
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 130, Number 1, Pages 111–120
S 0002-9939(01)06172-X
Article electronically published on June 8, 2001

SOME CHARACTERIZATIONS
OF THE AUTOMORPHISMS OF B(H) AND C(X)

LAJOS MOLNÁR

(Communicated by David R. Larson)

Abstract. We present some nonlinear characterizations of the automorphisms
of the operator algebra B(H) and the function algebra C(X) by means of their
spectrum preserving properties.

1. Introduction

Surjective linear maps between Banach algebras which preserve the spectrum
are extensively studied in connection with a longstanding open problem sometimes
called Kaplansky’s problem on invertibility preserving linear maps. A weaker ver-
sion of that problem reads as follows. Is it true that between semisimple Banach
algebras every surjective linear map which preserves the spectrum is a Jordan ho-
momorphism? For the algebra B(X) of all bounded linear operators acting on a
Banach space this was proved to be true by Jafarian and Sourour in [3]. As for
commutative semisimple Banach algebras (for instance, the algebra C(X) of all
continuous complex functions on the compact Hausdorff space X) we once again
have an affirmative answer to the question. Namely, in that case the result is a
trivial consequence of the famous Gleason-Kahane-Żelazko theorem characterizing
multiplicative linear functionals.

The aim of this paper is to investigate a similar problem omitting the condition
of linearity. Clearly, nonlinear spectrum preserving transformations can be almost
arbitrary. So, we have to impose a more restrictive condition. This will be the
following: We assume that the spectrum of the product of the images of any two
elements is equal to the spectrum of the product of those two elements. We shall see
that on the studied algebras those transformations are “almost” automorphisms.
Furthermore, we consider another preserving condition concerning the spectrum
which will turn out to be in close relation to *-automorphisms. More precisely, the
main results of the paper can be summarized as follows.
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112 LAJOS MOLNÁR

Main Theorem. Let H be an infinite dimensional Hilbert space.
If φ : B(H)→ B(H) is a surjective function with the property that

σ(φ(A)φ(B)) = σ(AB) (A,B ∈ B(H)),

then φ is either an algebra automorphism or the negative of an algebra automor-
phism of B(H).

If ψ : B(H)→ B(H) is a surjective function with the property that

σ(ψ(A)∗ψ(B)) = σ(A∗B) (A,B ∈ B(H)),

then ψ is an algebra *-automorphism of B(H) multiplied by a fixed unitary element.
If H is finite dimensional, then in addition to the possibilities above we also get

that φ can be an algebra antiautomorphism or the negative of an algebra antiau-
tomorphism of B(H) and ψ can be an algebra *-antiautomorphism multiplied by a
fixed unitary element.

If X is a first countable compact Hausdorff space and φ : C(X) → C(X) is a
surjective function with the property that

σ(φ(f)φ(g)) = σ(fg) (f, g ∈ C(X)),

then φ is an algebra automorphism of C(X) multiplied by a fixed continuous real
function of modulus 1.

If ψ : C(X)→ C(X) is a surjective function with the property that

σ(ψ(f)ψ(g)) = σ(fg) (f, g ∈ C(X)),

then ψ is an algebra (*-)automorphism of C(X) multiplied by a fixed continuous
complex function of modulus 1.

The statement follows from the results of the paper which follow. We note that
the referee kindly informed us about recent results on spectrum preserving maps
which are not assumed to be linear; see [1] and also [2]. Furthermore, we remark
that other nonlinear characterizations of the automorphisms of matrix algebras
using preserving properties can be found in [9].

2. Results

We first fix the notation and definitions that we shall use throughout.
Every linear space is considered over the complex field. Let X be a Banach

space and denote by B(X) the algebra of all bounded linear operators on X . The
spectrum in any Banach algebra is denoted by σ(.). In B(X), the spectrum has
several important subsets. In what follows σp(A) denotes the point spectrum of
the operator A ∈ B(X), that is,

σp(A) = {λ ∈ C : A− λI is noninjective}

and σs(A) denotes the surjectivity spectrum of A, that is,

σs(A) = {λ ∈ C : A− λI is nonsurjective}.

