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SOME CHARACTERIZATIONS OF RULED REAL

HYPERSURFACES IN A COMPLEX SPACE FORM

U-HANG KI AND YOUNG JIN SUH

1. Introduction

A complex n(~2)-dimensionalKaehlerian manifold of constant holo
morphic sectional curvature C is called a complex space form, which is
denoted by Mn(c). A complete and simply connected complex space
form is a complex projective space PnC, a complex Euclidean space cn
or a complex hyperbolic space HnC, according as c > 0, c = 0 or c < O.
The induced almost contact metric structure of a real hypersurface M
of Mn(c) is denoted by (4),~,TJ,g).

Now, there exist many studies about real hypersurfaces of Mn(c).
One of the first researches is the classification of homogeneous real
hypersurfaces of a complex projective space PnC by Takagi [13], who
showed that these hypersurfaces of PnC could be divided into six types
which are said to be of type AI, A2 , B, C, D, and E, and in [3] Cecil
Ryan and [6] Kimura proved that they were realized as the tubes of
constant radius over compact Hermitian symmetric spaces of rank 1
or rank 2. Also Berndt [2] showed recently that all real hypersurfaces
with constant principal curvatures of a complex hyperbolic space HnC
are realized as the tubes of constant radius over certain submanifolds
when the structure vector field ~ is principal. According to Takagi's
classification theorem and Berndt's one, the principal curvatures and
their multiplicities of homogeneous real hypersurfaces of Mn(c) are
gIven.

On the other hand, let us denote by Le the Lie derivative with
respect to the structure vector field~. Then Okumura [12] and Montiel
and Romero [11] proved the followings respectively.
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THEOREM A. Let M be a real hypersurface of PnC,n~3. H it
satisfies

(1.1)

then M is locally a tube of radius r over one of the following Kaehler
submanifolds:

(Ad a hyperplane Pn-1C, where 0< r < 1r/2,
(A2 ) a totally geodesic PkC (l:::=;k:::=;n - 2),where 0< r < 1r/2.

THEOREM B. Let M be a real hypersurface of HnC,n~3. H it
satisfies (1.1), then M is locally one of the following hypersurfaces:

(Ao) a horosphere in HnC,i.e., a Montiel tube,
(A1) a geodesic hypersphere or a tube over a totally geodesic hyper

plane Hn-1C,
(A2 ) a tube over a totally geodesic HkC (1:::=;k:::=;n - 2).

As an example of special real hypersurfaces of Mn(c), c#o differ
ent from the above ones, we can give some characterizations of ruled
real hypersurfaces in terms of the covariant derivative of the second
fundmental form.

On the other hand, Kimura [7] and Ahn,Lee and the second author
[1] obtained some properties about ruled real hypersurfaces of PnC
and HnC, n~3 respectively. In particular, an example of minimal
ruled hypersurfaces of PnC and HnC, n~3 is constructed respectively.
Now let us define a distribution To by To(x) = {UETxM : u..L~(x)}

of a real hypersurface M of Mn(c),c#O, which is orthogonal to the
structure vector field ~ and holomorphic with respect to the structure
tensor cP. .

Let us denote by A the second fundamental form of the real hy
persurface M of Mn(c). Then we shall calculate the covariant deriva
tive (VxA)Y of these ruled real hypersurfaces in section 3 and obtain
the To-component and ~-component of (VxA)Y, which are given by
g«VX A)Y, Z) = °, so called 1]-parallel second fundamental tensor,
and g«VxA)Y,~)= !(X,Y) for any vector fields X,Y and Z in To
and a certain 2-form ! respectively.

On the other hand, Kimura and Maeda [8] and the second author
[1] gave some characterizations of real hypersurfaces of this type in
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Mn(c), c:;fO with the 1]-parallel second fundamental tensor and an
other related conditions respectively. In this paper we consider the
e-component g((VxA)Y,e) = !(X,Y), X,Y in To, which is equiva
lent to (VxA)Y=!(X, y)e (modulo To - component), with which we
give another characterization of ruled real hypersurfaces. Namely, we
have the following

THEOREM 1. Let M be a real hypersurface of Mn(c),c#O, n2:3.
Assume that the structure vector e is not principal. H there is a 1
form (} satisfying

(1.2)

and if it satisfies

(1.3) (VxA)Y=!(X, y)e (mod To), X, YETo,

where !(X, Y) is given by (3.6), then M is locally congruent to a
ruled real hypersurface provided that 1](AO is not constant along the
direction of e.

