Some Characterizations of Appell and q-Appell Polynomials (*) (**).

H. M. Sefvastava (Victoria, B. O., Canada)

Abstract

Summary. - Several characterizations are given for the well-known Appell polynomials and for their basic analogues: the $\not q$-Appell polynomials defined by Equation (3.3) below. The main results contained in Theorems 1, 2 and 3 of the present paper, and the applications considered in Section 2, are believed to be new. Some interesting connections with earlier results are also indicated.

1. - Introduction and the main results.

The elementary observation that

$$
\begin{equation*}
D_{x}\left\{\frac{x^{n}}{n!}\right\}=\frac{x^{n-1}}{(n-1)!}, \quad n=1,2,3, \ldots, \quad D_{x}=\frac{d}{d x} \tag{1.1}
\end{equation*}
$$

has inspired the study of what is now well known as the Appell set of polynomials $\left\{p_{n}(x)\right\}_{n=0}^{\infty}$ defined by

$$
\begin{equation*}
D_{a}\left\{p_{n}(x)\right\}=p_{n-1}(x), \quad n=1,2,3, \ldots, \tag{1.2}
\end{equation*}
$$

where $p_{n}(x)$ is a polynomial of exact degree n in x.
As long ago as 1880, it was Appell himself [2] who showed that a polynomial system $\left\{p_{n}(x)\right\}_{n=0}^{\infty}$ satisfies (1.2) if and only if it is generated by

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{n}(x) z^{n}=A(z) e^{x z} \tag{1.3}
\end{equation*}
$$

where the determining function $A(z)$ has a formal power series expansion

$$
\begin{equation*}
A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \quad a_{0} \neq 0 \tag{1.4}
\end{equation*}
$$

Several subsequent characterizations of the Appell polynomials in terms of Stieltjes integrals are due, for instance, to Thorne [5], Sheffer [3], and Varma [6].

[^0]AL-Salam [1], on the other hand, has extended the results of Sheffer [3] and Varma [6] to hold for certain q-Appell polynomials. In the present note we first prove

TheOrein 1. - Let $\alpha(t)$ be a function of bounded variation on the interval $0 \leqq t<\infty$, and suppose that $\left\{\gamma_{n}(t)\right\}_{n=0}^{\infty}$ is a given sequence of functions such that the Stieltjes integrals

$$
\begin{equation*}
I_{n, r}=\int_{0}^{\infty} \gamma_{n}(t) t^{r} d \alpha(t), \quad \forall n, r \in\{0,1,2, \ldots\} \tag{1.5}
\end{equation*}
$$

exist, with

$$
\begin{equation*}
I_{0,0} \neq 0 \tag{1.6}
\end{equation*}
$$

Also define

$$
\begin{equation*}
K_{n, m}(x, t)=\sum_{k=0}^{n} \gamma_{k}(t) R_{n-k, m}(x, t) \tag{1.7}
\end{equation*}
$$

where m is a positive integer, and

$$
\begin{equation*}
R_{n, m}(x, t)=\sum_{k=0}^{[n / m]]} \frac{x^{n-m k}}{(n-m k)!} g_{k} t^{k}, \quad n=0,1,2, \ldots, \tag{1.8}
\end{equation*}
$$

the coefficients $g_{k} \neq 0$ being arbitrary constants.
Then

$$
\begin{equation*}
S_{n}^{m}(x)=\int_{0}^{\infty} K_{n, m}(x, t) d \alpha(t), \quad n=0,1,2, \ldots \tag{1.9}
\end{equation*}
$$

is an Appell set of polynomials.
Proof. - From (1.7) and (1.8) we have

$$
\begin{aligned}
\frac{\partial}{\partial x} K_{n, m}(x, t) & =\frac{\partial}{\partial x} \sum_{j=0}^{n} \gamma_{i}(t) \sum_{k=0}^{[(n-j) / m]} \frac{x^{n-j-m k}}{(n-j-m k)!} g_{k} t^{k} \\
& =\sum_{j=0}^{n-1} \gamma_{j}(t) \sum_{k=0}^{[(n-j-1) / m]} \frac{x^{n-j-1-m k}}{(n-j-1-m k)!} g_{k} t^{k}, \quad \text { by }(1.1), \\
& =\sum_{j=0}^{n-1} \gamma_{j}(t) R_{n-j-1, m}(x, t), \quad \text { by }(1.8)
\end{aligned}
$$

and, on interpreting this last sum by means of (1.7), we obtain

$$
\begin{equation*}
\frac{\partial}{\partial x} K_{n, m}(x, t)=K_{n-1, m}(x, t) \tag{1.10}
\end{equation*}
$$

