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SOME CHARACTERIZATIONS OF REFLEXIVITY

IVAN SINGER 1

ABSTRACT.    The results of R. C. James on characterizations of reflex-

ivity of Banach spaces with an unconditional basis in terms of c„  and  /

are extended to arbitrary Banach spaces.  Some consequences are obtained.

R. C. James has proved [A, Theorem 2] that a Banach space E with an

unconditional basis is reflexive if and only if E contains no subspace iso-

morphic to c or / . This result has been shown to remain valid for any

subspace E of a space with an unconditional basis (of any power) by

C. Bessaga and A. Pelczynski [l], [2], who have also proved [2] that such a

space E is reflexive if and only if E contains no subspace isomorphic to

l\

The above conditions are clearly necessary for the reflexivity of any

Banach space   £.   In the present note we shall show that one can add a cer-

tain necessary condition to them, which is also satisfied by any (not neces-

sarily reflexive) subspace of a space with an unconditional basis (of any

power) in such a way that these conditions together will be also sufficient

for reflexivity.  Thus, we shall obtain extensions of the above results to

characterizations of reflexivity of an arbitrary Banach space  E.

Following A. Pelczynski [6], a Banach space  E is said to have prop-

erty  (u), if for every weak Cauchy sequence  \x   |C£  there exists a se-

quence  \yn\C E  such that (a) the series 2~_jy. is weakly unconditional-

ly Cauchy and (b)  the sequence  \x   — S"_.y.} converges weakly to 0.

Theoremo Eor a Banach space E the following statements are equiva-

lent:

1°.   E  is reflexive.

2°. E has property (u) fl72fl* E contains no subspace isomorphic to cfl

or ll.

3°.  E has property (u) and E    contains no subspace isomorphic to 7.

Proof.,  Assume   1°.  Then, by [6, Proposition 2], E has property (u).

Also, E    is reflexive and hence  E    contains no subspace isomorphic to   I .

Thus, 1°=»3°.
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Assume now 3°.  If  E contains a subspace  G isomorphic to  cQ, then

E* has a quotient space  E*/G     isomorphic to  /    and hence (see e.g. [3,

p. 63, exercise 2]) E     has a complemented subspace isomorphic to  I  , in

contradiction with 3°.  On the other hand, if E contains a subspace isomor-

phic to  /  , then so does  E    [7, Proposition 3.3], in contradiction with 3°.

Thus, 3°=»2°.

Assume now 2°.  Then, since  E has property (u)  and contains no sub-

space isomorphic to   cQ, by [6, Theorem l] (for a proof see [9, p. 450]), E

is weakly complete. Hence, since E contains no subspace isomorphic to

I , from [8, Corollary l] it follows that  E is reflexive.  Thus, 2° =»1°.

Since every Banach space  E with an unconditional basis and every

subspace of such a space have property (u)  (by [6, Theorem 3 and Corollary

l]; for a proof see [9, pp. 445—449]), from the above Theorem we obtain, in

particular, the results of R. C. James [4] and C. Bessaga and A. Pelczynski

[l], [2] mentioned in the introduction.

Corollary 1.   A separable Banach space  E  is reflexive if and only if

(i)  E has property (xx) and (ii)  F** is separable.

Proof.  Clearly, (i) and (ii) imply 3° of the above Theorem.

Remark 1.  Combining [8] with [6, Corollary 5], it follows that if a

Banach space  E has property (u) and contains no subspace isomorphic to

/ , then  E     is weakly complete.   This result yields other proofs of Corollary

1 and the implication 3°=»1° of the Theorem.

Corollary 2.   The following two conjectures are equivalent:

1° [5, p. 165].   Every infinite dimensional Banach space contains an in-

finite dimensional subspace that is either reflexive or is isomorphic to  c„

or l\

2°.  Every infinite dimensional Banach space contains an infinite dimen-

sional subspace with property (u),

Proof.   cn, /    and every reflexive space have property (u), so 1°=>2°.

Conversely, if G C E has property  (u), then by the above Theorem either

G is reflexive or G contains a subspace isomorphic to cQ  or I .  Thus,

2°=>1°.

Remark 2. The conjecture of Corollary 2, if substantiated, would have

some interesting consequences, e.g., that every (infinite dimensional) sec-

ond conjugate space E contains a reflexive subspace (of infinite dimen-

sion)—or, equivalently, that every conjugate Banach space E has a reflex-

ive quotient space. Indeed, if E D G reflexive, then F** D E D G; if £3

cQ, then  E** D /"• D I2; finally, if ED ll, then  F** D (/°°)* D I2.
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