Now let us consider a condition £eg(X, Y) = °for any X, Y in To,
which is equivalent to the condition (1.2) and weaker than the condition
(1.1). Obviously, by virtue of Theorems A and B real hypersurfaces
of type A satisfy this condition. But until now we do not know "what
type of hypersurfaces in Mn(c) except the ones of type A satisfy the
condition (1.2)". From this point of view and the motivation of get
ting a Lie-derivative expression of ruled real hypersurfaces, by using
Theorem 1 we have the following

THEOREM 2. Let M be a real hypersurface of Mn(c),c:;fO and n2:3.
H it satisfies

(1.4)

(1.5)

£eg(X, Y) = 0,

g((£eA1»X, Y) = °
for any vector fields X and Y in the distribution To and if the structure
vector field e is not principHl, then M is locally congruent to a ruled real
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hypersurface provided that 77(A~) is not constant along the direction
of~.

In section 3 we recall some fundamental properties of ruled real
hypersurfaces of Mn(c), c#O, and calculate the To-component and the
~-component !(X, Y) of (VxA)Y for any vector fields X and Y in To
respectively.

By paying attention to the ~-component !(X, Y) a characterization
of ruled real hypersurfaces is given in section 4. That is, we shall prove
Theorem 1 in this section. Also in section 5 by using Theorem 1 we
shall prove Theorem 2 and give another result of real hypersurfaces of
type A which is related to this theorem. Also related to this result the
linear transformation 4>A is treated in the last section.

2. Preliminaries

We begin with recalling basic properties of real hypersurfaces of a
complex space form. Let M be a real hypersurface of n(~2)-dimensional
complex space form M n ( c) of constant holomorphic sectional curvature
c(#0) and let C be a unit normal field on a neighborhood of a point x
in M. We denote by J an almost complex structure of Mn(c). For a
local vector field X on a neighborhood of x in M, the transformation
of X and C under J can be represented as

JX = 4>X +77(X)C, JC = -~,

where 4> defines a skew-symmetric transformation on the tangent bun
dle TM of M, while 77 and ~ denote a I-form and a vector field on
a neighborhood of x in M, respectively. Moreover, it is seen that
g(~,X) = 77(X),where 9 denotes the induced Riemannian metric on M.
By properties of the almost complex structure J, the set (4), ~, 77, g) of
tensors satisfies

where I denotes the identity transformation. Accordingly, the set is so
called an almost contact metric structure. Furthermore the covariant
derivative of the structure tensors are given by

(2.1) (Vx4»Y = 77(Y)AX - g(AX,Y)~, Vx~ = 4>AX,
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where V is the Riemannian connection of 9 and A denotes the shape
operator with respect to the unit normal C on M.

Since the ambient space is of constant holomorphic sectional curva
ture c, the equations of Gauss and Codazzi are respectively given as
follows

(2.2)
c

R(X,Y)Z =4{g(Y,Z)X - g(X,Z)Y + g(</>Y,Z)</>X - g(</>X,Z)</>Y

- 2g(</>X, Y)</>Z} +g(AY, Z)AX - g(AX, Z)AY,

c
(2.3) (VX A)Y - (VyA)X = 4{77(X)</>Y - 77(Y)</>X - 2g(<jJX, Y)e},

where R denotes the Riemannian curvature tensor of M and V x A
denotes the covariant derivative of the shape operator A with respect
toX.

The second fundamental form is said to be 77-parallel if the shape
operator A satisfies g((VxA)Y,Z) = 0 for any vector fields X,Y and
Z in To.

