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SOME CHARACTERIZATIONS OF 2-SYMMETRIC SUBMANIFOLDS 

IN SPACES OF CONSTANT CURVATURE* 

A. CARFAGNA D'ANDREA, R. MAZZOCCO, G. ROMANI, Roma 

(Received December 12, 1992) 

INTRODUCTION 

The notion of a (locally) symmetric submanifold M of the Euclidean space U
n was 

given by Ferus [F] as a submanifold (locally) mapped into itself, for each x € M, by 
the reflection of R

n with respect to the (affine) normal space to M at x. Strubing 
studied locally symmetric submanifolds of any Riemannian manifold [St]. 

In [K-K] Kowalski and Kulich gave the notion of a k-symmetric submanifold of 
Rn, k ^ 2, using suitable isometries of Rn. They observed that a 2-symmetric 
submanifold M is invariant under the reflections of U

n with respect to subspaces of 
the normal spaces of M; so the 2-symmetric submanifolds appear as a generalization 
of the symmetric submanifolds. It is easy to check that a totally geodesic submanifold 
of a symmetric submanifold is a 2-symmetric submanifold but generally is not a 
symmetric submanifold. 

In this paper we give a local extension of the notion of a 2-symmetric submani-
fold M of U

n considering submanifolds of a space M of constant curvature (Defini-
tion 2.1). 

We remark that Definition 2.1, if M = Rn, does not agree with that of Kowalski 
and Kulich but its local modification. For such 2-symmetric submanifolds there exists 
a local involutive isometry ox of M, at x G M, which maps M into itself. We prove 
that if M is a standard space form (M is a complete, simply connected Riemannian 
manifold of constant curvature) then the local isometry ox is in fact the restriction 
to a neighbourhood of a geodesic reflection of M, with respect to a complete totally 
geodesic submanifold Fx of M orthogonally meeting M a,t x (Proposition 2.2). Since 
each geodesic reflection of a space form with respect to a totally geodesic submanifold 

* Work supported by MURST 40% and 60%. 
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is an isometry (Theorem 1.2), we have an alternative definition for 2-symmetric 
submanifolds in terms of geodesic reflections (Corollary 2.8). 

Moreover, for nicely curved submanifolds (Definition 1.3) we prove the following 
results. Let M be an essential 2-symmetric submanifold (Definition 1.11) of a space 
form M. Then we prove that the totally geodesic submanifold Fx coincides with the 
image of the direct sum of the normal spaces of odd order under the exponential map; 
otherwise Fx has to contain this image (Corollary 3.5). For 2-symmetric submanifolds 
of a space of constant curvature we prove (Theorem 3.7) that the derivative of the 

k k 

k-fundamental form s of M, V 5, is equal to zero. 
In our main result (Theorem 4.23) we characterize a 2-symmetric submanifold of a 

k 

space of zero curvature by means of the derivatives of s. Theorem 4.23 is a corollary 
of Theorem 4.21, which characterizes a 2-symmetric submanifold M of a Euclidean 

k 

space both in terms of V s = 0 and in terms of a totally geodesic map v of M in a 
suitable Grassmannian. Theorem 4.21 is an extension of the analogous theorem for 

l 

an TV-symmetric submanifold of Euclidean spaces ([R]). 
In Section 5 we extend the results of Section 4 to the case of a space of constant 

positive curvature. 
We would like to thank H. Reckziegel and 0 . Kowalski for their helpful suggestions 

that improved the presentation of the paper to a more correct and concise form. 

1. PRELIMINARIES 

We now recall some definitions and results which will be useful in the sequel. 

1.1. Theorem. Let M be a standard space form. For each point x £ M and 

each subspace Vx C TXM, Lx = expx(Vx) is the only complete totally geodesic 

submanifold through x with Vx as the tangent space at x. 

For the proof see [S]. 

Let M be a topologically embedded submanifold of a Riemannian manifold M. 
The geodesic reflection QM with respect to M is defined as follows. For z = 

expyiXy
1
), where yeM.X^e (TyM)

1
-, let 

QM(Z) = expy(-Xy
L
). 

It is possible to prove that QM is a well defined local deffeomorfism of a tubular 
neighbourhood of M ([G]). 
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1.2. Theorem. If L is a totally geodesic submanifold topologically embedded in 

a space of constant curvature M, then the geodesic reflection QL is an isometry. 

For the proof see [C-V]. 

Because each local isometry of a standard space form is the restriction of a global 
one, if L is a complete totally geodesic submanifold of a standard space form M, 
then by Theorem 1.2 we deduce that OL is an isometry of the whole space M. 

Let now M be a Riemannian manifold with a metric g and the Levi-Civita con-
nection V. If M is a submanifold of M, we shall denote by g the induced metric 
and by V the Levi-Civita connection of g. The k-normal space of M at x G M will 

k k k 

be denoted by jNx M. By s, A we shall denote, respectively, the k-fundamental form 
and the k-Weingarten map of M. For these definitions see [S] (Volume 4, Chapter 7) 
or [CG-R]. 