Equations (1.9) and (1.10) evidently yield the relationship

$$
\begin{equation*}
D_{x}\left\{S_{n}^{m}(x)\right\}=S_{n-1}^{m}(x), \quad n=1,2,3, \ldots \tag{1.11}
\end{equation*}
$$

and Theorem 1 follows immediately.

Remark 1. - If in (1.8) we set

$$
\begin{equation*}
g_{k}=\frac{1}{k!}, \quad \forall k \in\{0,1,2, \ldots\} \tag{1.12}
\end{equation*}
$$

and (for the sake of simplicity) put $m=1$, then we readily have

$$
\begin{equation*}
R_{n, 1}(x, t)=\sum_{k=0}^{n} \frac{x^{n-k}}{(n-k)!} \frac{t^{k}}{k!}=\frac{(x+t)^{n}}{n!} \tag{1.13}
\end{equation*}
$$

giving us

$$
\begin{equation*}
K_{n, 1}(x, t)=\sum_{k=0}^{n} \gamma_{k}(t) \frac{(x+t)^{n-k}}{(n-k)!} \tag{1.14}
\end{equation*}
$$

Thus, under these specializations, Theorem 1 reduces to the main result in Varma's paper (cf. [6], p. 594) which is essentially a generalization of Sheffer's characterization [3, pp. 739-740, Theorem 1].

In terms of the generalized hypergeometric functions, (1.14) readily gives us

$$
\begin{equation*}
K_{n, 1}(x, t)=\frac{x^{x_{i}}}{n!} r+F_{s}\left[-n, \varrho_{1}, \ldots, \varrho_{r} ; \sigma_{1} ; \ldots, \sigma_{s} ;-t / x\right] \tag{1.15}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\gamma_{n}(t)=\frac{t^{n}}{n!} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{\prod_{j=1}^{r}\left(\varrho_{j}\right)_{n-k}}{\prod_{j=1}^{s}\left(\sigma_{j}\right)_{n-k}}, \quad \forall n \in\{0,1,2, \ldots\} \tag{1.16}
\end{equation*}
$$

where $\varrho_{1}, \ldots, \varrho_{r}$ and $\sigma_{1}, \ldots, \sigma_{s}$ are complex parameters, and $\sigma_{j} \neq 0,-1,-2, \ldots$; $j=1, \ldots, s$.

From (1.9) and (2.5) we, therefore, arrive at
Theorem 2. - With the function $\alpha(t)$ constrained as in Theorem 1, the polynomials defined explicitly by

$$
\begin{equation*}
S_{n}^{*}(x)=\frac{x^{n}}{n!} \int_{0}^{\infty} r+1 F_{s}\left[-n, \varrho_{1}, \ldots, \varrho_{r} ; \sigma_{1}, \ldots, \sigma_{s} ;-t / x\right] d \alpha(t) \tag{1.17}
\end{equation*}
$$

and generated (formally) by

$$
\begin{equation*}
\sum_{n=0}^{\infty} S_{n}^{*}(x) z^{n}=e^{x z} \int_{0}^{\infty} F_{s}\left[\varrho_{1}, \ldots, \varrho_{r} ; \sigma_{1}, \ldots, \sigma_{s} ; z t\right] d \alpha(t) \tag{1.18}
\end{equation*}
$$

form an Appell set of polynomials.
Remark 2. - For $r=s=2$, our assertions (1.17) and (1.18) would obviously reduce to the corresponding assertions due to Varma (cf. [6], p. 594, Eq. (1) et seq.).