Next we suppose that the structure vector field ~ is principal with
corresponding principal curvature Q. Then it is seen in [4] and [9] that
Q is constant on M and it satisfies

(2.4)

3. Ruled real hypersurfaces

This section is concerned with necessary properties about ruled real
hypersurfaces. First of all, we define a ruled real hypersurface M of
Mn(c),c#O. Let,: l--+Mn(c) be any regular curve. For any t(El) let

M~~1(c) be a totally geodesic complex hypersurface through the point
let) of Mn(c) which is orthogonal to a holomorphic plane spanned

by ,'(t) and J,'(t). Set M = {XEM~~l(C) : tEll. Then the con:"
struction of M asserts that M is a real hypersurface of Mn(c). Under
this construction the ruled real hypersurface M of Mn(c),c#O,has some
fundamental properties.
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Let us put A~ = a~ + f3U, where U is a unit vector field orthogonal
to ~ and a denotes the function 7J(A~) and 13(13#0) the length of vector
field A~ - a~. As is seen in [5], the shape operator A satisfies

(3.1) AU = f3~, AX =°
for any vector field X orthogonal to ~ and U. It turns out to be

(3.2) A4JX = -f3g(X,4JU)~, 4JAX = 0, XETo,

which implies that

(3.3)

Because of

g«A4J - 4JA)X, Y) = 0, X, YETo.

£.~g(X, Y) = £.e(g(X, Y» - g(£.eX, Y) - g(X, £.eY)

= g(Vx~,Y) + g(X, Vy~),

the above equation is equivalent to

(3.4) £.eg(X, Y) = 0, X, YETo.

Next the covariant derivative (VxA)Y with respect to X and Y in
To is explicitly expressed. The equation (2.3) of Codazzi gives us to

By the direct calculation of the left hand side of the above relation and
using (2.1) and the second formula of (3-.2), we get

c
da(X)~ + df3(X)U + 44JX + f3VxU - Ve(AX) + AVeX = O,XETo·

Let T} be a distribution defined by a subspace T}(x) = {UETo(x) :
g(u,U(x» = g(u,4JU(x» = O}. Since AX is expressed as the linear
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combination of eand U, from (3.1),(3.2) and the above equation we
can derive the following relations:

{

(132 - i)</JX,

(3VxU = 0,
_£.,/,.X

4'f' ,

{

0,

d(3(X) = (32 + i,
0,

X=U

X = </JU
XET1

Using these relations we can obtain the components of (VxA)Y,X,
Y E To, in the direction of e. In fact, we have

g«VxA)Y,O = g«VxA)e,Y) = g(Vx(Ae) - AVxe,Y)

= d(3(X)g(Y, U) + (3g(VxU, Y),

which yields combining with the above equation that

(3.5) (VxA)Y = leX, Y)e, X, YETo,

where we put
(3.6)

c
lex, Y) = (32 {g(X, U)g(Y, </JU) + g(X, </JU)g(Y, Un - 4g(</JX, Y).

From this formula we can consider two different components of (VX A )Y,
X, YETo. One is the component of To, that is, g«VxA)Y,Z) = 0, with
which Kimura and Maeda [8] and the second author [1] have studied
some characterizations of ruled real hypersurfaces. The other is the
component of e, which is given by g«VxA)Y,e) = leX, Y) for any
X, Y in To. Thus the purpose of this paper is to give a new character
ization of ruled real hypersurfaces with this condition.
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4. Proof of Theorem 1

In section 3 we have seen that ruled real hypersurfaces of Mn(c)
satisfy the conditions (1.2) and (1.3). Thus in this section as a charac
terization for ruled real hypersurfaces we consider a converse problem.
Let M be the real hypersurface of Mn(c),c;fO and assume that the
structure vector is not principal. Then we can put Ae = ae + /3U,
where the function a is given by q(Ae) and U is a unit vector field
in the holomorphic distribution To. By the assumption the function (3
does not vanish identically on M.

Now let us define a vector field V by V~e. Then, from this definition
together with (2.1) it follows V = (3t/JU. Now let us prove Theorem 1
stated in the introduction.