If x ∈ X and f ∈ X∗ (X∗ is the dual space of X), then x⊗f stands for the operator
of rank at most one defined by

(x⊗ f)(y) = f(y)x (y ∈ X).
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CHARACTERIZATIONS OF THE AUTOMORPHISMS OF B(H) AND C(X) 113

Clearly, every finite rank operator A ∈ B(X) is a finite linear combination of such
operators. On the finite rank elements of B(X) one can define the trace functional
tr by

trA =
∑
n

fn(xn),

where A =
∑

n xn⊗fn. Then tr is a well-defined linear functional with the property
that tr(TA) = tr(AT ) for every finite rank operator A ∈ B(X) and for any T ∈
B(X). For a matrix A ∈Mn(C), At denotes the transpose of A.

If X is a compact Hausdorff space, then let C(X) denote the algebra of all
continuous complex valued functions on X . In this algebra the spectrum of an
element equals its range. If f ∈ C(X), then supp f stands for the support of f ,
that is, supp f = {x ∈ X : f(x) 6= 0}.

Turning to our results and their proofs, we remark that on operator algebras,
besides linear maps preserving the spectrum one can also consider such transfor-
mations which preserve some parts of the spectrum. The following two results are
of that type. In fact, they were motivated by [10, Theorem 3 and Theorem 4],
respectively.

Theorem 1. Let X be a Banach space and let φ : B(X) → B(X) be a surjective
function with the property that

σp(φ(A)φ(B)) = σp(AB) (A,B ∈ B(X)).(1)

If X is infinite dimensional, then there is an invertible linear operator T ∈ B(X)
such that either

φ(A) = TAT−1 (A ∈ B(X))

or

φ(A) = −TAT−1 (A ∈ B(X)).

If φ : Mn(C) → Mn(C) is a surjective function satisfying (1), then we have the
following possibilities:

(a) there is an invertible matrix T1 ∈Mn(C) such that

φ(A) = T1AT
−1
1 (A ∈Mn(C));

(b) there is an invertible matrix T2 ∈Mn(C) such that

φ(A) = −T2AT
−1
2 (A ∈Mn(C));

(c) there is an invertible matrix T3 ∈Mn(C) such that

φ(A) = T3A
tT−1

3 (A ∈Mn(C));

(d) there is an invertible matrix T4 ∈Mn(C) such that

φ(A) = −T4A
tT−1

4 (A ∈Mn(C)).

Proof. We first show that φ is injective. Indeed, if A,A′ ∈ B(X) are such that
φ(A) = φ(A′), then from (1) we obtain that σp(AB) = σp(A′B) for every B ∈
B(X). This implies that

σp(Ax ⊗ f) = σp(A′x⊗ f) (x ∈ X, f ∈ X∗).(2)

It is an easy fact that if dimX ≥ 2, then

σp(y ⊗ g) = {0, g(y)} (y ∈ X, g ∈ X∗).(3)
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Since in the one-dimensional case our statement is trivial, in what follows we assume
that dimX ≥ 2. From (2) we infer that f(Ax) = f(A′x) for every x ∈ X, f ∈ X∗.
It follows that A = A′ which proves the injectivity of φ.

Observe that φ preserves the rank-one operators. In fact, this follows from the
following characterization of rank-one elements of B(X). The operator A ∈ B(X)
has rank one if and only if A 6= 0, 0 ∈ σp(TA) and #σp(TA) ≤ 2 for every T ∈ B(X)
(# denotes cardinality). Observe that if A 6= 0, then φ(A) 6= 0.

Our next step is to show that φ is linear. The easiest way to verify this is the
use of the trace functional as follows. Since the trace of a rank-one operator x⊗ f
is f(x), we obtain from (1) and (3) that

trφ(A)φ(B) = trAB(4)

for every A ∈ B(X) and rank-one operator B ∈ B(X). If A,A′ ∈ B(X) are
arbitrary and B ∈ B(X) is any rank-one operator, then we compute

tr((φ(A) + φ(A′))φ(B)) = trφ(A)φ(B) + trφ(A′)φ(B)

= trAB + trA′B = tr(A+A′)B = trφ(A +A′)φ(B).

By the arbitrariness of B we obtain that φ is additive. One can check that φ is
homogeneous in a similar way.

