t0 − t)2 ≥ [ f (t) − f (t0) − f (1)(t0)(t − t0)]2

(t0 − t)4

∀t0, t ∈ J. (40)

Summing up the above analysis, we can characterize the SOC-convexity as follows.

Theorem 4.1 Let f ∈ C (2)(J ) with J being an open interval in IR and dom f
soc ⊆ IRn. If

n = 2, then f is SOC-convex if and only if f is convex; if n ≥ 3, then f is SOC-convex if
and only if f is convex and the inequality (40) holds for any t0, t ∈ J .

By the formulas of divided differences, it is not hard to verify that f is convex on J and
(40) holds for any t0, t ∈ J if and only if

[�2 f (t0, t0, t0) �2 f (t0, t, t0)
�2 f (t, t0, t0) �2 f (t, t, t0)

]
� O. (41)

This, together with Theorem 4.1 and [11, Theorem 6.6.52], leads to the following results.

Corollary 4.1 Let f ∈ C (2)(J ) with J being an open interval in IR and dom f
soc ⊆ IRn.

Then, f is SOC-convex of order n ≥ 3 if and only if it is 2-matrix convex, and f is SOC-convex
of order n ≤ 2 if it is 2-matrix convex.

Corollary 4.1 implies that, if f is a twice continuously differentiable function defined on
an open interval J and 2-matrix convex, then it must be SOC-convex. Similar to Corollary
3.1 (a), when f is SOC-convex of order 2, it may not be 2-matrix convex. For example,
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f (t) = t3 is SOC-convex of order 2 on (0,+∞) by Example 3.3 (c) of [5], but it is easy to
verify that (41) does not hold for this function, and consequently, f is not 2-matrix convex.
Using Corollary 4.1, we may prove that Conjecture 4.2 in [5] does not hold in general.

Corollary 4.2 Let f : [0,+∞) → [0,+∞) be continuous. If f is SOC-concave, then f is
SOC-monotone. Conversely, if f is SOC-monotone, then it may not be SOC-concave.

Proof The first part has been shown in [5]. We next consider the second part. Consider

f (t) = − cot
(
−π

2
(1 + t)−1 + π

)
, t ∈ [0,+∞).

Notice that − cot(t) is SOC-monotone on [π/2, π), whereas −π
2 (1+ t)−1 is SOC-monotone

on [0,+∞). Hence, their compound function f (t) is SOC-monotone on [0,+∞). However,
− f (t) does not satisfy the inequality (40) for all t ∈ (0,+∞). For example, when t1 = 7.7
and t2 = 7.6, the left hand side of (40) equals 0.0080, whereas the right hand side equals
27.8884. This shows that f (t) = − cot(t) is not SOC-concave of order n ≥ 3. ��

Particularly, by Corollary 4.1 and [9, Theorem 2.3], we can establish the following char-
acterizations for SOC-convex functions.

Corollary 4.3 Let f ∈ C (4)(J ) with J being an open interval in IR and dom f
soc ⊆ IRn. If

f (2)(t) > 0 for every t ∈ J , then f is SOC-convex of order n with n ≥ 3 if and only if one
of the following conditions holds.

(a) For every t ∈ J , the 2 × 2 matrix
⎡

⎢
⎣

f (2)(t)

2

f (3)(t)

6
f (3)(t)

6

f (4)(t)

24

⎤

⎥
⎦ � O. (42)

(b) There is a positive concave function c on I such that f (2)(t) = c(t)−3 for every t ∈ J .
(c) There holds that

[ f (t0) − f (t) − f (1)(t)(t0 − t)]
(t0 − t)2

[ f (t) − f (t0) − f (1)(t0)(t − t0)]
(t0 − t)2

≤ 1

4
f (2)(t0) f (2)(t). (43)

Moreover, f is also SOC-convex of order 2 under one of the above conditions.

Proof For completeness, we here present their proofs. Notice that f is convex on J . By
Corollary 4.1, it suffices to prove the following equivalence:

(40) ⇐⇒ assertion (a) ⇐⇒ assertion (b) ⇐⇒ assertion (c).

(40) ⇒ assertion (a): From the previous discussions, we know that (40) is equivalent to
(37) and (38). We expand (37) using Taylor’s expansion at λ1 to the fourth order and get

3

4
f (2)(λ1) f (4)(λ1) ≥ ( f (3)(λ1))

2.

We do the same for the inequality (38) at λ2 and get the inequality

3

4
f (2)(λ2) f (4)(λ2) ≥ ( f (3)(λ2))

2.
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The above two inequalities are precisely

3

4
f (2)(t) f (4)(t) ≥ ( f (3)(t))2 ∀t ∈ J, (44)

which is clearly equivalent to saying that the 2 × 2 matrix in (a) is positive semidefinite.
Assertion (a) ⇒ assertion (b): Take c(t) = [ f (2)(t)]−1/3 for t ∈ J . Then c is a positive

function and f (2)(t) = c(t)−3. By twice differentiation, we obtain

f (4)(t) = 12c(t)−5[c′(t)(t)]2 − 3c(t)−4c′′(t).