By the assumption (1.2) it turns out to be

(4.1) (At/J - t/JA)X = -g(X, V)e, XETo•

Then by using Lemma 2.1 in the paper [1] we have

g«Vx A)Y, Z) = (5g(AX, Y)g(Z, V),

where (5 denotes the cyclic sum with respect to X, Y and Z in To, It
implies that the shape operator satisfies

(4.2) (Vx A)Y =g(AX, Y)V +g(Y, V)AX + g(X, V)AY

+ {h(X,Y) + h(X,Y)}e

for any X and Y in To, where h(X, Y) and h(X, Y) are symmetric and
skew-symmetric with respect to X and Y respectively. Then taking the
inner product (4.2) with eand using (3.6) and the assumption (1.3),
we have /1 (X, Y) = O. Moreover, it is easily seen that

(4.3)
c

/2(X,Y) = -4g(t/JX,Y), X,YETo.

Consider next the assumption (1.3). By combining (1.3) together
with (4.2) and (4.3) it reduces to

c
(4.4) (VxA)Y = g(AX, Y)V+g(Y; V)AX+g(X, V)AY-4g(t/JX, y)e
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for any X and Y in To. Differentiating (4.1) covariantly and using (2.1)
and (4.4), we can obtain

(4.5)
(AX, AY) - ag(AX, Y)

c
- 4 g(X, Y) - g(X, V)g(Y, V) + g(V'xV, Y) = 0

for any X and Y in To, which yields that

(4.6) g(V'X V, Y) = g(V'yV, X),

because other terms of (4.5) except for the last one are symmetric with
respect to X and Y. Since we know that for any X ETo

g(A2X - aAX - ~X - g(X, V)V + V'xV,O = 0,

(4.5) can be written as the following

(4.7)
C

A 2 X - aAX - 4X - g(X, V)V +V'xV = 0, XETo.

Let us define the covariant derivative V'xV'y A of V'y A by

for any vector fields X,Y and Z. Differentiating (4.4) and using the
definition of V'X V'y A, we have for any vector fields X, Y and Z in To

(4.8)
(V'xV'yA)Z

=g(<jJAX, Y){ Z ae + a<jJAZ + Z {3U + {3V'zU - A<jJAZ
c+ 4<jJZ - (3g(Z,U)V - g(Z, V)AO

+ g(<jJAX, Z){Yae + a<jJAY + Y(3U + (3V'yU - A<jJAY

- {3g(Y, U)V - g(Y, V)AO

+ g«V'xA)Y,Z)V + g(AY,Z)V'xV + g(Z, V'xV)AY

+ g(Z, V)(V'xA)Y + g(Y, V'xV)AZ + g(Y, V)(V'xA)Z
c

- 4 g(<jJY, Z)<jJAX,



110 U-Hang Ki and Young Jin Suh

where we have used various equations obtained already in this section.
Now, we define here a To-valued I-form h on the tangent bundle by

h(X) = {Xa - ag(X, V)}~+ {X,8 - ,8g(X, V)}U - ,8g(X,U)V
c+ "4</>X + a</>AX - A</>AX + ,8'\1x U

for any vector field X in To. We shall verify that the equation

(4.9) g(AY, Z)h(X) = 0, X, Y, ZETo

holds. In fact, by definition we get

('\1x '\1y A)Z ='\1x'\1y (AZ) - ('\1xA)'\1yZ - A('\1x'\1y Z)

- ('\1vxyA)Z - ('\1y A)'\1xZ,

from which it follows that the Hicci formula for the shape operator A
is given by

('\1x'\1yA)Z - ('\1y'\1xA)Z = R(X, Y)(AZ) - A(R(X, Y)Z).

Using (2.2),(4.4)"'(4.8) and the above Hicci formula, we get for any
X,Y and Z in To

2g(</>AX, Y)h(Z) = g(</>AY, Z)h(X) + g(</>AZ, X)h(Y).

Replacing X ,Y and Z in the above equation cyclically,we get

(4.10) g(</>AX, Y)h.(Z) = g(</>AY, Z)h.(X) = g(</>AZ, X)h(Y).

