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Abstract. We characterize the finite Veronesean Hn ⊆ PG(n(n + 2), q) of all Hermitian varieties of
PG(n, q2) as the unique representation of PG(n, q2) in PG(d, q), d ≥n(n+2), where points and lines of
PG(n, q2) are represented by points and ovoids of solids, respectively, of PG(d, q), with the only con-
dition that the point set of PG(d, q) corresponding to the point set of PG(n, q2) generates PG(d, q).
Using this result for n=2, we show that H2 ⊆PG(8, q) is characterized by the following properties: (1)
|H2| = q4 + q2 + 1; (2) each hyperplane of PG(8, q) meets H2 in q2 + 1, q3 + 1 or q3 + q2 + 1 points;
(3) each solid of PG(8, q) having at least q +3 points in common with H2 shares exactly q2 +1 points
with it.
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1. Introduction

Veronesean varieties have a long and rich history, and were originally studied as
classical real or complex varieties. But they can be defined over arbitrary fields.
Over finite fields they have proved to be very useful tools in finite geometry. The
simplest Veronesean varieties are the quadric Veroneseans Vn of index n. In order
to use their properties as tools in proofs, one has to recognize these varieties and
so characterization theorems are very important. In the literature one can find four
different kinds of characterizations of the finite quadric Veroneseans. Let us briefly
review them in historical order.

1. Tallini’s characterization [7] uses the intersection properties of the so-called
conic planes (planes of PG(5, q) meeting V2 in a conic) of V2. The original
result was only valid for q odd. Thas and Van Maldeghem [9] generalized this
to arbitrary q >2 and arbitrary index n.

2. Ferri’s characterization [3] uses the sizes of the intersections of V2 with
hyperplanes and planes of PG(5, q). His result was valid for q odd, with q ≥5.
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Hirschfeld and Thas [4] proved the case q = 3 and Thas and Van Maldeghem
[9] generalized to arbitrary q #=2.

3. Mazzocca and Melone use the geometric properties of the set of all conics con-
tained in Vn and the tangent lines to these to axiomatize Vn in PG(n(n +
3)/2, q), for q odd. Hirschfeld and Thas [4] discovered that they forgot to men-
tion an axiom (by providing counter examples), and generalized their result to
arbitrary q. Thas and Van Maldeghem [8] classified the objects that satisfy the
original set of axioms of Mazzocca and Melone.

4. Thas and Van Maldeghem [9] use their generalization of Tallini’s result to char-
acterize Vn as the unique representation of PG(n, q) in PG(d, q), d ≥ n(n +
3)/2, such that points and lines of PG(n, q) correspond to points and plane
ovals of PG(d, q), respectively, with q #=2, and with the condition that the point
set of PG(d, q) corresponding to the point set of PG(n, q) generates PG(d, q).

We will refer to these characterizations as Type 1–4, respectively.
Some time ago Hermitian Veroneseans Hn of index n were introduced. Some

basic properties of these objects (mostly in the case of index 2) were collected and
proved by Lunardon [5] and by Cossidente and Siciliano [1]. Cooperstein, Thas
and Van Maldeghem [2] provided a complete Type 3 characterization for Hn. No
other characterizations are known. In the present paper, we prove a Type 4 char-
acterization for all Hn, and use this to obtain a Type 2 characterization for H2.
So as far as characterizations are concerned, this leaves only Type 1 for Hermitian
Veroneseans (also a generalization to arbitrary index of a Type 2 characterization
is still open for both quadric and Hermitian Veroneseans).