Substituting the last equality into the matrix in (a) then yields that

− 1

16
c(t)−7c′′(t) ≥ 0,

which, together with c(t) > 0 for every t ∈ J , implies that c is concave.
Assertion (b) ⇒ assertion (c): We first prove the following fact: if f (2)(t) is strictly positive

for every t ∈ J and the function c(t) = [
f (2)(t)

]−1/3
is concave on J , then

[ f (t0) − f (t) − f (1)(t)(t0 − t)]
(t0 − t)2 ≤ 1

2
f (2)(t0)

1/3 f (2)(t)2/3 ∀t0, t ∈ J. (45)

Indeed, using the concavity of the function c, it follows that

[ f (t0) − f (t) − f (1)(t)(t0 − t)]
(t0 − t)2 =

∫ 1

0

∫ u1

0
f (2) [t + u2(t0 − t)] du2du1

=
∫ 1

0

∫ u1

0
c ((1 − u2)t + u2t0))

−3 du2du1

≤
∫ 1

0

∫ u1

0
((1 − u2)c(t) + u2c(t0))

−3 du2du1.

Notice that g(t) = 1/t (t > 0) has the second-order derivative g(2)(t) = 2/t3. Hence,

[ f (t0) − f (t) − f (1)(t)(t0 − t)]
(t0 − t)2 ≤ 1

2

∫ 1

0

∫ u1

0
g(2) ((1 − u2)c(t) + u2c(t0)) du2du1

= 1

2

(
g(c(t0)) − g(c(t))

(c(t0) − c(t))2 − g(1)(c(t))

c(t0) − c(t)

)

= 1

2c(t0)c(t)c(t)

= 1

2
f (2)(t0)

1/3 f (2)(t)2/3,

which implies the inequality (45). Now exchanging t0 with t in (45), we obtain

[ f (t) − f (t0) − f (1)(t0)(t − t0)]
(t0 − t)2 ≤ 1

2
f (2)(t)1/3 f (2)(t0)

2/3 ∀t, t0 ∈ J. (46)

Since f is convex on J by the given assumption, the left hand sides of the inequalities (45)
and (46) are nonnegative, and their product satisfies the inequality of (43).

Assertion (c) ⇒ (40): We introducing a function F : J → IR defined by

F(t) = 1

2
f (2)(t0)[ f (t0) − f (t) − f (1)(t)(t0 − t)] − [ f (t) − f (t0) − f (1)(t0)(t − t0)]2

(t0 − t)2
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if t 
= t0, and otherwise F(t0) = 0. We next prove that F is nonnegative on J . It is easy to
verify that such F(t) is differentiable on J , and moreover,

F ′(t) = 1

2
f (2)(t0) f (2)(t)(t − t0)

− 2(t − t0)
−2[ f (t) − f (t0) − f (1)(t0)(t − t0)]( f (1)(t) − f (1)(t0))

+ 2(t − t0)
−3[ f (t) − f (t0) − f (1)(t0)(t − t0)]2

= 1

2
f (2)(t0) f (2)(t)(t − t0)

− 2(t − t0)
−3[ f (t) − f (t0) − f (1)(t0)(t − t0)][ f (t0) − f (t) − f (1)(t)(t0 − t)]

= 2(t − t0)

[
1

4
f (2)(t0) f (2)(t) − (t − t0)

−4
(

f (t) − f (t0) − f (1)(t0)(t − t0)
)

(
f (t0) − f (t) − f (1)(t)(t0 − t)

) ]
.

Using the inequality in part (c), we can verify that F(t) has a minimum value 0 at t = t0,
and therefore, F(t) is nonnegative on J . This implies the inequality (40). ��

5 Examples and applications

The SOC-monotonicity and the SOC-convexity are often involved in the solution methods
of convex SOCPs; for example, the proximal-like methods proposed in [15]. In this section,
we focus on their applications in the augmented Lagrangian methods for the convex SOCP:

min f (ζ )

s.t. Aζ + b �Kn 0,
(47)

where f : IRn → IR is a convex function, A ∈ IRn×m has the full column rank, and b ∈ IRn .
Let ϕ : (b,+∞) → IR be a function with the following favorable properties:

(i) ϕ is strictly convex, strictly monotone increasing and twice continuously differentiable
on its domain domϕ := (b,+∞) with −∞ < b < 0;

(ii) ϕ(0) = 0, ϕ′(0) = 1 and limt→b ϕ′(t) = ∞, limt→+∞ ϕ′(t) = 0;
(iii) limε→0 εϕ(t/ε) = 0 for any t > 0;
(iv) ϕ is SOC-monotone on (b,+∞) and ϕ is SOC-concave on (b,+∞).