1.3. Definition. A submanifold M of a Riemannian manifold M is called nicely 
k 

curved in M if dim jVx M does not depend on the point x G M for each k = 1, 

o 
We assume NXM = TXM. If M is nicely curved in M it is known that there 

/ 
exists an integer l, independent of the point x G M, such that Nx M ^ 0 and 
/+1 /+2 

Nx M = Nx M = ... = 0. In the present paper I shall always have this meaning. 
Let M be a nicely curved submanifold of M. 
We recall that, for each x G M, 

s : TXM x Nx M -> Nx M, 0 ^ k ^ l - l 

and 

A : TXM x NXM -+ Nx M, l ^ k ^ l 

are bilinear maps. 
k k k k _ 

If £ G r(iV M) is an extension of £x G Nx M, the connection V induces a connection 
k k 

V on the vector bundle N M by the formula 

Vx. I = h(Vx, o, 

k k 

where Xx G TXM and II is the orthogonal projection of TXM onto Nx M. Then we 
have the Frenet equations of M: 

(1-4) VxA = -A{XxJx) + VxA + s(X*Jx). 
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k
 k 

The derivatives V 5, V A are defined by the formulas 

(i.5) (v
k
S)(xx,Yx,i) =

 k
v\/s(Y,h-k^xY,L)-kyx^x,,h, 

(1.6) (VA)(XX,YX,1)= VxxA(y,o-A(Vx,y,i)-A(n,VxJ), 

k k k 

where Y G T(TM) and f G T(NM) extend respectively Kx and £x. 
For each x e M, 

i. k /c+1 

V 5 : TXM x TXM x Nx M -> Nx M, 
/c fc fc — 1 

V A : TXM x TXM x Nx M -> Nx M 

are multilinear forms which are symmetric with respect to the first two argu-
ments ([S]). 

k £ —1 

A and s are "dual" in the following sense: 

g(A(X,bX) = 9(S,
K
s-

L
(X,Y)), 

([S]). We deduce 

s((vA)(x,y,o,V)=5(l(v
fc
s

1
)(x,r,V)). 

We now have the following theorem. 

1.7. Theorem. If M is a nicely curved submanifold of a Riemannian manifold 

k 

M, then the condition V s = 0 for each k = 0 , 1 , . . . , / — 1 is equivalent to the 
k 

condition V A = 0 for each k = 1, 2 , . . . , /. 

Moreover, under the hypothesis of the previous theorem we have 

1.8. Theorem. If a: M -> M is an isometry such that o(M) C M, then 
k k 

da (Nx M) = Na(x) M for each x G M. 

Finally, if G(p,m) is the Grassmannian of the p-planes of Rm, we recall ([V] and 
[CG-R]) that there exists a canonical isomorphism <D: TocG(p,m) —> Hom(a ,a ± ) , 
where a

1
- is the (m -p)-plane of Rm through the origin, orthogonal to the p-plane a. 

Let i\): M —•> G(p, m) be a map and dz/> its differential. We denote ip( dip (Xx)) (vx) 

by ip*(Xx,vx) for Kx G TXM and vx G ̂ (x). 
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Then, if we denote il>(x) by Vx, we have 

(i.9) MXx,vx) = nv±VXxv, 

where Uv± is the orthogonal projection of R
m onto V

L and v is a vector field of 
Rm, defined along a curve c = c(t) of M through x = c(0), with the tangent vector 
Xx at x, which extends vx and such that vc^ E Vc(t) -= ^ ( c (0 ) -

As ip*: TXM xVx -» I7.1- is a multilinear form for each x G M, we can consider 
the derivative VT/>* : TXM x TXM x Vx —> VX

L defined by 

(1.10) (V^)(Xx,Yx,vx) = \ xxMy,v)-MVxY,vx)-^(Yx,Vx„v), 

v V
x 

where V and V are the connections on the vector bundles V and V
L
, respectively, 

induced by the connection V of Rm. 
We conclude this section by recalling the following definition. 

1.11. Definition. A submanifold M of a space form M is called an essential 
submanifold if it is not contained in any proper totally geodesic submanifold of M. 

1.12. Proposi t ion. If M is a connected nicely curved submanifold of a space 

of constant curvature M then M is an essential submanifold of a totally geodesic 
_ i k 

submanifold of M of dimension equal to d i m ( 0 Nx M). In particular, the normal 
k=0 

space ±XM of M at x is given by 

1
 k 

±XM = Q)NXM 

k=l 

([S], Vol. 4, Prop. 67). 

2 . 2-SYMMETRIC SUBMANIFOLDS OF A SPACE FORM 

Let M = M(c) be a space of constant curvature c and of dimension m. Let M be 
a submanifold of M of dimension m. 

2.1. Definition. M is a 2-symmetric submanifold of M if, for each x € M, 
there exist a neighbourhood Ux of x in M, a neighbourhood Ux of x in M, and an 
isometry crx: Ux -> Ux such that 

(i) ^ = I d ^ , 
(ii) Ux C Ux and <JX(UX) C Ux, 

(iii) x is an isolated fixed point of ox in Ux. 
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2.2. Proposition. Let M be a submanifold of a standard space form M and 

x £ M. If there exists a neighbourhood Ux of x in M and an isometry ax:Ux -> Ux 

satisfying the conditions (i), (ii), (iii) of Definition 2.1, then ax can be extended to a 

geodesic reflection of M with respect to a complete totally geodesic submanifold Fx 

of M meeting M orthogonally at x. 

P r o o f . For the sake of brevity, we shall denote the global extension of O-x to M 
by the same symbol ax. Because of (i) and ax(x) = x, the differential d<rx of ax is an 
operator of TXM such that (dOx )

2 = IdT^M. Then TXM = Vi(TxM) 0 V_i(TxM), 
where Vi(TxM) and V_i(TxM) are, respectively, the eigenspaces of 1 and —1. 

Condition (ii) implies that TXM is an invariant subspace. As before, (dax | M ) 2 = 
ldTxM and TXM = Vi(TxM)eV_i(TxM). 

If Xx £ Vi(TxM)(C TXM), then because ax an isometry, we have 

ax(expx(cKx)) = exp^^) (dOx (tXx)) = expx(tXx). 

Then Xx = 0 , otherwise x would not be an isolated fixed point of Ux = M fl Ux, as 
required in condition (iii). We conclude that Vi(TxM) = 0 and hence 

(2.3) T x M c V _ i ( T x M ) . 

In particular, we have 

(2.4) VX(TXM)±TXM. 

Let now Fx be the totally geodesic submanifold of M given by 

(2.5) Fx=expx(Vi(TxM)). 