2. Definitions and Statement of the Main Results

Let n be a positive integer, let q be a prime power, and consider the projective
spaces PG(n, q2) and PG(N, q), with N = n(n+2). Let r ∈GF(q2)\GF(q) be arbi-
trary. A Hermitian Veronesean Hn of index n is the set of points of PG(N, q)

obtained as the image of the map θ : PG(n, q2) −→ PG(N, q) defined as follows.
For each point (x0, x1, . . . , xn) of PG(n, q2), we define

θ(x0, x1, . . . , xn)= (y0,0, y0,1, . . . , y0,n, y1,0, y1,1, . . . , y1,n, . . . , yn,0, yn,1, . . . , yn,n)

with yi,i = xi x̄i , yi,j = xi x̄j + x̄ixj for i < j , and yi,j = rxi x̄j + r̄ x̄ixj for i > j . This
is projectively independent of the chosen parameter r (see [2]). Clearly, the inverse
image with respect to θ of the intersection of Hn with a hyperplane of PG(N, q)

is a (not necessarily non-singular) Hermitian variety in PG(n, q2).
The set Hn can also be defined as the set of those points in the projective space

corresponding with the vector space of all Hermitian (n+1)× (n+1) matrices that
correspond with matrices of rank 1; see also [2].

It is well known (and easy to see directly) that the image of a line of PG(n, q2)

under the map θ is an elliptic quadric, and so an ovoid, of some 3-dimensional
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subspace S of PG(N, q), and that this ovoid is the complete intersection of Hn

and S; from now on we will use the word solid for a 3-dimensional projective
(sub)space. Hence Hn is a representation of PG(n, q2) in PG(N, q) where the
points of PG(n, q2) are some of the points of PG(N, q), and where the lines of
PG(n, q2) are represented by ovoids in solids of PG(N, q). Our main result states
that this property characterizes Hn. In fact, for n=2, one does not have to assume
that the projective plane we start with is Desarguesian. Hence we may formulate
our main result in two theorems.

Theorem 2.1. Let S = (P,L, I) be a finite projective plane of order q2 > 4, for
some prime power q. Suppose that P is a subset of the point set of the projective
space PG(d, q), with d ≥8, not contained in a hyperplane of PG(d, q), and suppose
that the points incident with each line L of S form an ovoid in some solid SL of
PG(d, q). Then d =8, the plane S is Desarguesian and P is projectively equivalent
to the Hermitian Veronesean of PG(2, q2).

We call a representation of S as in the previous theorem an ovoidal embedding of
S. So in the present paper, we classify all ovoidal embeddings of all finite projec-
tive planes of order q2 >4.

Theorem 2.2. Let S = (P,L, I) be the point-line geometry of a finite projective
space of order q2 > 4, for some prime power q, and of projective dimension n. Sup-
pose that P is a subset of the point set of the projective space PG(d, q), with d ≥
n2 +2n, not contained in a hyperplane of PG(d, q), and suppose that the points inci-
dent with each line L of S form an ovoid in some 3-dimensional projective subspace
SL of PG(d, q). Then d =n2 +2n and P is projectively equivalent to the Hermitian
Veronesean of PG(n, q2).

This is a complete Type 4 characterization of finite Hermitian Veroneseans. As
an application, we prove a Type 2 characterization for Hermitian Veroneseans of
index 2. Note that, since hyperplanes of PG(8, q) meet H2 in point sets that corre-
spond with (singular and non-singular) Hermitian curves in PG(2, q2), the size of
such an intersection is either q2 + 1 (the Hermitian curve is singular and consists
of one line with multiplicity q + 1), or q3 + 1 (non singular case), or q3 + q2 + 1
(the Hermitian curve is singular and consists of q + 1 confluent lines). We now
claim that each solid which intersects H2 in at least q + 3 points intersects it in
q2 +1 points. Indeed, let S be a solid intersecting H2 in at least q +3 points. Sup-
pose first that S ∩H2 generates S and let x1, x2, x3, x4 be four points of PG(2, q2)