For any ε > 0, we use such ϕ to define the function ϕε : (bε,+∞) → IR by

ϕε(t) = εϕ(t/ε). (48)

Then, by the properties (i)–(iii) and the SOC-monotonicity of ϕ, we can rewrite (47) as

min f (ζ )

s.t. ϕε
soc

(Aζ + b) �Kn 0.
(49)

Moreover, by the SOC-convexity of ϕ, it is not difficult to verify that (49) is also a convex
programming problem. Consequently, its Lagrangian, given by

Lε(x, y) := f (x) − 〈y, ϕε
soc

(Ax + b)〉 (50)

is convex for any x ∈ domϕε
soc

. Similar to the augmented Lagrangian method for nonlinear
convex programming in nonnegative orthant cone, we can design the augmented Lagrangian
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method for (47) by solving a sequence of convex subproblems

min
x∈domϕε

soc
Lε(x, yk) with yk �Kn 0.

In what follows, we employ the characterizations established in the last two sections to
present some examples of SOC-monotone functions and SOC-convex functions, from which
we can choose a suitable one to design the augmented Lagrangian method for (47).

Proposition 5.1 (a) For any fixed σ ∈ IR, the function f (t) = 1

σ − t
is SOC-monotone on

(σ,+∞).
(b) For any fixed σ ∈ IR, the function f (t) = √

t − σ is SOC-monotone on [σ,+∞).
(c) For any fixed σ ∈ IR, the function f (t) = ln(t − σ) is SOC-monotone on (σ,+∞).

(d) For any fixed σ ≥ 0, the function f (t) = t

t + σ
is SOC-monotone on (−σ,+∞).

Proof (a) For any t1, t2 ∈ (σ,+∞), it is clear that
⎡

⎢
⎣

1

(σ − t1)2

1

(σ − t2)(σ − t1)
1

(σ − t2)(σ − t1)

1

(σ − t2)2

⎤

⎥
⎦ � O.

From Theorem 3.1, we then obtain the desired result.
(b) If x �Kn σe, then (x − σe)1/2 �Kn 0. Thus, by Theorem 3.1, it suffices to show

⎡

⎢
⎢
⎣

1

2
√

t1 − σ

√
t2 − σ − √

t1 − σ

t2 − t1√
t2 − σ − √

t1 − σ

t2 − t1

1

2
√

t2 − σ

⎤

⎥
⎥
⎦ � O for any t1, t2 > 0,

which is equivalent to proving that

1

4
√

t1 − σ
√

t2 − σ
− 1

(
√

t2 − σ + √
t1 − σ)2

≥ 0.

This inequality holds by 4
√

t1 − σ
√

t2 − σ ≤ (
√

t2 − σ + √
t1 − σ)2 for any t1, t2 ∈

(σ,+∞).
(c) By Theorem 3.1, it suffices to prove that for any t1, t2 ∈ (σ,+∞),

⎡

⎢
⎢
⎣

1

(t1 − σ)

1

(t2 − t1)
ln

(
t2 − σ

t1 − σ

)

1

(t2 − t1)
ln

(
t2 − σ

t1 − σ

)
1

(t2 − σ)

⎤

⎥
⎥
⎦ � O,

which is equivalent to showing that

1

(t1 − σ)(t2 − σ)
−

[
1

(t2 − t1)
ln

(
t2 − σ

t1 − σ

)]2

≥ 0.

Notice that ln t ≤ t − 1 (t > 0), and hence it is easy to verify that
[

1

(t2 − t1)
ln

(
t2 − σ

t1 − σ

)]2

≤ 1

(t1 − σ)(t2 − σ)
.

Consequently, the desired result follows.
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(d) Since for any fixed σ ≥ 0 and any t1, t2 ∈ (−σ,+∞), there holds that
⎡

⎢
⎣

σ

(σ + t1)2

σ

(σ + t2)(σ + t1)
σ

(σ + t2)(σ + t1)

σ

(σ + t2)2

⎤

⎥
⎦ � O,

we immediately obtain the desired result from Theorem 3.1. The proof is complete. ��
Notice that Proposition 5.1 (a), (b) and (d) were established in [5] by the definition of

SOC-monotonicity, and Proposition 5.1 (c) was shown in [15] by the definition of SOC-
monotonicity and a transformation technique. However, we here use the characterization of
Theorem 3.1 to convert their proofs into proving some simple inequalities on IR.

Proposition 5.2 (a) For any fixed σ ∈ IR, the function f (t) = (t − σ)−r with r ≥ 0 is
SOC-convex on (σ,+∞) if and only if 0 ≤ r ≤ 1.