Due to (2.4), Fx meets orthogonally M at x. 

We observe that all points of Fx are fixed by ax; in fact, if y E Fx, there exists a 
vector Kx € TXFX = Vi(TxM) such that y = expx(Kx) and then 

crx(y) =ax(expx(Xx)) = expaAx)(Xx) = expx(Xx) =y. 

Moreover, in M there are no fixed points different from the points of Fx. 
In fact, if y e M, we can take a vector Xx eTxM such that y = expx(A^x) and, if 

we suppose ax(y) = y, then 

expx(Kx) = y = ax(y) = ax(expx(Xx)) = e x p M x ) (dOx (Xx)) = expx (dOx (Xx)) 
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and the local bijectivity of expx implies that dcrx (Xx) = Xx, that is Xx G V\(TXM), 

and y e Fx. 

Then for y G Fx we have 

(2.6) TyFx = V1(TyM) 

and 

(2.7) (TyFx)
±
 = V-1(TyM). 

By the definition of the geodesic reflection (see Theorem 1.2) we have, for each 

y € Fx, QFx(y) = y and thus QFX\FT = ^x|F x-

If z £ Fx but z is near F x , we can write z = expy(Xy), where y G Fx and 

Xy e (TyFx)
L
. Using (2.7), we have 

ox(z) = (Tx(expy(Xy
L
)) = expy (dax (X^)) = exp y ( -K^ ) 

and hence, from the definition of QFX, we obtain QFX(Z) = crx(z). D 

As an immediate consequence of Proposition 2.2 we have the following corollary. 

2.8. Corollary. M is a 2-symmetric submanifold of a standard space form M 

if and only if, for each x G M, there exists a complete totally geodesic submanifold 

Fx of M, meeting M at x orthogonally, such that the geodesic reflection QFX with 

respect to Fx locally maps M into itself 

With reference to this corollary, we shall say that M is symmetric with respect to 
Fx and Fx will be called a submanifold of symmetry for M. 

We conclude this section with the following definition, which is equivalent to that 
of Ferus if M = R

m
. 

2.9. Definition. M is called a (locally) symmetric submanifold of M if, for 
each x G M, M is (locally) mapped into itself by the geodesic reflection of M with 
respect to expx(_LxM). 

2.10. R e m a r k . By Corollary 2.8, a locally symmetric submanifold M of M is 
just a 2-symmetric submanifold with the submanifold of symmetry Fx = expx(_LxM), 
x G M. 
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3 . PROPERTIES OF 2-SYMMETRIC SUBMANIFOLDS 

Henceforth we will consider only nicely curved submanifolds. 

3 .1. Lemma. If M is a submanifold of a Riemannian manifold M and a\ M —•> 
M is an isometry such that a(M) C M, then, for x G M, XX,YX G TXM and 
k k 

£x G Nx M, we have 

(i) da{
k
s(Xx,t))=s{da(Xx),da(t)), 

(ii) da[(V
k
s)(Xx,Yxi)] =(Vs){da(Xx),da(Yx),da(l)). 

P r o o f . These properties are obvious because a is an isometry and a(M) is an 
open part of M. • 

The following proposition gives a more precise property than property (2.4). 

3.2. Proposition. Let M be a submanifold of a space of constant curvature M 

and x G M. If there exist two neighbourhoods Ux, Ux of x in M, M, respectively 

and an isometry ax : Ux —> Ux satisfying the conditions (i), (ii), (hi) of Definition 2.1, 
we have 

— JL
 2/i

+
1
 — JL

 2h 

(a) Vi(TxM)D0 Nx M, V_i(TxM)D0NxM, 
h=0 h=0 

where q = [
l
-^r] and p = [^]. 

In particular, if M is also an essential submanifold, then 

— JL
 2/l

+! — JL
 2h 

(b) Vi(TxM)--0 Nx M, V_!(TxM)--0NxM. 
h=0 h=0 

P r o o f . By (2.3) and Lemma 3.1 we have dax (s(Xx,Yx)) = s (dO x (K x ) , 

dcrx(yx)) = 5 ( K x , y x ) , f o r K x , y x eTxM. Then s(Xx,Yx) G Vi(TxM), but Nx M i 1S 

o spanned by { s(Xx,Yx) \ XX,YX G TXM) and so 

i 

(3.3) NxMcVi(TxM). 

1 1
 / i 

Take Xx G TXM, £x G Nx M; by (2.3), Lemma 3.1 and (3.3) we have dOx (s(Xx, 

&)) =s(dax(Xx),dax(£x)) =l(-Xx,ix) = -
l
s(Xx,ix). This implies s(Xx^x) G 

__
 2

 ! 1 1 

V_i(TxM), but Nx M is spanned by { s(Xx,£x) | Xx G TXM, £x G Nx M) and so 

(3.4) NxMcV_i(TxM). 
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Proceeding by induction, we obtain the statement (a). 
Q 2 / i+ l 

If M is also an essential submanifold of M, then TXM = ( 0 Nx M) 0 
h=0 

V 2/i 
( 0 Nx M). However, TXM = VX(TXM) 0 V-X(TXM), so the inclusions VX(TXM) D 

h=0 

q 2 / i+ l V 2/i 
0 Nx M and V^(TXM) D ® Nx M give the statement (b). • 

h=0 h=0 

Let now M be a standard space form. Since the connected component of M 
i k _ i k ± 

through x is contained in expx ( 0 Nx M) ([S]), then putting Bx = ( 0 Nx M) 
k=0 k=0 

we have 

3.5. Corollary. If M is a 2-symmetric submanifold of a standard space form 

M, then, for each x G M, a totally geodesic submanifold Fx is a submanifold of 

symmetry for M through x if and only if it is of the type 

/ A 2/ l+1
 \ 

Fx =exp x ( 0 Nx M®BX), 
h=0 

where Bx is an arbitrary subspace of Bx. In particular, if M is also essential, 
q 2/1+1 

- ^ x = e x p x ( 0 Nx M). 
h=o 

3.6. R e m a r k . If M is a non-essential 2-symmetric submanifold of M, then we 
see from Corollary 3.5 that, for each x G M, submanifold of symmetry for M through 
x is not unique, but each of them induces the same geodesic reflection on the totally 

i k 

geodesic submanifold B = expx ( 0 Nx M) D M. 
k=o 

The main result we want to prove in this section is the following theorem. 