2. - An application of Theorem 1.

With a view to applying Theorem 1, we consider a simple situation in which

$$
\begin{equation*}
\gamma_{j}(t)=\delta_{i, i+j}, \quad j=0,1, \ldots, n \tag{2.1}
\end{equation*}
$$

where $\delta_{m, n}$ denotes the Kronecker delta. In this case (1.7) reduces to

$$
\begin{equation*}
K_{n, m}^{*}(x, t)=R_{n, m}(x, t), \tag{2.2}
\end{equation*}
$$

whence it follows at once that the polynomials

$$
\begin{equation*}
T_{n}^{m}(x)=\int_{0}^{\infty} R_{n, m}(x, t) d \alpha(t)=\sum_{k=0}^{[n / m]} \frac{x^{n-m k}}{(n-m k)!} \mu_{k} g_{k}, \quad n=0,1,2, \ldots, \tag{2.3}
\end{equation*}
$$

form an Appell set of polynomials. Here $\left\{\mu_{n}\right\}_{n=0}^{\infty}$ is the sequence of moment constants defined by [3, p. 739]

$$
\begin{equation*}
\mu_{n}=\int_{0}^{\infty} t^{n} d \alpha(t), \quad n=0,1,2, \ldots, \quad \mu_{0} \neq 0 \tag{2.4}
\end{equation*}
$$

and $\alpha(t)$ is a function of bounded variation (on the interval $0 \leqq t<\infty$) for which each μ_{n} exists, $n=0,1,2, \ldots$, and $\mu_{0} \neq 0$.

Now we turn to the sum

$$
\begin{equation*}
\sum_{n=0}^{\infty}(\lambda)_{n} T_{n}^{m(x)}(x) z^{n}=\sum_{n=0}^{\infty}(\lambda)_{n}\left\{\int_{0}^{\infty} R_{n, m}(x, t) d \alpha(t)\right\} z^{n}=\int_{0}^{\infty}\left\{\sum_{n=0}^{\infty}(\lambda)_{n} R_{n, m}(x, t) z^{n}\right\} d \alpha(t) \tag{2.5}
\end{equation*}
$$

where, as usual, $(\lambda)_{n}=\Gamma(\lambda+n) / \Gamma(\lambda)$.
If we define

$$
\begin{equation*}
\Phi(\lambda ; z)=\sum_{n=0}^{\infty}(\lambda)_{m n} g_{n} z^{n}, \quad g_{n} \neq 0 \tag{2.6}
\end{equation*}
$$

we shall readily observe from (1.8) and (2.5) that

$$
\begin{equation*}
\sum_{n=0}^{\infty}(\lambda)_{n} T_{n}^{m}(x) z^{n}=(1-x z)^{-\lambda} \int_{0}^{\infty} \Phi\left(\lambda ; \zeta^{m} t\right) d \alpha(t), \quad|x z|<1 \tag{2.7}
\end{equation*}
$$

where, for convenience,

$$
\begin{equation*}
\zeta=z /(1-x z) \tag{2.8}
\end{equation*}
$$

In order to derive the determining function $A^{*}(z)$, corresponding to the general Appell polynomials $T_{n}^{m}(x)$ given by (2.3), we replace z on both sides of (2.7) by z / λ and formally take their limits as $|\lambda| \rightarrow \infty$. We thus obtain

$$
A^{*}(z) e^{x z}=\sum_{n=0}^{\infty} T_{n}^{m}(x) z^{n}=e^{x z} \int_{0}^{\infty} \Psi^{\left(\tilde{z}^{m} t\right) d \alpha(t)}
$$

which obviously yields the determining function

$$
\begin{equation*}
A^{*}(z)=\int_{0}^{\infty} \Psi_{\left(z^{m} t\right)} d \alpha(t) \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi_{(z)}=\sum_{n_{n}=0}^{\infty} g_{n} z^{n}, \quad g_{n} \neq 0 \tag{2.10}
\end{equation*}
$$

3. - The q-Appell polynomials.