(b) For any fixed σ ∈ IR, the function f (t) = (t − σ)r with r ≥ 0 is SOC-convex on
[σ,+∞) if and only if 1 ≤ r ≤ 2, and f is SOC-concave on [σ,+∞) if and only if
0 ≤ r ≤ 1.

(c) For any fixed σ ∈ IR, the function f (t) = ln(t − σ) is SOC-concave on (σ,+∞).

(d) For any fixed σ ≥ 0, the function f (t) = t

t + σ
is SOC-concave on (−σ,+∞).

Proof (a) For any fixed σ ∈ IR, by a simple computation, we have that
⎡

⎢
⎢
⎣

f (2)(t)

2

f (3)(t)

6

f (3)(t)

6

f (4)(t)

24

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

r(r +1)(t − σ)−r−2

2

r(r +1)(−r − 2)(t − σ)−r−3

6

r(r +1)(−r − 2)(t − σ)−r−3

6

r(r +1)(r +2)(r + 3)(t−σ)−r−4

24

⎤

⎥
⎥
⎦ .

The sufficient and necessary condition for the above matrix being positive semidefinite is

r2(r + 1)2(r + 2)(r + 3)(t − σ)−2r−6

24
− r2(r + 1)2(r + 2)2(t − σ)−2r−6

18
≥ 0, (51)

which is equivalent to requiring 0 ≤ r ≤ 1. By Corollary 4.3, it then follows that f is
SOC-convex on (σ,+∞) if and only if 0 ≤ r ≤ 1.

(b) For any fixed σ ∈ IR, by a simple computation, we have that
⎡

⎢
⎢
⎣

f (2)(t)

2

f (3)(t)

6

f (3)(t)

6

f (4)(t)

24

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

r(r −1)(t − σ)r−2

2

r(r −1)(r − 2)(t − σ)r−3

6

r(r −1)(r −2)(t − σ)r−3

6

r(r −1)(r −2)(r −3)(t−σ)r−4

24

⎤

⎥
⎥
⎦ .

The sufficient and necessary condition for the above matrix being positive semidefinite is

r1 and
r2(r − 1)2(r − 2)(r − 3)(t − σ)2r−6

24

−r2(r − 1)2(r − 2)2(t − σ)2r−6

18
≥ 0, (52)

whereas the sufficient and necessary condition for it being negative semidefinite is

0 ≤ r ≤ 1 and
r2(r − 1)2(r − 2)(r − 3)(t − σ)t2r−6

24

−r2(r − 1)2(r − 2)2(t − σ)2r−6

18
≥ 0. (53)
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It is easily shown that (52) holds if and only if 1 ≤ r ≤ 2, and (53) holds if and only if
0 ≤ r ≤ 1. By Corollary 4.3, this shows that f is SOC-convex on (σ,+∞) if and only if
1 ≤ r ≤ 2, and f is SOC-concave on (σ,+∞) if and only if 0 ≤ r ≤ 1. This together with
the definition of SOC-convexity then yields the desired result.

(c) Notice that for any t > σ , there always holds that

−

⎡

⎢
⎢
⎣

f (2)(t)

2

f (3)(t)

6

f (3)(t)

6

f (4)(t)

24

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1

2(t − σ)2 − 1

3(t − σ)3

− 1

3(t − σ)3

1

4(t − σ)4

⎤

⎥
⎥
⎦ � O.

Consequently, from Corollary 4.3 (a) we obtain that f is SOC-concave on (σ,+∞).
(d) For any t > −σ , it is easy to compute that

−

⎡

⎢
⎢
⎣

f (2)(t)

2

f (3)(t)

6

f (3)(t)

6

f (4)(t)

24

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1

(t + σ)3 − 1

(t + σ)4

− 1

(t + σ)4

1

(t + σ)5

⎤

⎥
⎥
⎦ � O.

By Corollary 4.3, we then have that the function f is SOC-concave on (−σ,+∞). ��
From Propositions 5.1 and 5.2, we see that the functions ln(1 + t), 2

√
t + 1 − 2 and

− 1

t + 1
− 1 are SOC-monotone as well as SOC-concave. Furthermore, it is easy to verify

that they also satisfy the properties (i)–(iii). Thus, with the three functions, we can design
the augmented Lagrangian method for solving the convex SOCP (47), which in fact corre-
sponds to the modified barrier functions method proposed by R. Ployak [17] for nonlinear
programming over nonnegative orthant cones. We will leave the details of this method for
a future research topic. In addition, we should point out that the SOC-monotonicity and
the SOC-convexity often give a great help to establish some inequalities involved the par-
tial order “�Kn ”. For example, from Proposition 5.1 (b), we readily recover the Eq. 3.9 of
[8, Proposition 3.4].
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