Putting Z = X and replacing Y into </>Y in (4.10), we have

(4.11) g(AX, Y)h.(X) = 0,

because of g(</>AX, X) = o. Again, replacing Y into </>Y in (4.10), we
have

g(AX, Y)h(Z) = -g(AY, Z)h(X).
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Putting Z = Y in the above equation and using (4.11), we get

g(AY, Y)h(X) = O.
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Accordingly, by polarization,we can prove that (4.9) holds.
Next, let Mo be an open set consisting of points x in M such that

(3=10. Then from the assumption the subset Mo is not empty.
In order to get our result, firstly let us consider our discussion on

the interior of M - Mo, on which (3=.0 and therefore ~ is principal.
Then we have

For any principal vector X in To with principal curvature A, the con
dition (1.2) is reduced to A<jJX = A</JX + 8(X)~. From A~ = a~ the
inner product of A</JX and ~ gives us to 8(X) = O. This means that

(4.12)

on the interior of M - Mo. It is seen in [4] and [9] that the principal
curvature a is constant on the interior of M - Mo, because this is a
local property. So it satisfies (2.4). Thus, if X is a principal vector
field with corresponding principal curvature A, then we have

c
(2A - a)A</JX = (2 + aA)</JX.

Using (4.12) and the above equation we get

2 c2A - 2aA - - = 0,
2

from which it follows that all principal curvatures are nonzero constant
on the interior of M - Mo.

Secondly,let us continue our discussion on the open set Mo, on which
we can consider the following two cases.

As the first case on Mo we can consider a non-vanishing I-form h
defined on the distribution To. Then (4.9) means that

(4.13) g(AX,Y) = O,X,YETo
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on Mo. So, it follows from this and (1.2) that we get AX = g(AX, ~)~ =
f3g(X,U)~ for any XETo, which means that

(4.14) AX=O, AU = f3~

for any X ETo orthogonal to U. Consequently we obtain

g(A<f>X, Y) = 0, g(c/>AX,Y) =0, X,YETo.

As the second case on Mo we can consider heX) = °for any X in
To. In this case let us prove that (4.14) also holds. Taking the inner
product of heX) and the vector ~ and using (2.1), we have

da(X) = ag(X, V) - 2g(AX, V), XETo,

which implies that

(4.15) grad 0' = Va = aV - 2AV + w~, XETo,

where w = da(~). Accordingly it turns out to be da(Y) = -2g(AY, V)
for any Y in To orthogonal to V. Differentiating this equation with
respect to X in To orthogonal to V and taking account of (4.7), we
have

XY(a) = - 2{g«VxA)Y, V) +g(AVxY, V)

- g(A3X, Y) + ag(A2X, Y) + ~g(AX, Y)}

for any vector fields X and Y in To orthogonal to V. Taking the
skew- symmetric part of the above equation and using the equation of
Codazzi (2.3), we have

(XY - YX)a = -2g«VxY - VyX),AV).

Substituting (4.5) into the above equation and using the fact that
(XY - YX)a = g(VxY - VyX, Va) to the obtained equation, we
see

wg(V'xY - VyX,O+ ag(VxY - V'yX, V) = 0.
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From this by using (2.1),(4.6),(4.15) and the assumption (1.2) we have

wg(At/>X, Y) = o.

From this and the assumption that the function a = 7](A~) is not
constant alnog the direction of ~ it follows g(At/>X, Y) = 0 for any
vector fields X and Y in To orthogonal to V. So we have by virtue of
(1.2)

AX = g(AX,~)~ +g(AX,U)U.

Thus we see AU = f3~ + ,U. Namely

AX = g(X, U)AU

for any vector field X in To orthogonal to V. By the assumption (4.1)
and the form of AU, we have AV = ,V. Differenti"ating this equation
with respect to X orthogonal to ~,U and V and taking account of (4.4)
and (4.7), we have

4d,(X)V = c,X = 0,

which means that
AU = f3~.