3.7. Theorem. If M is a 2-symmetric submanifold of a space of constant cur-

vature M, then V s = 0 for each k = 0 , 1 , . . . , / — 1 (and hence, by Theorem 1.7, 
k 

V A = 0 for each k = 1, 2 , . . . , I). 

k
 k /c+1 

P r o o f . We first recall that (V s)(Xx,Yx,£x) G Nx M. If k is even, then k + 1 
is odd and, by Proposition 3.2, we have 

k fc fc+i _ 

(Vs)(Xx,Yx,£x) GNXMC Vi(TxM). 

Then for o = ox 

(3.8) do ((Vs)(Xx,Yx,L)) = (Vs)(Xx,YxJx), 

699 



but by Lemma 3.1 and Proposition 3.2 this yields 

do[(S7
k
s)(Xx,Yx,i)]=(V

k
s)(do(Xx),do(Yx),dod)) 

= (Vs)(-Xx,-Yx,-i) = -(V
k
s)(Xx,Yx,l). 

k 

Hence, we conclude that V s = 0 for fc even. 

If fc is odd, then fc -f 1 is even and, exactly as in the case of fc even, we deduce 

V 5 = 0. • 

4 . CHARACTERIZATION OF 2-SYMMETRIC SUBMANIFOLDS 

OF A SPACE FORM OF ZERO CURVATURE 

Let M be a submanifold of the Euclidean space Rm. We denote by V the vector 
bundle on M whose fiber at x e M is 

i - i ^-k 2/i+l 
(4.1) VX = @NXM, q = 

h=0 

Let p = dimV and let G(p,m) be the Grassmannian of the p-planes of Rm through 
the origin. We define a map v: M —•> G(p,fn) by 

(4.2) v(x) = Vx, xeM.t 

The map v is said to be totally geodesic if Vu* = 0 (see (1.10)). 
The following proposition holds. 

— k 

4.3. Proposition. If M is a submanifold of Rm
 such that V 5 = 0 for each 

fc = 0 , 1 , . . . , / — 1, then the map v is totally geodesic. 

P r o o f . Let 7 = *y(s) be the geodesic through x = 7(0) G M, with Xx as the 
tangent vector at x. The tangent vector of 7 at the point j(s) will be denoted by 
X(s). 

Let Y e T(TM) and f G r(V) be parallel along 7 in TM and V, respectively, i.e. 

(4.4) V x ( s ) F = 0, V x ( s ) £ = 0. 

q 2/i+l q 2/i+l 2/i+l 2/i+l 
Since £7(s) G V7(s) = © N7(s), we have £7(s) = J ] £7(s) with £7(s) G N7(s) M. 

h=0 h=0 
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V 

It is easy to check that Vx(s) £
 — 0 implies 

2/1+1 2/1+1 
(4.5) V x{s) £ = 0 , A = O,1,. . . ,0. 

Then, by (1.10) for -0* = v* and v- = £x and by (4.4), (4.5) we obtain 

(Vv,)(Xx,Yx^x) = VXxv4Y)0 =
 1

^v-{^xxv*(Y,0). 

From (1.9) we have 

_ - A - 2/1+1 

v,(y,o = nyx(VyO = £n v _(Vy f ) 
/ i=0 

and, using the Frenet equations of M, we obtain 

,_£_ r 2/1+1 2/1+1 2 / l + 1 2 / l + l 2 L , I 2/1+1 -. 

*̂(y,o = £ n v _ [ - A (y' * ) + V y * + « (y. f )]• 
/ i=0 

2/1+1 2/1+1 2/l 2/l + 1 2 / l + l 2/1+1 n u i 2/1+1 2/1+1 

But A (y, £ ) G NM C V\ Vy £ G N M C V, s (y, £ ) G N M C 
V-1, so we conclude 

q r 2 / 1 + 1 ^ ^ 2 / 1 + 1 ^ 2 / 1 + 1 , - , 2 / l + \ 

/ i=0 

and hence 

2/ i+ l 2/1+1 2 / l + 1 2/1+1 

/ i=0 

Applying again the Frenet equations, we have 

*  г  2Л+1  2Һ+1
  2 Һ + 1

  2Һ+1  1 

.(Yo  = £ [ - A (Y í )+  Л У , Ç )] 

___  Г _  2/1 + 1  2/1+1  9 . 4 1  2/l+l  -, 

(Vш)(X
x
,У

x
,íx) = ^ П

к
x [ v

л
- Л -  Л (Y, £ )+  s(У, í ))]. 

(v^)(xx,yx,ex) = nVx(vXl(-A(y,J))+s(xx,-Á(y,o)) 
___ / 2 / i 2 / i+ l 2 / i+ l 2/i 2 / i+ l 2 / i+ l 

+ ~;n v - (A(x x > ^ (n, & ))-Vx,( A (Y e )) 
/ i= l 

9/, 2 / i+ l 2 / i+ l \ ___ / 2/i+2 o L i i 2 / i+ l 

- s (xx, A (yx, & ))) + y ^ n V x ( - ,4 (xx, s+1(yx, & )) 
/ i=0 

+ v+! (2h+1(y T ) ) + 2Va
 (xJ

h
s

+
\Yx, V))) 

1 1 ____. r 2/l 2/1+1 2/1+1 2/l + 2 ryh,, 2/1+1 "I 

= V^(-i4(YÍ)) + E [ - V ( A <y' * ))+Vx, ( + ( Y í ) ) ]=0. 
h = \ 

D 
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Our next goal is to prove the following proposition, which is a generalization of a 
1 

result obtained for N-symmetric submanifold of Euclidean spaces ([R]). 