So, φ is a linear bijection of B(X) preserving the rank-one operators. The form
of such transformations is well-known. It follows from the argument in [4] leading
to [4, Lemma 1.2] that we have two possibilities:

(i) there exist bijective linear operators T : X → X and S : X∗ → X∗ such that

φ(x ⊗ f) = Tx⊗ Sf (x ∈ X, f ∈ X∗);
(ii) there exist bijective linear operators T ′ : X∗ → X and S′ : X → X∗ such

that

φ(x⊗ f) = T ′f ⊗ S′x (x ∈ X, f ∈ X∗).
Suppose first that we have (i). According to (4) we obtain

(Sf)(Ty) · (Sg)(Tx) = f(y)g(x) (x, y ∈ X, f, g ∈ X∗).
Consequently, there is a scalar λ such that

(Sg)(Tx) = λg(x) (x ∈ X, g ∈ X∗).
By the closed graph theorem we readily obtain that the bijective linear operators
T, S are bounded and hence we infer that T ∗S = λI ∈ B(X∗). Thus, S = λT ∗−1 =
λT−1∗ and this implies that φ(A) = λTAT−1 for every finite rank operator A ∈
B(X). Using the property (1) of φ we have λ2 = 1, that is, either λ = 1 or λ = −1.
Suppose that λ = 1. Let A ∈ B(X) be arbitrary. Pick any rank-one operator
φ(B) ∈ B(X). From (4) it follows that

trφ(A)φ(B) = trAB = tr(TAT−1TBT−1) = tr(TAT−1φ(B)).

By the arbitrariness of φ(B) we obtain that φ(A) = TAT−1 for every A ∈ B(X).
Assume now that we have (ii). Similar to case (i) one can prove that T ′ : X∗ → X

is a bounded invertible linear operator and

φ(x⊗ f) = λT ′(f ⊗ τ(x))T ′−1 (x ∈ X, f ∈ X∗)
where τ denotes the natural embedding of X into X∗∗. Since (x⊗ f)∗ = f ⊗ τ(x),
we obtain that in this case φ is of the form φ(A) = λT ′A∗T ′

−1 for every finite rank
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operator A ∈ B(X). Just as above, we infer that λ = ±1 and then obtain the form
of φ on the whole B(X). To see that in the infinite dimensional case this second
possibility (ii) cannot occur, we refer to [10, Theorem 3] stating that on an infinite
dimensional Banach space X every point spectrum preserving surjective linear map
is an automorphism (not an antiautomorphism). Since, as it can be seen, φ or −φ
satisfies these conditions, that result applies.

To verify that the finite dimensional case is different, that is, (ii) can really occur,
we remark that in that case the injectivity, surjectivity, bijectivity of an operator
are all equivalent and that it is true for any elements A,B of any Banach algebra
that σ(AB) \ {0} = σ(BA) \ {0}. Consequently, for every A,B ∈ Mn(C) we have
σp(AtBt) = σp((BA)t) = σp(BA) = σp(AB). The proof is complete.

Considering the surjectivity spectrum we have a similar result which follows.

Theorem 2. Let H be an infinite dimensional Hilbert space and let φ : B(H) →
B(H) be a surjective function with the property that

σs(φ(A)φ(B)) = σs(AB) (A,B ∈ B(H)).(5)

Then there is an invertible linear operator T ∈ B(H) such that either

φ(A) = TAT−1 (A ∈ B(H))

or

φ(A) = −TAT−1 (A ∈ B(H)).

Proof. One can argue in a very similar way as in our first result. This can be done
since, by the Fredholm alternative, for any finite rank operator (in fact, even for
any compact operator) A ∈ B(X) we have

σp(A) \ {0} = σ(A) \ {0} = σs(A) \ {0}.
To exclude the appearance of the second possibility (ii) in the proof of Theorem 1
choose a nonsurjective isometry V on H . Let A = V ∗ (the Banach space adjoint of
V ) and set B = V . Then we see that AB is invertible while A∗B∗ is not surjective.
So, σs(A∗B∗) 6= σs(AB).

Using the same argument once again, we have the following result.

Theorem 3. Let H be an infinite dimensional Hilbert space and let φ : B(H) →
B(H) be a surjective function with the property that

σ(φ(A)φ(B)) = σ(AB) (A,B ∈ B(H)).(6)

Then there is an invertible linear operator T ∈ B(H) such that either

φ(A) = TAT−1 (A ∈ B(H))

or

φ(A) = −TAT−1 (A ∈ B(H)).

Now we turn to a similar characterization of *-automorphisms.