From these facts we have known that (4.14) also holds for this case.
By means of the continuity of principal curvatures, (4.12) and (4.14)

lead a contradiction. It shows that the interior of M - Mo must be
empty. Thus the open set Mo is dense. By the continuity of principal
curvatures again we see that the shape operator satisfies the condition
(4.14) on the whole M. Accordingly, for any vector fields X and Y in
To we get

g(VXY,~) = -g(Vx~,Y) = -g( t/>AX, Y) = 0

by (2.1), which means that V X Y - VyX is also contained in To. Hence
the distribution To is integrable on M. Moreover, the integral manifold
of To can be regarded as the submanifold of codimension 2 in Mn(c)
whose normal vectors are ~ and C. Since we have

g(VXY,~) = g(VxY,~) = 0
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g(VX Y, C) = -g(VxC, Y) = g(AX, Y) = 0

for any vector fields X and Y in To by (2.1) and (4.14), where Vdenotes
the Riemannian connection of Mn(c), it is seen that the submanifold
is totally geodesic in Mn(c). Since To is also J-invariant , its integral
manifold is a complex submanifold and therefore it is a complex space
form Mn-t(c). Thus M is a ruled real hypersurface.

REMARK 1. Ruled real hypersurfaces in PnC and HnC with its
function "l( AO is not constant along the direction of ~ are explicitly
described in [8] and [1] ,respectively. Moreover, Kimura [7] and the
second author [1] also constructed examples of minimal ruled real hy
persurfaces in Pn C and HnC, respectively.

REMARK 2. Kimura and Maeda [8] proved that for a real hyper
surface M of Pn C if the distribution To is integrable and if the second
fundamental form A is "l-parallel, then M is locally congruent to a
ruled real hypersurface.

5. The linear transformation A4>

In this section as an application of Theorem 1 we shall prove The
orem 2 stated in the introduction. Namely, real hypersurfaces M of
Mn(c), c;fO satisfying the conditions of (1.4) and (1.5) will be deter
mined. First of all, let us investigate the conditions equivalent to the
assumption (1.5) of Theorem 2.

By definition the Lie derivative of the tensor A4> with respect to ~

is given by

(.ceA4»X = .ceCA4>X) - A4>(.ceX )

= (V'eA)4>X + A(V'e4»X + A4>(V'eX)

- V'A<pX~ -" A4>(V'eX - V'xO

for any vector field X. By using (2.1) again it gives us to

(.ceA4»X =(V'eA)4>X + A{g(X,~)A~ - g(A~,X)n

- 4>A2 4>X + A4>2AX

=(V'eA)4>X + g(X,~)A2~ - 4>A24>X - A2X
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for any vector field X. By the assumption g«£eA</»X, Y) = 0, X,
YETo, we have

g«V'eA)</>X, Y) = g«A2 + </>A2 ifJ)X, Y), X, YETo.

Replacing X into </>X, we get

(5.1) g«V'eA)X, Y) = _g«A2 </> - </>A2 )X, Y), X, YETo.

By (2.3) we obtain

(5.2) g«V'xA)~,Y) = g«V'xA)Y,~) = _g«A2 </> - </>A2 + ~ifJ)X, Y)

for any X and Y in To. Consequently it is seen that this condition is
equivalent to (1.5).

Under the assumption that ~ is principal, i.e., A~ = a~, where a is
constant it follows

(V'xA)~ = V'x(AO - AV'x~ = V'x(aO - A</>AX

= a</>AX - A</>AX.

By this result combined with (5.2) we get

g«a</>A - A</>A)X, Y) = _g«A2 </> - </>A2 + ~</»X, Y)

for any X and Y in To, from which together with the assumption of
A~ = a~ we have

By (2.4) we get

(5.3)

Thus we can show that (1.5) and (5.3) are equivalent to each other
under the situation that ~ is principal. This means that the real hy
persurfaces of type A satisfies the condition (1.5). So, conversely, we
prove the following
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PROPOSITION 5.1. Let M be a real hypersurfaces of Mn(c), c#O,
n~3. H € is principal and if it satisfies (1.5), then M is of type A.

Proof. Let X in To be a principal vector corresponding to principal
curvature A. Then,by (2.4), we get

A4JX = Jl4JX,

where the principal curvature Jl satisfies

1
(2A - O:)Jl = O:A + 2c.

By (5.3) we have
1

(A - Jl)(A + Jl- 20:) = 0,

which means that all principal curvature of M are constant. Conse
quently, according to Takagi's classification theorem and Berndt's one,
the principal curvatures and the multiplicities are given.