For an arbitrary (real or complex) number q, define the q-derivative of a function $f(x)$ by

$$
\begin{equation*}
D_{x, q}\{f(x)\}=\frac{f(q x)-f(x)}{(q-1) x}, \quad q \neq 1 \tag{3.1}
\end{equation*}
$$

so that

$$
\begin{equation*}
\lim _{q \rightarrow 1} D_{x, q}\{f(x)\}=f^{\prime}(x)=D_{x}\{f(x)\} \tag{3.2}
\end{equation*}
$$

Thus, in analogy with (1.2), the class of polynomials $\left\{p_{n}(x ; q)\right\}_{n=0}^{\infty}$ defined by (cf. [1], p. 31, Eq. (1.2))

$$
\begin{equation*}
D_{x, a}\left\{p_{n}(x ; q)\right\}=p_{n-1}(x ; q), \quad n=1,2,3, \ldots, \tag{3.3}
\end{equation*}
$$

are called the q-Appell polynomials; here, as before, we require that $p_{n}(x ; q)$ be at polynomial of exact degree n in x.

It follows from (3.3) that a polynomial system $\left\{p_{n}(x ; q)\right\}_{n=0}^{\infty}$ is $\not q$-Appell if and onty if it is generated by

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{n}(x ; q) z^{n}=A(z ; q) e_{q}(x z) \tag{3.4}
\end{equation*}
$$

where the determining function $A(z ; q)$ has a formal power series expansion

$$
\begin{equation*}
A(\approx ; q)=\sum_{n=0}^{\infty} a_{n, q} z^{n}, \quad a_{0,4} \neq 0 \tag{3.5}
\end{equation*}
$$

and $e_{q}(z)$ denotes the q-exponential function defined by (cf. [4], p. 71)

$$
\begin{equation*}
e_{q}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{[n]!}=\prod_{n=0}^{\infty}\left(1-(1-q) q^{n} z\right)^{-1} \tag{3.6}
\end{equation*}
$$

with $[\lambda]=\left(1-q^{\lambda}\right) /(1-q)$, and

$$
\begin{equation*}
[n]!=[1][2][3] \ldots[n], \quad[0]!=1 \tag{3.7}
\end{equation*}
$$

In order to give characterizations of q-Appell polynomials, analogous to those contained in Theorems 1 and 2, we shall need the definition of the q-binomial coefficient

$$
\left[\begin{array}{l}
\lambda \tag{3.8}\\
0
\end{array}\right]=1, \quad\left[\begin{array}{c}
\lambda \\
n
\end{array}\right]=\frac{[\lambda][\lambda-1] \ldots[\lambda-n+1]}{[n]!}
$$

so that, for arbitrary real or complex λ,

$$
\left[\begin{array}{c}
\lambda+1 \tag{3.9}\\
n
\end{array}\right]=\left[\begin{array}{c}
\lambda \\
n-1
\end{array}\right]+q^{n}\left[\begin{array}{c}
\lambda \\
n
\end{array}\right], \quad n=1,2,3, \ldots
$$

and
where, in analogy with the Pochhammer symbol $(\lambda)_{n}$ used in (2.5),

$$
(\lambda ; q)_{n}= \begin{cases}1, & \text { if } n=0 \tag{3.11}\\ (1-\lambda)(1-\lambda q) \ldots\left(1-\lambda q^{n-1}\right), & \forall n \in\{1,2,3, \ldots\}\end{cases}
$$

Notice that, if m is a positive integer,

$$
\left[\begin{array}{c}
m \tag{3.12}\\
n
\end{array}\right]=\left[\begin{array}{c}
m \\
m-n
\end{array}\right]=\frac{(q ; q)_{m}}{(q ; q)_{m-n}(q ; q)_{n}}, \quad 0 \leqq n \leqq m
$$