corresponding to 4 points of S ∩H2 generating S. Assume first that x1, x2, x3, x4
are four points of a common line L of PG(2, q2). Then with L corresponds an
ovoid in some solid of PG(8, q), and that solid clearly coincides with S. So in
this case S ∩H2 is an ovoid of S and so contains q2 + 1 points. Suppose next
that x1, x2, x3 are incident with a common line L and x4 is not. Clearly, each
point of the intersection S ∩H2 is also contained in every hyperplane of PG(8, q)
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containing the images of x1, x2, x3, x4. Hence every point of PG(2, q2) correspond-
ing to a point of the intersection S ∩H2 is contained in every Hermitian curve
(possibly singular) containing x1, x2, x3, x4. If x is a point not contained in the
(Baer) subline of L over GF(q) defined by x1, x2, x3 (and containing q +1 points),
then it is easy to see that either x does not belong to the singular Hermitian curve
defined by the three lines x4x1, x4x2, x4x3 (if x is on L), or one can find a point y

on L and a line M through y such that x does not belong to the singular Her-
mitian curve defined by the three lines L,M,yx4 (otherwise). Hence S ∩H2 con-
tains at most q + 2 points, a contradiction. Suppose now {x1, x2, x3, x4} is a 4-arc
in PG(2, q2). By considering the unique singular Hermitian curves containing all
points of the lines x1x2, x1x3, x1x4, and x2x1, x2x3, x2x4, and x3x1, x3x2, x3x4,
respectively, we see that every point a of S ∩H2 corresponds to a point of the
unique Baer subplane of PG(2, q2) containing x1, x2, x3, x4. Hence a is contained
in the quadric sub Veronesean V2 of H2 determined by the images under θ of
x1, . . . , x4. Since V2 spans a 5-space PG(5, q), S arises as the intersection of two
hyperplanes H1,H2 of PG(5, q). Consequently the size of S ∩H2 is the size of the
intersection of two distinct (possibly singular) conics in PG(2, q). Clearly, this is at
most q +2 (and then both conics are singular and consist of two distinct lines).

Finally suppose that S ∩ H2 does not generate S. Then it generates a plane,
since H2 is a cap (see [2]). If x1, x2, x3 are three points of PG(2, q2) correspond-
ing to points of S ∩H2, then they clearly form a triangle of PG(2, q2), otherwise
S ∩H2 is a conic and hence contains only q +1 points. But now it is easy to see
that every point of PG(2, q2), distinct from x1, x2, x3, is outside some (singular)
Hermitian curve of PG(2, q2) containing x1, x2, x3. So |S ∩H2| = 3, again a con-
tradiction. The claim is proved.

The application which follows uses the above observations to characterize H2.

Theorem 2.3. Let X be a set of points of PG(8, q), q #= 2, with |X| = q4 + q2 + 1.
Then X is isomorphic to a Hermitian Veronesean if and only if every hyperplane of
PG(8, q) intersects X in either q2 + 1, q3 + 1 or q3 + q2 + 1 points, and whenever a
solid intersects X in at least q +3 points, it intersects X in precisely q2 +1 points.

3. Proof of Theorem 2.1

Throughout we identify a line of S with the set of points incident with it, and we
assume q >2.

Lemma 3.1. Let L1,L2,L3 be three lines of S which do not have a common point.
Then the subspace H =〈L1,L2,L3〉 of PG(d, q) has codimension at most 1.

Proof. Suppose that H has dimension ≤d −1. Then we can choose a point x of
P not contained in H . Let y #= x be any point of S not contained in H . Then
y /∈L1 ∪L2 ∪L3. Suppose first that the line L :=xy ∈L does not contain one of the
points L1 ∩L2, L2 ∩L3, L3 ∩L1. Then L meets each Li in a point pi , i = 1,2,3,
and the points p1, p2, p3 span a plane π in H . Hence SL =〈π,x〉 and so y ∈〈H,x〉.
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Suppose now that the line L contains L1 ∩L2. Let L′ be a line of S through x not
containing any of the points L1 ∩L2, L2 ∩L3, L3 ∩L1. Clearly, L′ contains q2 −q

points not in H , but contained in 〈H,x〉. Since q2 − q ≥ 6 > 3, there is some line
L′′ of S through y meeting L′ in a point x′ of PG(d, q) off H and not containing
any of the points L1 ∩L2, L2 ∩L3, L3 ∩L1. We clearly have y ∈〈H,x′〉= 〈H,x〉.
Hence we have shown that P⊆〈H,x〉 and the lemma follows.