Theorem 4. Let H be a Hilbert space and let φ : B(H) → B(H) be a surjective
function with the property that

σ(φ(A)∗φ(B)) = σ(A∗B) (A,B ∈ B(H)).(7)
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If H is infinite dimensional, then there are unitary operators U, V ∈ B(H) such
that φ is of the form

φ(A) = UAV (A ∈ B(H)).

If φ : Mn(C)→Mn(C) is a surjective funtion satisfying (7), then there are unitaries
U, V ∈Mn(C) such that φ is either of the form

φ(A) = UAV (A ∈Mn(C))

or of the form

φ(A) = UAtV (A ∈Mn(C)).

Proof. The linearity of φ can be proved in a very similar way as above. Since the
norm and the spectral radius of a selfadjoint operator in B(H) are equal, it follows
from σ(φ(A)∗φ(A)) = σ(A∗A) that ‖φ(A)‖2 = ‖A‖2 (A ∈ B(H)). Consequently,
φ is a surjective linear isometry of B(H). The form of such transformations is
well-known. Namely, to every surjective linear isometry ψ there exist unitaries
U, V ∈ B(H) such that ψ is either of the form

ψ(A) = UAV (A ∈ B(H))

or of the form

ψ(A) = UAtV (A ∈ B(H)).

If H is of infinite dimension, then the appearance of this second possibility can be
excluded just as in the last part of the proof of Theorem 2.

We next treat our problems in the case of the function algebraC(X) on a compact
Hausdorff space X .

Theorem 5. Let X be a first countable compact Hausdorff space. If φ : C(X) →
C(X) is a surjective function with the property that

σ(φ(f)φ(g)) = σ(fg) (f, g ∈ C(X)),(8)

then there exist a homeomorphism ϕ : X → X and a continuous function τ : X →
{−1, 1} such that

φ(f)(x) = τ(x)f(ϕ(x)) (x ∈ X, f ∈ C(X)).

Proof. We have σ(φ(1)2) = σ(1). The spectrum of an element of C(X) equals its
range. Therefore, φ(1)2 = 1 and considering the transformation f 7→ φ(1)φ(f), we
can and do assume that our function φ satisfies φ(1) = 1.

We obtain from (8) that σ(φ(f)) = σ(f) for every f ∈ C(X). So, φ preserves
the range of functions. This implies that φ maps real functions to real functions
and it sends nonnegative functions to nonnegative functions.

We prove that φ is injective. This will follow from the following characterization
of the equality between functions. Let f, g ∈ C(X). Then f = g if and only if
σ(fh) = σ(gh) for every nonnegative function h ∈ C(X). Indeed, suppose that
f(x0) 6= g(x0) for some x0 ∈ X . We can assume that |f(x0)| ≤ |g(x0)|. Let D
be an open disk centered at f(x0) which does not contain g(x0) and let U be a
neighbourhood of x0 such that f(x) ∈ D for every x ∈ U . Let h : X → [0, 1] be a
continuous function such that supph ⊂ U and h(x0) = 1. Such a function exists
by Urysohn’s lemma. Then we obtain σ(fh) ⊂ [0, 1]D but g(x0)h(x0) = g(x0) /∈
[0, 1]D. Therefore, σ(fh) 6= σ(gh). So, we have the injectivity of φ. Therefore, φ
and φ−1 are bijective functions having the same properties concerning the spectrum.
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Our next claim is that φ preserves the usual ordering between real functions.
This will follow from the following characterization of that ordering. If f, g ∈ C(X)
are real functions, then f ≤ g if and only if

(a) hg ≤ c =⇒ hf ≤ c for every 0 ≤ h ∈ C(X) and c ∈ R
and

(b) hf ≥ c =⇒ hg ≥ c for every 0 ≤ h ∈ C(X) and c ∈ R.

To see this, suppose that f(x0) > g(x0) for some x0 ∈ X . Clearly, there exists a
positive number ε such that either f(x0) does not belong to the ε-neighbourhood
of [0, g(x0)] or g(x0) does not belong to the ε-neighbourhood of [0, f(x0)]. Suppose
that we have the first possibility. Choose a continuous function h : X → [0, 1] for
which h(x0) = 1, and the support of h is a subset of a neighbourhood of x0 in which
g takes its values in the ε-neighbourhood of g(x0). Then we find that σ(hg) is a
subset of the ε-neighbourhood of [0, g(x0)] but σ(hf) is not a subset of that set. It
is easy to see that there is a constant c such that hg ≤ c but hf � c. So, the above
characterization really holds and then we get that f ≤ g if and only if φ(f) ≤ φ(g).