We shall also need the q-binomial theorem

$$
[x+y ; q]^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{3.13}\\
k
\end{array}\right] x^{n-k} y^{k}=[y+x ; q]^{n}
$$

and the following \mathscr{q}-analogues of the generalized hypergeometric function occurring in (1.15) and (1.18):

$$
\begin{equation*}
{ }_{r} \Phi_{s}\left[\varrho_{1}, \ldots, \varrho_{r} ; \sigma_{1}, \ldots, \sigma_{s} ; q, z\right]=\sum_{n=0}^{\infty} \Omega_{n, q} \frac{z^{n}}{(q ; q)_{n}} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }_{r} \Phi_{s}^{*}\left[\varrho_{1}, \ldots, \varrho_{r} ; \sigma_{1}, \ldots, \sigma_{s} ; q, z\right]=\sum_{n=0}^{\infty} \Omega_{n, q} q^{\frac{1}{n(n-1)}} \frac{z^{n}}{(q ; q)_{r}} \tag{3.15}
\end{equation*}
$$

where, for convenience,

$$
\begin{equation*}
\Omega_{n, Q}=\frac{\prod_{j=1}^{r}\left(\varrho_{j} ; q\right)_{n}}{\prod_{j=1}^{s}\left(\sigma_{j} ; q\right)_{n}}, \quad n=0,1,2, \ldots \tag{3.16}
\end{equation*}
$$

Our proofs of the characterizations (1.9) and (1.17), detailed in Section 1, can be applied mutatis mutandis to derive the desired q-analogues of Theorems 1 and 2, given by

Theorem 3. - Let $\beta(t) \equiv \beta(t ; q)$ be a function of bounded variation on the interval $0 \leqq t<\infty$, and suppose that $\left\{\delta_{n}(t ; q)\right\}_{n=0}^{\infty}$ is a given sequence of functions such that the Stieltjes integrals

$$
\begin{equation*}
\mathscr{I}_{n, r}=\int_{0}^{\infty} \delta_{n}(t ; q) t^{r} d \beta(t), \quad \forall n, r \in\{0,1,2, \ldots\} \tag{3.17}
\end{equation*}
$$

exist, with

$$
\begin{equation*}
\mathscr{I}_{0,0} \neq 0 \tag{3.18}
\end{equation*}
$$

Also, for every positive integer m, let N denote the largest integer in n / m, and define

$$
\begin{equation*}
\mathscr{K}_{n, m}(x, t ; q)=\sum_{k=0}^{n} \delta_{k}(t ; q) \mathscr{R}_{n-k, m}(x, t ; q), \tag{3.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{R}_{n, m}(x, t ; q)=\sum_{k=0}^{N} \frac{x^{n-m k}}{[n-m k]!} h_{k, q} t^{k}, \quad n=0,1,2, \ldots, \tag{3.20}
\end{equation*}
$$

the coeffioients $h_{k, q} \neq 0$ being arbitrary constants.
Then

$$
\begin{equation*}
\mathscr{S}_{n}^{m}(x ; q)=\int_{0}^{\infty} \mathscr{K}_{n, m}(x, t ; q) d \beta(t), \quad n=0,1,2, \ldots \tag{3.21}
\end{equation*}
$$

is a q-Appell set of polynomials.
Furthermore, in terms of the q-hypergeometric functions ${ }_{r} \Phi_{s}$ and ${ }_{r} \Phi_{s}^{*}$ given by (3.14) and (3.15), respectively, the polynomials defined explicitly by

$$
\begin{equation*}
\mathscr{P}_{n}^{*}(x ; q)=\frac{x^{n}}{[n]!} \int_{0}^{\infty} r+1 \Phi_{s}\left[q^{-n}, \varrho_{1}, \ldots, \varrho_{r} ; \sigma_{1}, \ldots, \sigma_{s} ; q,-q^{n} t / x\right] d \beta(t) \tag{3.22}
\end{equation*}
$$

and generated (formally) by

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathscr{S}_{n}^{*}(x ; q) z^{n}=e_{q}(x z) \int_{0}^{\infty}{ }_{r} \Phi_{s}^{*}\left[\varrho_{1}, \ldots, \varrho_{r} ; \sigma_{1}, \ldots, \sigma_{s} ; q, z t\right] d \beta(t) \tag{3.23}
\end{equation*}
$$