Lemma 3.2. With same notation as in Lemma 3.1 and under the same hypothesis, we
have H =PG(d, q).

Proof. Assume that H #=PG(d, q). By Lemma 3.1 the subspace H has codimension
1 in PG(d, q). Let x be a point of S not contained in H . Let L be any line of
S through x. Then SL meets H in a plane π containing at least two points of
L1 ∪L2 ∪L3. So π meets L in an oval and hence contains q +1 points of L. Con-
sequently each line of S through x contains exactly q2 −q points of S not con-
tained in H . We infer that there are exactly (q2 + 1)(q2 − q − 1) + 1 = q4 − q3 − q

points of S not in H . But the lines of S through L1 ∩ L2 that are not entirely
contained in H partition P \H in subsets of size q2 − q, by a completely similar
argument. Hence q2 − q divides q4 − q3 − q, implying q = 2, a contradiction. The
lemma is proved.

Remark 3.3. Note that Lemma 3.2 is independent of the assumption d ≥8.

Lemma 3.4. We have d = 8 and for any pair of lines {L1,L2} of S, the spaces SL1
and SL2 of PG(d, q) have exactly one point in common. Also, for any line L of L
we have SL ∩P=L. Finally, the point set P is a cap of PG(8, q).

Proof. Suppose that SL1 and SL2 meet in a space of dimension i, and notice that
i ≥0. Then 〈L1,L2〉 has dimension 6− i. Let L3 ∈L be such that it does not con-
tain L1 ∩ L2. Then L3 meets 〈L1,L2〉 in a subspace of dimension at least 1 and
hence 〈L1,L2,L3〉 has dimension at most 8 − i. By Lemma 3.2, 8 ≥ 8 − i ≥ d ≥ 8
and so 8− i =8=d.

Now let L ∈L and assume, by way of contradiction, that there is a point x

of P in SL \ L. Then, for any L′ ∈ L containing x and a point of L, we have
|SL ∩SL′ |>1, a contradiction.

Finally, if x, y, z were distinct points of P which are collinear in PG(8, q), then
for the line L ∈ L which contains x, y we would have z ∈ SL, a contradiction.
Hence P is a cap in PG(8, q).
The lemma is proved.

Now we choose an arbitrary line L of S and we project P\L from the space SL

into a space S of dimension 4 skew to SL, and we call the projection map ρ (with
pre-image P\L). Clearly, for every line L′ ∈L, with L′ #=L, the set L\ (L∩L′) is
projected bijectively onto an affine plane πa(L

′) contained in a unique projective
plane π(L′) of PG(8, q). Since every two points of P \ L are contained in a line
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of S, we deduce that ρ is injective. We now claim that, with former notation, no
point of π(L′)\πa(L

′) is contained in the image of ρ. Indeed, if xρ were contained
in π(L′), with x ∈P\ (L∪L′), then any line L′′ ∈L containing x and some point
of L′ \ {L∩L′} would have at least three points in common with 〈L,L′〉, and hence
〈L,L′,L′′〉 would have dimension at most 7, contradicting Lemma 3.4. The claim
is proved.