Suppose that M is not of type A. Then

1
A+ Jl = -0:#0.

2

We consider the case where the curvature c is positive. Without loss of
generality, we may suppose c = 4. By Takagi's classification theorem
we may take

0: = 2cot2fJ,
1r

A = cot(fJ - 4)'
1r

Jl = -tan(fJ - 4)'

where °< fJ < f. Then we have

A+ Jl = -20:,

a contradiction.
In the case where c is negative, we may suppose that c = -4 without

loss of generality. Since M is not of type A, Berndt's classification
theorem means that 0:2 < 4 and

0: = 2tanh2fJ, A= cothfJ, Jl = tanhfJ.
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4A+j.t=-,
a

a contradiction. This completes the proof. D

Lastly we shall prove Theorem 2 in the introduction.

Proof of Theorem 2. By the assumption g((£eAq,)X, Y) = 0 the
equation (5.2) holds. So, it is deformed as follows:

g(('\7xA)Y,~) = _g((A2 q, - q,A2 + ~q,)X, Y)

C
= -g(A(Aq, - q,A)X + (Aq, - q,A)AX, Y) - "4 g(q,X, Y)

C
= -g((Aq, - q,A)X, AY) - g(AX, (Aq, - q,A)Y) - "4g(q,X, Y).

By the assumption £eg(X, Y) = 0 the equation (3.3) holds. Thus we
have

(Aq, - q,A)X = -g(X, V)e.

Accordingly we get
(5.4)

C
g('\7xA)Y,~) = .8{g(X, U)g(Y, V) +g(X, V)g(Y,Un - "4g(q,X, Y).

By Theorem 1 it implies that M must be a ruled real hypersurface. 0

REMARK 3. The ruled real hypersurface M of Mn(c) satisfies (1.4)
and moreover the last equation (5.4) holds. From these together with
the equation of Codazzi (2.3) it follows (5.1), which is equivalent to
the condition (1.5).

REMARK 4. If the real hypersurface M is of A-type or ruled, then
it satisfies (1.4). Moreover, it can be easily verified that the condition
(1.4) is equivalent to the condition g((£eq,)X, Y) = 0 for any vector
fields X, YETo.

6. The linear transformation q,A

In relation to Proposition 5.1 the following proposition is proved
in this section. But contrary to Proposition 5.1 this proposition can
be acquired without the condition that the structure vector field eis
principal.
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PROPOSITION 6.1. Let M be a real bypersurface of Mn(c),cIO,
n~3. H g(A~, 010 and if it satisfies

g((£e4JA)X, Y) = 0, X, YETo,

tben M is of type A.

Proof. We can first calculate the Lie derivative £e(4JA) of the struc
ture tensor 4JA with respect to ~. By definition we have

(£e4JA)X =£e(4JAX) - 4JA£eX

=(V'e4J)AX + 4J(V'eA)X + 4JAV'eX - V'"'AX~

- 4JA(V'eX - V'xO·
Consequently, by both equations of (2.1) it is reformed to

(£e4JA)X = f3g(X,U)A~ - g(AX,A~)~ + 4J(V'eA)X, XETo
Hence, by the assumption of the theorem, it turns out to be

g(4J(V'eA)X, 4JY) = -f3g(X, U)g(A~,4JY) = f3g(X, U)g(Y, V),

which means that

(6.1) g((V'eA)X, Y) = f3g(X, U)g(Y, V), X, YETo.

Since the left hand side is symmetric with respect to X and Y, we have

f3g( X, U)g(Y, V) = f3g(X, V)g(Y, U), X, Y ETo·

Putting X = U and Y = V in the above equation, we get f3 = 0, which
means that ~ is principal, i.e., A~ = a~, where the principal curvature
a is constant. From the property combined with (6.1) it follows that

(6.2) g((V'eA)X, Y) = 0, X, YETo.

From (2.3) and (6.2), we have
c

g((V'xA)~,Y) = -4g(4JX, Y), X, YETo.

On the other hand, we have

g((V'xA)~,Y) = g(V'x(A~), Y) - g(AV'x~,Y)

= g(aV'x~ - AV'x~, Y)

for any X and Y in To, because a is constant. By these equations
together with (2.4) we have

a(A4J - 4JA) = 0.

This completes the proof. D
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