4.6. Proposition. Let M be a submanifold of M = Rm. If there exists a totally 
_ 1 

geodesic map v: M -> G(p,m) such that, for each x G M. Nx M C v(x) C ±XM, 

then M is a 2-symmetric submanifold of Rm. 

Before proving this proposition, we need some lemmas. Let V be a vector bundle 
on M, whose fiber Vx at x G M is such that 

NxMcVxC±xM. 

We denote by W the vector bundle on M whose fiber Wx is given by Wx = (TXM 0 

Vx)
X
-

Let M denote a submanifold of Rm which is a tubular neighbourhood of M in the 
set {x + w | x G M, w G Wx}. Then the following lemma holds. 

4.7. Lemma. M is totally geodesic submanifold of M. 

P r o o f . Obviously TXM = TXM 0 Wx, x G M. Let V denote the Levi-Civita 
connection induced on M by the standard connection V of IRm. Then for Xx G TXM, 

Y G T(TM) we have 

VXY = UTxu(VxY) = UTxMewx {VXY + s{Xx,Yx)) = VXY 

• 

Now we consider the Gauss map g^: M -> G(m,m) and the normal map 7 ^ : 
M -> G(fn — m,m) of M, where m = dim M. They are defined by 

(4.8) g^(x) = TXM and ^(x) = ±XM. 

Let Sjy denote the second fundamental form of M (as a submanifold of Um
), ([V]). 

Then for Xx, Yx e TXM and Y G T(TM) the extension of Yx, by (1.9) we have [V] 

(4.9) (9M)M*,YX) = S%(XX,YX). 

Moreover, if f G T(J_M) is an extension of £r G -LXM, then 

(4.10) (7MUXX^X)=HT^(V^J). 
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Let v: M —> G(p, m) be a map satisfying the condition 

1 

(4.11) Nx M C v(x) C ±XM, xeM. 

If we define the vector bundle V on M taking Vx = v(x), we see that M is a totally 
geodesic submanifold of M (see Lemma 4.7) and the normal map 7 ^ coincides with 
v for all points of M: 

1M(
X
) =V(X), xeM. 

Moreover, for x e M, Xx e TXM and £x e Vx we have, by (1.9) and (4.10), 

(4.12) {-VM)*{XX,SX) = V*(XX,£X). 

4 .13. Lemma. Let M be a submanifold of U™. If the map v: M -> G(p,m) 

satisfies (4.11) and is totally geodesic, then VXX(9M)*(YX, -) = 0 for each xeM 

andXx,Yx eTxM. 

P r o o f . Let Y e T(TM) and f e V(V) be extensions of Yx, £-., respectively. 
Then, by (1.10) and (4.12), 

(Vv*)(Xx,Yx,dx) = VXX(7MUY,0 - (7M)*(VX,F,^ X ) - (i^(Yx,VXx 0-

Since the image of (7^)* is TXM = V~- we obtain by Lemma 4.7 

(4.14) (Vv*)(Xx,Yx,£x) = V(7M)*(K*,y*,£*). 

Let p.: G(m — p,m) —> G(p,m) be the isometry which associates to an (m — p)-

plane through the origin of IRm its orthogonal complement. The normal map 7 ^ 
and the Gauss map g^ are related by 7 ^ = p o g^ and hence 

(4.15) d 7 ^ = d / i o dg^ . 

Since the canonical isomorphism <p (see Section 1) commutes with V ([V]) and p is 
an isometry, applying (4.14) and (4.15) we can write 

(-v.)(Xx,Yx,Zx) = (-(-yM(Xx,Yx,^) = [ ( V x , ( v o d 7 A ) ) ( i ; ) ] « , ) 

-[<podn{(Vx.dggl)(Yx))](tx) 

= [<podfio<P-
1
((-XT(vod9M))(Yx))](t;x). 

Then, if VL>* = 0, we obtain that p d / i o ^p~
l ((Vx, (<p o dg^ ))(YX)) is the zero 

morphism of Hom(Vr
x, Vj~). But <p o dp o <D

-1 is an isomorphism, so we conclude 
that (Vx, ((podg^)) (Yx) is the zero morphism of Hom(Vx

J-, Vx) and hence (Vxx (<£° 
dggl))(Yx) = (-(gKi),)(Xx,Yx,-). D 
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If we consider the second fundamental form of M, s^, with values in _LM, we 
- t o - - . . . . . 

shall denote by V s^ its derivative. Then if Xx, Yx, Zx G TXM and Y,Z G T(TM) 

extend Yx, Zx, we have 

- 1 - 0 ~ - -LM n ~ _ n ~ ~ ~ O 

(4.16) ( V ^ ) ( X x , y x , z x ) = V ^ ( ^ ( Y , z ) ) - 5 ^ ( V ^ Y , Z x ) - 5 ° ^ ( F I , V ^ Z ) . 

4.17. Lemma. Let M be a submanifold ofU™. Ifv: M -> G(p,m) is totally 

-1- 0 

geodesic, then V s^ = 0. 
P r o o f . We fix x G M and choose Kx,Kx G TXM, Zx G FXM; by (4.9) ([V]) we 

obtain 

(Vs%)(Xx,Yx,Zx) = (V(9M)*)(XX,YX,ZX), 

and since Vt>* = 0, Lemma 4.13, implies 

(4.18) (VS°M)(XX,YX,ZX)=0. 