Next we claim that, if x, y, z∈P\L, and if the plane 〈x, y, z〉 is skew to SL, then
the points of the projective plane 〈xρ, yρ, zρ〉 that are images under ρ form an affine
plane of order q. Indeed, if x, y, z are contained in a common line of S, then this
is clear. Now remark that every line of S containing at least 2 points of Im(ρ) con-
tains exactly q points of Im(ρ) (this follows from the fact that every pair of points
of S not on L is contained in some line L′ #=L and the previous paragraph). Con-
sequently, every line of the plane ζ :=〈xρ, yρ, zρ〉 contains either q, or 1, or 0 points
of Im(ρ). If 0 does not occur, then we have a (1, q)-set in ζ and this does not exist (a
quick explicit argument: if a point of ζ is not contained in Im(ρ), then let k lines of
ζ through it meet the set in q points, q +1−k meet it in 1 point, so the set contains
k(q − 1)+ q + 1 points; if a point of ζ is contained in the set, then let % lines of ζ

through it have q points in the set, so the set contains %(q −1)+1 points; this implies
(%−k)(q −1)=q, clearly a contradiction). It easily follows that there is just one line
of ζ containing no point of Im(ρ) and that |ζ ∩ Im(ρ)|=q2.

So Im(ρ) is a set of q4 points in S such that every three non-collinear points
are contained in an affine plane entirely contained in Im(ρ), and such that every
line of S contains either q, or 1 or 0 points of Im(ρ). We claim that Im(ρ) is an
affine space of S (and we refer to the 3-dimensional space of S complementary to
Im(ρ) as the solid at infinity of S). Indeed, if not then there is some line l of S con-
taining a unique point of Im(ρ). Clearly, no plane through l in S contains three
non-collinear points of Im(ρ). Hence every plane through l in S contains at most
q points (on a line) of Im(ρ), implying that |Im(ρ)|≤ (q −1)(q2 +q +1)+1, a con-
tradiction. The claim is proved.

Now for each point x ∈ L, we select a line Lx of S through x distinct from
L. If x #= x′, x, x′ ∈ L, then the affine planes L

ρ
x and L

ρ
x′ meet in exactly one

point and hence their respective projective completions meet the solid at infinity
in non-intersecting lines. Hence, this way, we obtain a spread of lines of the solid
at infinity of S (and notice that each of these lines is the projection from SL of
the tangent plane (minus x) at x ∈L of Lx). Since the choice of Lx for fixed x ∈L

was arbitrary, we easily see that, still for fixed x ∈ L, the projection from SL of
the tangent planes (minus x) at x of all lines of S through x distinct from L is
a fixed line lx of S. Hence all such tangent planes at x, including the one of L,
are contained in the 5-dimensional space 〈L, lx〉. Interchanging the roles of L and
some other line of S through x, we see that all these planes are also contained in
another 5-dimensional space. Intersecting these two spaces, we obtain a 4-dimen-
sional space (because a lower dimension is impossible). Hence we have proved the
conditions of the main result of Cooperstein, Thas and Van Maldeghem [2] and
Theorem 2.1 is proved.
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4. Proof of Theorem 2.2

For the time being, it is convenient not to assume that d ≥n2 +2n. So d is arbitrary.

Lemma 4.1. Let H and H ′ be two distinct hyperplanes of S, and let L be a line of
S not containing a point of H ∩H ′. Then 〈H,H ′,L〉=PG(d, q).

Proof. Let x be any point of S not in H ∪H ′ ∪L. The plane of S spanned by
x and L contains three non-concurrent lines in H ∪ H ′ ∪ L. By Lemma 3.2 and
Remark 3.3, x is contained in 〈H,H ′,L〉. The lemma follows.

This implies that, with the same notation, dim〈H,H ′〉≥d −2.
Now let H and H ′ be as in Lemma 4.1. Let h and h′ be the dimension of 〈H 〉

and 〈H ′〉, respectively (as subspaces of PG(d, q)). We claim that d − h ≤ 2n + 1.
Indeed, if n = 2, then we already know d ≤ 8 (by Lemma 3.2, and h = 3 by defi-
nition). Now let n be arbitrary, n > 2. Let s be the dimension of 〈H ∩ H ′〉, as
a subspace of PG(d, q). By induction h′ − s ≤ 2n − 1. Hence we have d − 2 ≤
dim〈H,H ′〉≤h+h′ − s ≤h+2n−1, implying d −h≤2n+1. The claim is proved.