Observe that by (8) we have fg = 0 if and only if φ(f)φ(g) = 0. Now, if f, g ≥ 0
and fg = 0, then we find that

φ(f + g) = φ(max{f, g}) = max{φ(f), φ(g)} = φ(f) + φ(g).

To any point x ∈ X there exists a continuous function fx : X → [0, 1] such that
fx(x) = 1 and fx(y) < 1 if y 6= x. In fact, by the first countability of X there is
a sequence {Un} of neighbourhoods of x which forms a base of neighbourhoods of
that point. For every n ∈ N there is a continuous function fn : X → [0, 1] whose
support is in Un and fn(x) = 1. Now, set fx =

∑
n

1
2n fn. This function fulfills

our requirements. Denote by Fx the set of all such function fx. We assert that if
fx ∈ Fx, then φ(fx) belongs to Fϕ(x) for some ϕ(x) ∈ X . In fact, since φ preserves
the range of functions, it follows that φ(fx) maps into [0, 1] and it takes the value
1. Suppose that φ(fx) equals 1 at two different points, say y, z. It follows that
there are functions g′ ∈ Fy and h′ ∈ Fz such that g′h′ = 0 and g′+h′ ≤ φ(fx). Let
g = φ−1(g′) and h = φ−1(h′). Then we have gh = 0 and by the previous sections
of the proof we infer that g + h = φ−1(g′ + h′) ≤ fx. Since g + h takes the value
1 at at least two points, the same must be true for fx, which is a contradiction.
This means that φ(fx) ∈ Fϕ(x) for some ϕ(x) ∈ X . We next show that the point
ϕ(x) does not depend on the particular choice of fx. Indeed, let fx, f ′x ∈ Fx. Then
max{fx, f ′x} ∈ Fx and this implies that max{φ(fx), φ(f ′x)} ∈ Fy for some y ∈ X .
This proves that φ(fx) and φ(f ′x) take their maximum at the same point. So, we
have a function ϕ : X → X such that fx ∈ Fx implies φ(fx) ∈ Fϕ(x). Since φ and
φ−1 share the same properties, we obtain that ϕ is a bijection.

We assert that φ is homogeneous. Let f ∈ C(X) and λ ∈ C. For any 0 ≤ h ∈
C(X) we have

σ(λφ(f)φ(h)) = λσ(φ(f)φ(h)) = λσ(fh) = σ((λf)h) = σ(φ(λf)φ(h))

which implies that φ(λf) = λφ(f).
Let 0 ≤ f ∈ C(X), x ∈ X , and let f(x) = λ. There exists fx ∈ Fx such that

λfx ≤ f . Then we have λφ(fx) = φ(λfx) ≤ φ(f). This gives us that

f(x) = λ = λφ(fx)(ϕ(x)) ≤ φ(f)(ϕ(x)).
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Since φ−1 has the same properties as φ, it follows that

φ−1(φ(f))(ϕ−1(ϕ(x))) ≥ φ(f)(ϕ(x)),

that is, we also have f(x) ≥ φ(f)(ϕ(x)). Therefore, we obtain φ(f)(ϕ(x)) = f(x)
for every x ∈ X and 0 ≤ f ∈ C(X).

We show that ϕ is a homeomorphism. We need only to show that ϕ is continuous.
Let xn be a sequence in X converging to the point x ∈ X . Suppose that ϕ(xn)
does not converge to ϕ(x). Then there is a neighbourhood U of ϕ(x) such that
ϕ(xn) /∈ U for infinitely many indices. Let h′ : X → [0, 1] be a continuous function
with support in U such that h′(ϕ(x)) = 1. Let h ∈ C(X) be such that φ(h) = h′.
Then we have h(xn) = h′(ϕ(xn)) = 0 for infinitely many n’s and this contradicts
h(xn) → h(x) = 1. So, ϕ is a homeomorphism of X and we have φ(f) = f ◦ ϕ−1

for every nonnegative f ∈ C(X).
Finally, for any f ∈ C(X) and 0 ≤ h ∈ C(X) we compute

σ(φ(f) · h ◦ ϕ−1) = σ(φ(f)φ(h)) = σ(fh) = σ(f ◦ ϕ−1 · h ◦ ϕ−1)

which gives us that φ(f) = f ◦ ϕ−1. This completes the proof.