But Sfif is symmetric and hence also 

(4.19) (VSM)(XX,ZX,YX)=0. 

Consider now the following decomposition of the vectors XX,YX,ZX € TXM: Xx = 

Xx + t]x, Yx = Yx +dx, Zx = Zx + Cx, where XX,YX,ZX G TXM, and rix,dx,(,x € 

Wx. From (4.18), (4.19) we obtain (Vs°li{)(Xx,Yx,Zx) = (V s°^)(Xx,Yx,Zx) + 

(V s%)(Xx,^x,Zx) + (V s%)(Xx,Yx,<:x) + (^ sl)(XxJx,Cx) = (^ sl)(Xx,<)x,<:x). 

Let 7 be a curve of M through x with the tangent vector Kx and suppose that 0, 

C are obtained by the parallelism on M along 7 from dx, Cx • Then 

(v4)(Xx,tfx,Cx)= VX, (SM(^,0) - S M (
V

^ , C * ) - ^ X , V X , C ) 

= vx, (4(^o). 

But for x' G 7 we have $x',Cx' £ VVX/. In fact dx', Cx' are obtained by the 
parallelism in M along a curve 7 contained in M from the vectors $x,Cx € VVX 

orthogonal to TXM. Because M is a totally geodesic submanifold of M, the parallel 
transport on M along a curve of M of any vector of TXM gives also a vector of TM 

and hence we have tfxt,Cx' G ± x ' M n T x t M ( C JVxt), for x' G 7. 
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Then we can extend Cx' along the straight line {x
f
 + ttfx' \ t € R} of M as a 

constant vector, and this vector is always tangent to M. So we have s^($x ' ,Cx') = 0 
1 M Q 

and Vxx ( 5 M ( ^ > 0 ) = 0 and, consequently, 

(4.20) ( V 4 ) ( * X , F X , Z X ) = 0 . 

o -"-o 
Now, if we use (4.18), (4.19), (4.20) and the symmetry of s^ and V s ^ , we obtain 

( v 4 ) ( K x , y x , z x ) = (V5^)(77x,^x,Cx). 

However, 

(v4)(t/x,tfx,Cx) = vj[ (4(^0) -4(v,^,Cx)-i(t?x,v,xc) 

and, as above, we can assume tf, C constant along the straight line {x + tnx \ t G R} 
of M and tangent to M. Hence 

(v4)(i«.^,c«) = o. 

D 

We can now prove Proposition 4.6. 
-L o 0 

Due to Lemma 4.17, V s ^ = 0 at the points x G M. Then s^ is a parallel form 
along each geodesic of M and so all curvatures of each geodesic of M are constant 
([St], Theorem I). Moreover, the Frenet vectors of even orders of each geodesic of M 

are in ±M = 17, while those of odd orders are in TM. We conclude that, for x € M, 
the reflection of Rm with respect to the affine normal Vx maps each geodesic of M 

through x, into itself (see [St], Theorem I and Lemma I). Then the above reflection 
maps M into itself and M is a 2-symmetric submanifold of Rm. 

The results obtained in Theorem 3.7, Proposition 4.3, Proposition 4.6 give the 
following theorem: 

4.21. Theorem. If M is a submanifold of Rm, the following properties are 

equivalent: 

(i) M is a 2-symmetric submanifold, 
k 

(ii) V 5 = 0, for each k = 0 , 1 , . . . , / — 1, 
_ l 

(iii) there exists a totally geodesic map v: M -> G(p, m) such that Nx M C v(x) C 
±XM. 
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P r o o f . In fact, if M is a 2-symmetric submanifold of Rm, Theorem 3.7 implies 

V s = 0 for each k = 0,1,...,/-1; then it follows from Proposition 4.3 that the map 

v: M -> G(p,m) defined by (4.1) and (4.2) satisfies the conditions Nx M C v(x) C 
_LXM and VL>* = 0. 

If M is a submanifold of W
n and there exists a totally geodesic map v: M —•> 

I 

G(p,fn) such that Nx M C u(x) C ±XM, then, by Proposition 4.6, M is a 2-
symmetric submanifold of Rm. • 

4.22. R e m a r k . If M is a submanifold of Rm and we suppose the existence of 
_ l 

the totally geodesic map v: M -» G(p,m) satisfying the conditions Nx M C v(x) C 
±XM, then in the proof of Proposition 4.6 we have seen that M is mapped into 
itself by the reflection of Rm with respect to the affine space Fx through each point 
x e M, parallel to v(x). Then Fx is a submanifold of symmetry of M and, from 

q 2/1+1 
Corollary 3.5, we conclude v(x) D 0 Nx M. 

h=o 

We have studied 2-symmetric submanifolds of Rm. It is now easy to obtain some 

results also in the case of a general space form M of zero curvature. In fact we have 

the following theorem. 

4.23. Theorem. If M is a submanifold of a space form M of zero curvature, 

then the following conditions are equivalent: 

(i) M is a 2-symmetric submanifold of M, 

(ii) V s = 0 for each k = 0 , 1 , . . . , / - 1. 

P r o o f . The implication (i) =^(ii) is just Theorem 3.7. In order to have the im-
k k 

plication (ii) =4>(i) we observe that the forms s and their derivatives V s are invariant 
under isometries of the ambient space M. If M is a space form of zero curvature, 
then for each x G M we can find a neighbourhood U'x of x in M and a local isometry 
ip: U'x -> Rm. If we denote by s% the k-fundamental form of ip(MnU'x) in Rm, then 

v4, = o. 