Now we assume that d ≥ n2 + 2n. Then h ≥ (n − 1)2 + 2(n − 1) by our previ-
ous claim. An induction argument shows that H is projectively equivalent to the
Hermitian Veronesean of PG(n − 1, q) and h = n2 − 1. Hence d = n2 + 2n. Con-
sequently, for any %-dimensional subspace G of S, with 1 ≤ % ≤ n − 1, we have
dim〈G〉 = %2 + 2%, as a subspace of PG(d, q). Let L be a line of S and assume,
by way of contradiction, that x ∈P∩SL, with x /∈L. Considering the plane of S
generated by L and x, and taking account of Lemma 3.4 we have a contradiction.
So SL ∩P=L for every line L of S. Next, let L and M be distinct lines of S and
assume, by way of contradiction, that x ∈SL ∩SM with x /∈P. Then L and M gen-
erate a solid of S. Choose arbitrarily y ∈L, z∈M, and let N be the line of S con-
taining y and z. Further, let R and R′ be the planes of S generated by L,N , and
by M,N , respectively. Then by the preceding paragraph dim(〈R〉∩ 〈R′〉)=dim〈R ∩
R′〉=3. As 〈N,x〉⊆〈R〉∩ 〈R′〉 and x /∈SN , we clearly have a contradiction.

All this implies that S satisfies the conditions of the main result of Cooperstein,
Thas and Van Maldeghem [2], and so S is projectively equivalent to the Hermi-
tian Veronesean of PG(n, q).

This completes the proof of Theorem 2.2.

5. Proof of Theorem 2.3

We proceed in eight steps. Let X be as in the statement of Theorem 2.3.
Step 1. Let n1, n2 and n3 be the number of hyperplanes of PG(8, q) intersect-

ing X in q2 + 1, q3 + 1 and q3 + q2 + 1 points, respectively. Counting the number
of hyperplanes we have

n1 +n2 +n3 = q9 −1
q −1

. (1)
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Counting in two ways the number of pairs (x,H), with x ∈X and H a hyperplane
through x, we obtain

n1(q
2 +1)+n2(q

3 +1)+n3(q
3 +q2 +1)= (q4 +q2 +1)

q8 −1
q −1

. (2)

Counting in two ways the triples (x, y,H), with x, y ∈ X and H a hyperplane
through x and y, x #=y, we obtain

n1(q
2 +1)q2 +n2(q

3 +1)q3 +n3(q
3 +q2 +1)(q3 +q2)= (q4 +q2 +1)(q4 +q2)

q7 −1
q −1

.

(3)

The system of Eq. (1)–(3) in the unknowns n1, n2, n3 has the unique solution

n1 = q4 +q2 +1,

n2 = q3(q2 +1)(q3 −1),

n3 = q(q4 +q2 +1)(q2 +1).

Step 2. Let π be an arbitrary plane and suppose |π ∩ X| = u ≥ q + 3. Every solid
containing π contains exactly q2 +1−u points of X outside π . Hence

|X|=q4 +q2 +1= (q2 +1−u)
q6 −1
q −1

,

implying

u=q2 +1− q3

q4 +q3 +q2 +q +1
,

a contradiction.
Suppose now u=q +2. Then the q4 +q2 −q −1 points of X outside π are par-

titioned into a number of sets of equal size q2 − q − 1. Hence q4 is divisible by
q2 −q −1, implying q =2, a contradiction.

We have shown that u≤q +1.
Step 3. Suppose that S is a solid intersecting X in q2 +1 points (note that such

S might not exist; here we just assume that it does). Let x, y ∈X ∩ S be different
points. Put |xy ∩ X| = v ≥ 2. Since every plane in S through xy contains at most
q +1−v points of X not on xy, we have

(q +1−v)(q +1)≥q2 +1−v,

which implies 2 ≥ v; hence v = 2 and each plane in S through xy intersects S in
q +1 points. It follows that X ∩S is an ovoid of S.