We turn to the second type of our preserver problems involving involution. We
have the following result.

Theorem 6. Let X be a first countable compact Hausdorff space. If φ : C(X) →
C(X) is a surjective function with the property that

σ(φ(f)φ(g)) = σ(fg) (f, g ∈ C(X)),(9)

then there exist a homeomorphism ϕ : X → X and a function τ ∈ C(X) of modulus
1 such that

φ(f)(x) = τ(x)f(ϕ(x)) (x ∈ X, f ∈ C(X)).

Proof. Similarly as in the proof of Theorem 5 one can verify that φ is injective.
Indeed, if f, g ∈ C(X) are such that φ(f) = φ(g), then we have

σ(fh) = σ(φ(f)φ(h)) = σ(φ(g)φ(h)) = σ(gh)

for every h ∈ C(X) which implies that f = g.
Observe that we have |φ(1)|2 = 1 which implies that φ(1) is a function of modulus

1. Considering the transformation f 7→ φ(1)φ(f), we can and do assume that our
function φ satisfies φ(1) = 1. We have

σ(φ(g)) = σ(φ(1)φ(g)) = σ(1g) = σ(g)

for every g ∈ C(X). Therefore, φ is a self-bijection of the set CR(X) of all real
valued continuous functions on X which satisfies

σ(φ(f)φ(g)) = σ(fg) (f, g ∈ CR(X)).

Since, as it turns out from the proof of the previous result, Theorem 5 remains valid
for the function algebra CR(X) as well, we obtain that there is a homeomorphism
ϕ : X → X such that

φ(f) = f ◦ ϕ (f ∈ CR(X)).
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If f ∈ C(X), then we have

σ(φ(f) · g ◦ ϕ) = σ(φ(f)φ(g)) = σ(fg) = σ(f ◦ ϕ · g ◦ ϕ)

for every g ∈ CR(X) which yields φ(f) = f ◦ ϕ. The proof is complete.

Finally, we present an application of our results. Let A be a Banach algebra.
The transformation φ : A → A (no linearity or continuity is assumed) is called a 2-
local automorphism if for every x, y ∈ A there exists an algebra automorphism φx,y
of A such that φ(x) = φx,y(x) and φ(y) = φx,y(y). Similarly, the transformation
ψ : A → A is called a 2-local isometry if for every x, y ∈ A there exists a surjective
linear isometry ψx,y of A such that ψ(x) = ψx,y(x) and ψ(y) = ψx,y(y). 2-local
maps were first studied by Šemrl in [11].

Let H be an infinite dimensional separable Hilbert space. It was proved in [11]
that every 2-local automorphism of B(H) is an algebra automorphism of B(H). As
for the function algebra C(X) over a compact Hausdorff space X , it follows from [5,
1.2. Theorem] that every 2-local automorphism of C(X) is linear. Hence, applying
our result [8, Theorem 2.2], we see that if X is a first countable compact Hausdorff
space, then every 2-local automorphism of C(X) is an algebra automorphism.

As for the isometry groups of the above-mentioned algebras, we refer to [7] where
we have proved that every 2-local isometry of any C∗-subalgebra A of B(H) which
contains the ideal of all compact operators and the identity operator is linear. In
particular, we obtained that every 2-local isometry of B(H) is a surjective linear
isometry of B(H). Unfortunately, we do not know whether the analogue statement
is true for C(X), X being a first countable compact Hausdorff space.

Referring back to Šemrl’s result on 2-local automorphisms of B(H), examining
the proof of [11, Theorem 1], it seems essential that H is a Hilbert space. It is a
natural question to ask what can be stated for Banach spaces. It follows from the
form of the automorphims of B(X) (every algebra automorphism of B(X) is inner)
and Theorem 1 that if X is an infinite dimensional Banach space and φ : B(X)→
B(X) is a surjective 2-local automorphism, then φ is an algebra automorphism of
B(X). For an analogous result concerning linear (1-)local automorphisms see [6,
Theorem 2.1].
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