It follows from Theorem 4.21 that <p(M D U'x) is a 2-symmetric submanifold of Rm. 
This implies that, for each y G (f(MnU'x), there exists a local isometry ay such that 
the conditions (i), (ii), (iii) of Definition 2A are satisfied for oy. However, then the 
same conditions follow for the local isometry (D_1 o oy o <D. • 
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5 .  CHARACTERIZATION OF  2-SYMMETRIC SUBMANIFOLDS 

OF  A SPACE  FORM  OF  POSITIVE  CURVATURE 

In  this  section we  want  to extend  the previous  results  to the case of  a  submanifold 

M  of a space  of  positive  constant  curvature:  M  = M(c),  c > 0.  For  the  sake  of 

simplicity  we  consider  the  case  c =  1. 

We  start  from  M  =  5
m

( l )  C  R™
+1

. 

To  distinguish  the  derivative  on  R
m + 1

  from  the  induced  derivative  on  5
m

( l )  we 

denote  the  former  by V and  the  latter  by V. 

The second fundamental  form  of 5
m

( l )  in  R
m + 1

  will be denoted by s
s
.  The Gauss 

equations  of  5
m

( l )  are 

V
x
Y  = V

x
Y  + s

s
(X

x
Y

x
),  xeS™(l),  X

x
,Y

x
eT

x
S

m
(l), 

and,  recalling  that 

(5A)  s
s
(X

x
,Y

x
)  =  -g(X

x
,Y

x
)x, 

where g  is  the  metric  of  M  — 5
m

( l )  induced  by  the  usual  metric  of  R
m + 1

,  we  can 

write 

(5-2)  Vx,Y =  V
Xx

Y-g{X
x
,Y

x
)x. 

Suppose  now  that  M  is a submanifold  of  M  =  5
m

( l )  satisfying  the condition 

(5.3)  V s = 0,  fc  =  0 , l , . . . , Z - l , 

k 

where  we  are  using  the  symbol  s  to  denote the  k-fundamental  form  of  M  as a sub

manifold  of  M  =  5
m

( l ) . 

k 

Let N
x
  M  and J_

X
M, respectively,  denote the fc-normal space and the normal space 

a t i o f M c I  =  5
m

( l ) . 

We  define 

(5.4)  V
x
  = 0  N

x
  M,  xЄM, 

2/i+l 

I 
h=0 

and 

(5.5)  V
x
=V

x
  (x), x Є M . 

707 



If we view M as a submanifold of Rm + 1 , we shall denote the Abnormal space, the 
* - k 

normal space and the k-fundamental form by Nx M, -LXM, s, respectively. For 
x G M, XX,YX G TXM and an extension Y G T(TM) of Yx we have, using (5.2), 

6
s(Xx,Yx) = IllmM(VXmY) = nlrM(Vx,Y-g(Xx,Yx)x). 

Further, 

(5.6) i x M = l x M 9 ( a ; ) , 

and then 

kx*,y*) = n^M(VXxY)-n{x)(g(Xx^^ 

0 1 i 1 

In particular, it follows that s(Xx,Yx) G Nx M 0 ( x ) and hence Nx M C Nx M® (x); 

(5.4) and (5.5) imply that 

Vx D Nx M. 

Moreover, by (5.6) we can see that 

Vx C i x M , 

and then we have the inclusions 

(5.7) NxMCVxCixM. 

Let v: M —> G(p -f-1, m -f 1) ( p = dim V) be the map defined by 

(5.8) i>(x) = Vx, xeM. 

By (1.9) we have 

(5.9) ^(.Xx,fx) = n ^ ( V x , 0 , 

where x G M, Kx G TXM, £x G Vx and £ € T(V) is an extension of £x in the vector 
bundle V on M with the fiber Vx at x £ M. 

We fix x G M, Kx, Yx G TXM, fx G Vx and consider the geodetic 7 = 7(5) through 
x =-. 7(0), with the tangent vector Kx at x. We denote by Y the parallel transport 

9 2/i-fl 
of Yx along 7, and by £ = ^ £ + 0 7 the parallel transport of £x in the vector 

h=0 
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2/ i+ l 2 / i+l 

bundle V along 7; the vectors £7(s) € N7(s) M are the component vectors of £7(s) in 
2/1+1 

-V7(s) M, and a is a function defined on 7. 
It is easy to check that, if Vx is defined by (5.5) and (5.4), the following lemma 

holds. 

v . 2/1+1 2/1+1 

5.10. Lemma. The condition ^x(s) £ — 0 implies V x(s) £ = 0, h = 

0 , 1 , . . . , q and a = const, where X(s) is the tangent vector ofy at 7(5). 

Now we compute (Vi)*)(Xx, Yx, £x) for x € M, Xx, Yx G TXM, £x G Vx. We obtain 

(Vi\xXx,yx,i)= vXx (o«(y,l))-v*(Vx,r,lx)-o*(n,vx,l) 
(5.11) ~± 

= vXx (o,(y,o) =n^(vXl(^(y,0)). 

However, due to (1.9), (5.2), (5.10) we have, along 7, 

0. (y, |) = i v (Vy (J2 *T
 +a^) ) 

^ ^ h=0 ' ' 

' / . 2/1+1 X 

= ]Tiv(Vy ^ j+ant/±(vy7) 
/ i=0 

- A r _ 2/1+I / 2/i+l N -, 

= ]TiV[vy £ -5(y, ^ )7]+aiV(y). 
/ i=0 

2/1+1 

Now, because y £ TM, we conclude that Y ± £ and y £ V . So applying the 

Frenet equations for M as a submanifold of M = S
m
(l), we have 

2/1+1-

/ i=0 

9 
2/1+1 / 2/1+1 \ 2/1+12/1+1 2/1+1 /

 2 / l
+ - ' 

= XX4 _  л
  (

қ
  0

  + V v
  * +

 s
  (Y € )] + aY. 