Step 4. Suppose S is as in Step 3 and denote O = X ∩ S. Suppose there exist
two distinct points x, y ∈X \O with xy ∩S nonempty. We claim that this is impos-
sible. Indeed, let z be the intersection of S with xy. Consider a plane π of S con-
taining z, and intersecting X in q + 1 points of an oval C of π (it is easy to see
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that π exists, since O is an ovoid in S). Then S′ :=〈π,x, y〉 is a solid which con-
tains at least q + 3 points of X, hence S′ ∩ X is an ovoid O ′ in S′ and clearly
O ∩O ′ =C. Also, ξ := 〈O,O ′〉 is 4-dimensional. Now consider two arbitrary dis-
tinct points a, b ∈C and let C′ be an oval on O through a, b, but different from
C. Let S′′ be any solid in ξ containing C′. Then S′′ meets S′ in a plane contain-
ing a, b and hence meets O ′ in q + 1 points of an oval. So S′′ contains at least
2q ≥q + 3 points of X and so S′′ contains exactly q2 + 1 points of X which form
an ovoid O ′′ in S′′. Note that O ∩O ′′ =C′, if S #=S′′. Since there are q +1 solids in
ξ through C′, we count (q +1)(q2 +1− (q +1))+q +1=q3 +1 points of X in ξ .

Now let α be the number of hyperplanes through ξ containing q3 +q2 +1 points
of X. Counting the pairs (p,H), with p ∈X \ ξ and H a hyperplane containing p

and ξ in two ways, we obtain

αq2 = (q4 −q3 +q2)(q2 +q +1),

implying α = q4 + q2 + 1, which exceeds the total number of hyperplanes in
PG(8, q) through ξ , a contradiction. The claim is proved.

Now let α1, α2 and α3 be the number of hyperplanes through S intersecting X in
q2 +1, q3 +1 and q3 +q2 +1 points, respectively. Since for any two distinct points
x, y ∈X \O, the space 〈S, x, y〉 has fixed dimension 5, we count the number of tri-
ples (x, y,H), with x, y ∈ X \ O and H a hyperplane through x, y and S, in two
ways as in Step 1. Also counting the total number of hyperplanes through S in two
ways, and the number of pairs (x,H), with x ∈X \O and H a hyperplane through
x and S, we obtain the following three equations:

α1 +α2 +α3 = q5−1
q−1 ,

α2(q
3 −q2)+α3q

3 = q4 q4−1
q−1 ,

α2(q
3 −q2)(q3 −q2 −1)+α3q

3(q3 −1) = q4(q4 −1) q3−1
q−1 .

Hence α1 =1, α2 =0 and α3 =q(q +1)(q2 +1).
Step 5. Another consequence of the claim at the beginning of Step 4 is the fol-

lowing observation. Suppose S and S′ are two solids containing q2 +1 points of X.
Then |X ∩S ∩S′|≤1. Indeed, if there were two elements x, y in X ∩S ∩S′, then it
would be possible to choose a line L in S′ meeting O ′ \O in two points and inter-
secting the line xy, hence intersecting S. This contradicts the claim.

Step 6. Let H1,H2 be two arbitrary hyperplanes of PG(8, q) and let u be the
number of points of X in the intersection U := H1 ∩ H2. We shall prove that u ≡
1 mod q.

Let β1, β2 and β3 be the number of hyperplanes through H1 ∩ H2 containing
q2 +1, q3 +1 and q3 +q2 +1 points of X, respectively. Similar counting arguments
as before show

β1 +β2 +β3 = q +1,

β1(q
2 +1−u)+β2(q

3 +1−u)+β3(q
3 +q2 +1−u) = q4 +q2 +1−u.
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Multiplying the first equation by u− 1 and adding the result to the second equa-
tion, we obtain, after dividing by q

q(β1 +β2q +β3(q +1)−q2 −1)=u−1,

and so u≡1 mod q

Step 7. By Step 1, there exists a hyperplane H intersecting X in q2 +1 points.
Let {Hi : i ∈ {1,2, . . . , q(q8 −1)/(q −1)}} be the set of hyperplanes of PG(8, q)

different from H . Put wi = |Hi ∩H ∩X|, for all i. We count the number of pairs
(p,Hi), with p ∈Hi ∩H ∩X, in two ways and obtain