form a q-Appell set of polynomials.
Remark 3. - In its special case when

$$
\begin{equation*}
m=1 \quad \text { and } \quad h_{k, \alpha}=\frac{1}{[k]!}, \quad k=0,1,2, \ldots \tag{3.24}
\end{equation*}
$$

our main assertion (3.21) of Theorem 3 corresponds to that of Al-Salam [1, p. 42, Eq. (5.2)], since it is readily verified from (3.13) and (3.20) that

$$
\begin{equation*}
\mathscr{R}_{n, 1}(x, t ; q)=\sum_{k=0}^{n} \frac{x^{n-k}}{[n-k]!} \frac{t^{k}}{[k]!}=\frac{[x+t ; q]^{n}}{[n]!} \tag{3.25}
\end{equation*}
$$

so that (3.19) becomes

$$
\begin{equation*}
\mathscr{K}_{n, 1}(x, t ; q)=\sum_{k=0}^{n} \delta_{n-k}(t ; q) \frac{[x+t ; q]^{k}}{[k]!} . \tag{3.26}
\end{equation*}
$$

It may be of interest to notice also that, in terms of the q-hypergeometric function defined by (3.14), if we let

$$
\begin{equation*}
\mathscr{K}_{n, 1}(x, t ; q)=\frac{x^{n}}{[n]!{ }^{r+1}} \Phi_{s}\left[q^{-n}, \varrho_{1}, \ldots, \varrho_{\tau} ; \sigma_{1}, \ldots, \sigma_{\varepsilon} ; q,-q^{n} t / x\right] \tag{3.27}
\end{equation*}
$$

then, by (3.10) and (3.26), we have

$$
\begin{equation*}
\sum_{k=0}^{n} \delta_{n \rightarrow k}(t ; q) \frac{t^{k}}{[k]!}=\Omega_{n, z} q^{\left.\frac{1}{n n(n-1)}\right)} \frac{t^{n}}{[n]!} \tag{3.28}
\end{equation*}
$$

or, equivalently,

$$
\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{3.29}\\
k
\end{array}\right] \delta_{k}(t ; q) \frac{[k]!}{t^{k}}=\Omega_{n, q} q^{\frac{t}{2 n(n-1)}}
$$

which, upon inversion, yields

$$
\delta_{n}(t ; q)=\frac{t^{n}}{[n]!} q^{\frac{1}{n(n-1)}} \sum_{k=0}^{n}(-1)^{k}\left[\begin{array}{l}
n \tag{3.30}\\
k
\end{array}\right] \Omega_{n-k, q} q^{q(k-n)}
$$

where $\Omega_{n, q}$ is defined by (3.16).
Thus we are led to our assertions (3.22) and (3.23) which, when $r=s=2$, would provide the corrected (and appropriately modified) version of the corresponding assertions due to Al-Salam (cf. [1], p. 42, Eq. (5.3) et seq.).

Acknowledgements. - The author wishes to thank Professors Waleed A. At-Salam and Mourad E.-H. Ismatl for helpful discussions during the course of the present investigation.

REFERENCES

[1] W. A. Ad-Salam, q-Appell polynomials, Ann. Mat. Pura Appl. (4), 77 (1967), pp. 31-45. [2] P. Appell, Une classe de polynômes, Ann. Sci. École Norm. Sup. (2), 9 (1880), pp. 119-144. [3] I. M. Sheffer, Note on Appell polynomials, Bull. Amer. Math. Soc., 51 (1945), pp. 739-744.
[4] H. M. Srivastava, On q-generating functions and certain formulas of David Zeitlin, Illinois J. Math., 15 (1971), pp. 64-72.
[5] C. J. Thorne, A property of Appell sets, Amer. Math. Monthly, 52 (1945), pp. 191-193. [6] R. S. Varma, On Appell polynomials, Proc. Amer. Math. Soc., 2 (1951), pp. 593-596.

[^0]: (*) Entrata in Redazione il 10 ottobre 1981.
 (**) Supported, in part, by NSERC (Canada) grant A-7353.

 21-Annali di Matematica