л=o 

2/1+1  2/1+1  2/l
  A

  Q/,4-1  2/1+1  2/1+2 

If  we  recall  that A (Y, £ ) € JVM ± V, s (Y, £ ) e N M _L V, 
2/1+12/1+1 2/1+1 

Vy £ e N M C V, we can write 

^ / 2/1+1 / 2/1+1 \ 2 f c + 1 2/1+1 x 

o*(^.o=i;(- * (y> ^ ) + * w € ))+«y-
/ i=0 
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Coming back to Formula 5.11, we obtain, using also (5.2), 

f - l~v-^ / 2 / i + l / 2 / i+ l v O J , . i / 2 / i+ l X N "M 

(Vt>.)(j._,y_,e»)--nvJvx, £ ( -
 A

 (
y
' ^ )+ * (Y e ))+<^ 

^ 1-/1=0 - ' 

f - l ~ V ^ / 2 / l + 1 / 2 / l + l \ 9 / 1 + 1 / 2 / i+ l Nx 

= nK, vXx £ ( -
 A

 (
y
> * )+ * fc f )) + -*r 

/ * / 2 / i + l / 2 / i+ l v o / i + l / 2 / i+ l v N \ ^ 

- $ ( * * , £ ( - A (yx, £x )-f2/l
5
+1(yx, £x + f l n U . 

^ / i=0 ' ^ 

Now x e Vx. Moreover, since V s = 0 for k = 0 , 1 , . . . , / — 1 (and hence also 
k 2 / i+ l 

V_4 = 0 for k = 1,...,/) and Y, £ are parallel along 7 due to Lemma 5.10, 
2/1 2/1+1 2/1+1 2/1+1 2 h , i 2/1+1 

we have VX x ( A (Y, f )) = 0 and VXx ( s (F, £ )) = 0. Then by the same 
computation as in the Proposition 4.3 we obtain (Vvx)(Xx, yx , £x) = 0 and we arrive 
at the following proposition: 

— k 

5.12. Proposition. If M is a submanifold of 5 m ( l ) such that V s = 0 for each 

k = 0 , 1 , . . . , / — 1, then the map v (defined in (5.4), (5.5), (5.8),) is totally geodesic. 

For submanifolds of 5 m ( l ) we have the following theorem analogous to Theo-
rem 4.21. 

5.13. Theorem. If M is a submanifold of 5 m ( l ) . the following properties are 

equivalent: 

(i) M is a 2-symmetric submanifold of 5 m ( l ) , 
k 

(ii) V s = 0, for each fc = 0 , 1 , . . . , / — 1, 

(iii) the map £ (defined in (5.4), (5.5), (5.8)J is totally geodesic. 

P r o o f . The implication (i) =^(ii) is always true by Theorem 3.7. The implica-
tion (ii) =>(iii) is just Proposition 5.12. 

In order to verify implication (iii) =>(i) we observe the following facts. 
Because of the definition of v and in particular of (5.7), it is possible to apply 

Proposition 4.6 to M as to a submanifold of Rm + 1 ( D 5 m ( l ) ) . Then we can 
conclude that M is a 2-symmetric submanifold of IRm+1. By Remark 4.22, M is 
mapped into itself by the reflection of Rm + 1 with respect to v(x) for each x E M. 
Each such reflection induces a geodesic reflection on 5 m ( l ) with respect to the totally 
geodesic submanifold v(x) f) 5 m ( l ) of 5 m ( l ) , which maps M into itself, and hence 
M will be also a 2-symmetric submanifold of 5 m ( l ) . • 
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A similar argument as in the proof of Theorem 4.23 can be used for proving the 
following theorem: 

5.14. Theorem. If M is a submanifold of a space form M = M(c) of positive 

constant curvature c, then the following conditions are equivalent: 

(i) M is a 2-symmetric submanifold of M, 

(ii) V s = 0 for each k = 0,1,...,/- 1. 

References 

[CD-R] A. Carfagna D'Andrea and G. Romani: Generalized 2-symmetric submanifolds. 
Ann. Mat . pu ra e Appl . 161(4) (1992), 237-252. 

[CG-R] I. Cattaneo Gasparini and G. Romani: Normal and oscullating maps for submani-
folds of R

N. Proceeding of the Royal Society of Edinburgh 114A (1990), 39-55. 
[C-V] B. Y. Chen and L. Vanhecke: Isometric, holomorphic and symplectic reflections. 

Geometr iae Dedica ta 29 (1989), 259-277. 

[F] D. Ferus: Symmetr ic submanifolds of Euclidean spaces. Math . Ann. 247 (1980), 
81-83. 

[G] A. Gray: Tubes . Addison-Wesley Publishing Company, 1989. 
[K-K] O. Kowalski and I. Kulich: Generalized symmetr ic submanifolds of Euclidean spaces. 

Math . Ann. 277(1987) , 67-78. 
l 

[R] G. Romani: N-symmetric submanifolds. Rend. Sem. Mat . Univ. Padova 84 (1990), 
123-134. 

[S] M. Spivak: A comprehensive introduct ion to differential geometry . Publish or Perish 
Inc., 1975. 

[St] W. Strubing: Symmetr ic submanifolds of Riemannian manifolds. Math . Ann. 245 

(1979), 37-44. 
[V] J. Vilms: Submanifolds of Euclidean spaces with parallel second fundamental form. 

Proceedings of the American Mathemat ica l Society 32 (1972), 263-267. 

Authors' addresses: Antonella Carfagna D
y
Andrea, Dipar t imento di Metodi e Modelli 

Matemat ic i per le Scienze Applicate, Universi ta degli Studi di R o m a "La Sapienza", Via 
A. Scarpiia 10, 00161 Rome, Italy ; Renzo Mazzocco and Giuliano Romani, Dipar t imento 
di Matemat ica Ins t i tu to "G. Castelnuovo", Universita degli Studi di R o m a "La Sapienza", 
P. le A. Moro 5, 00185 Roma , Italy . 

711 