∑

i

wi = (q2 +1)q

(
q7 −1
q −1

)

. (4)

We count the number of triples (p,p′,Hi), with p,p′ ∈Hi ∩H ∩X, p #=p′, in two
ways and obtain

∑

i

wi(wi −1)= (q2 +1)q3

(
q6 −1
q −1

)

. (5)

Finally, we both count and estimate the number of quadruples (p,p′, p′′,Hi), with
p,p′, p′′ ∈ Hi ∩ H ∩ X, p #= p′ #= p′′ #= p, and obtain (noting that the number of
hyperplanes through three distinct points is at least (q6 −1)/(q −1))

∑

i

wi(wi −1)(wi −2)≥ (q4 −1)q3

(
q5 −1
q −1

)

. (6)

In view of the identity

(w −1)(w − (q +1))(w − (q2 +1))=w(w −1)(w −2)−w(w −1)(q2 +q)

+w(q +1)(q2 +1)− (q +1)(q2 +1),

one calculates from Eq. (4)–(6)
∑

i

(wi −1)(wi − (q +1))(wi − (q2 +1))≥0.

Since by Step 6 each wi is congruent 1 modulo q, each term of the left hand side
of this inequality is either 0 (when wi ∈ {1, q + 1, q2 + 1}) or negative (otherwise).
So the left hand side is non-positive which implies that it is zero. We conclude first
that each wi is equal to 1, to q +1, or to q2 +1, and also that equality holds in (6).
The latter means that every triple of points of X ∩H generates a plane, so X ∩H

is a cap.
As before, counting in two ways the number of hyperplanes sharing 1, q +1 or

q2 +1 points with X∩H (and that is the total number of hyperplanes by our result
above), the pairs (p,H ′), where p∈X∩H ∩H ′ and H ′ is a hyperplane, and the tri-
ples (p,p′,H ′), where p,p′ ∈X∩H ∩H ′, p #=p′, and H ′ is a hyperplane, we obtain
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three equations from which we deduce that the number of hyperplanes meeting
X ∩ H in q2 + 1 points is exactly (q5 −1)/(q −1). Hence X ∩ H is contained in
(q5 −1)/(q −1) distinct hyperplanes. So 〈X ∩H 〉 is at most 3-dimensional. But by
Step 2, the dimension is at least 3. Hence the points of X∩H span a 3-space and
constitute an ovoid by Step 3.

Step 8. We define the following incidence structure S= (P,L, I). The point set
P is the set X. The block set L is the set of the intersections of X with the q4 +
q2 +1 hyperplanes of PG(8, q) intersecting X in q2 +1 points (and each set of such
q2 + 1 points is an ovoid in some solid of PG(8, q)). By Step 4, distinct such hy-
perplanes define distinct ovoids (α1 = 1). Incidence is the natural one induced by
PG(8, q). By Step 5, two blocks meet in at most one point, hence through each
point of S there are at most q2 + 1 blocks. The number of pairs (p,L)∈P×L
with pIL is obviously equal to (q4 +q2 + 1)(q2 + 1) (first counting the number of
blocks, then the number of points on each block), but also it is at most that num-
ber by counting first the number of points, then the number of blocks per line.
This implies that there are exactly q2 +1 blocks through a point and that each pair
of distinct points is on a (unique) block. Hence S is a projective plane of order q2

and the Theorem follows from Theorem 2.1 (since we already proved the converse
in Section 2).

Finally we remark that a byproduct of our proof, in particular of Step 6, is that
every two Hermitian curves in PG(2, q2) intersect in 1 modulo q2, so in particular
in at least one point.
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