
Some characterizations of vanishing Bochner
curvature tensor

By Toyoko KASHIWADA

Introduction. In Riemannian manifolds, it is well known that the
Weyl conformal curvature tensor vanishes if and only if R_{abcd}=0 for indi-
ces a, b, c, d, which differ from one another. In this paper, we get the
analogous property to it for the Bochner curvature tensor, and by this, we
have some necessary and sufficient conditions in terms of sectional curva-
tures in order that K\"ahler manifolds have vanishing Bochner curvature
tensor. These theorems are analogous to results of J. Haantjes and W.
Wrona [3] and R. S. Kulkarni [4].

The author wishes to express her hearty gratitude to Prof. S. Tachi-
bana for his valuable criticisms.

\S 1. Relations of R_{abcd} and B_{abcd} . Let (M^{n}, g) be an n(=2m) dimen-
sional K\"ahler manifold and \varphi_{ab} , R_{abc}^{\prime l}, R_{ab}(=R_{eab}^{e}) be its complex structure,

the Riemannian curvature tensor and the Ricci tensor respectively. Let
S_{ab}=\varphi_{a}R_{eb}e . With respect to a \varphi-base \{e_{1}, \cdots, e_{m}, \varphi e_{1}, \cdots, \varphi e_{m}\} the comp0-

nents of these tensors have relations as fo11ows^{1)} :

g_{ab}=\delta_{ab} ,

\varphi_{ii*}=-\varphi_{i*i}=1 . \varphi_{ia}=0 (a\neq i^{*}) ,

R_{abkl*}=-R_{abk*l} , R_{if}=R_{i*j*} , R_{if*}=-R_{i*f} ,

S_{if}=S_{i*f*}.=R_{i*f} , S_{if*}=-S_{i*j}=R_{if} .
Let B be the Bochner curvature tensor, i.e.

B_{abc\prime l}=R_{abcd}+ \frac{1}{n+4}U_{abccl}

where we put

U_{abcd}=R_{ac}g_{bd}-R_{bc}g_{a\prime l}+R_{bd}g_{ac}-R_{ad}g_{bc}

+S_{ac}\varphi_{bd}-S_{bc}\varphi_{ad}+S_{bel}\varphi_{ac}-S_{ad}\varphi_{bc}+2S_{ab}\varphi_{cd}+2S_{cd}\varphi_{ab}

- \frac{R}{n+2}(g_{ac}g_{bd}-g_{bc}g_{a\prime l}+\varphi_{ac}\varphi_{beC}-\varphi_{bc}\varphi_{ad}+2\varphi_{ab}\varphi_{c\prime l})t

It follows that

1) a,b,\cdots=1,\cdots,m , 1^{*} , \cdots,m^{*}; i^{*}=i+m ; i,j,\cdots=1,\cdots,m .
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U_{abba}=-(R_{aa}+R_{bb}- \frac{R}{n+2}) (|a|\neq|b|)^{1)} ,
(1. 1)

U_{ii*i*i}=-(8R_{ii}- \frac{4R}{n+2})r

We get an analogous property of conformally flat manifold as follows.
PROPOSITION^{2)} . Let M, n=2m\geqq 8 , be a K\"ahler manifold. If

R_{abcd}=0 (|a|, |b|, |c|, |d|\neq)^{3)}

holds good for every \varphi-base \{e_{1}, \cdots, e_{m}, \varphi e_{1}, \cdots, \varphi e_{m}\} , then the Bochner cur-
vature vanishes. The converse is true.

To prove this proposition, at first, we remark the following property,
(Bishop & Goldberg [1]).

LEMMA. Let L be a semi-curvature-like tensor, i.e. tensor field of type
(1. 3) such that

(1) L_{abcd}=-L_{bacd}

(2) L_{abcd}=L_{cdab}

(3) l-st Bianchi’s identity is satisfied.
Then L=0 if and only if L_{abba}=0 for mery base.

Especially, in the case of a K\"ahler manifold, for L=0, i\dot{t} suffices that
L_{abba}=0 for every \varphi-base.

The Bochner curvature tensor B is a semi-curvature-like tensor. So,
by virtue of this lemma, it suffices to prove that B_{abba}=0 for every \varphi-base.

PROOF OF PROPOSITION: For a \varphi-base \{e_{1}, \cdots, e_{m}, \varphi e_{1}, \cdots, \varphi e_{m}\} ,

(1. 2) R_{abcd}=0 (|a|, |b|, |c|,|d|\neq) .
We take another \varphi-base

e_{\acute{i}}=ce_{i}+se_{f}

(^{*}) e_{f}’=-se_{i}+ce_{f}

e_{\acute{a}}=e_{a} (|a|\neq i,j)

where c and s are real numbers such that c^{2}+s^{2}=1 and cs\neq 0 .
As (1. 2) is true for this base, we have

0=g(R(e_{i}’, e_{a})e_{f}’, e_{b})

=-cs(R_{iaib}-R_{fafb})
,\cdot

1) |i|=i , |i^{*}|=i .
2) Cf. Eisenhart [2], p. 124.
3) This means that |a| , |b| , |c| , |d| differ from one another.
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i.e. R_{aiib}=R_{affb} (|a|, |b|, i, j\neq) .
By replacing e_{i} with e_{i*} , we have

R_{ai*i*b}=R_{affb} .
So we get

(1. 3) R_{aiib}=R_{ai*i*b} (|a|, |b|, i\neq) .
Since (1. 3) \acute{i}s true for every \varphi-base, for \varphi-base (^{*}) we know

g (R(e_{i}’, e_{k\star})e_{k*} , e_{f}’)=-g(R(e_{i}’, e_{k})e_{k}, e_{f}’)

which implies

(1. 4) R_{ik*k*i}-R_{fk*k*f}=R_{ikki}-R_{fkkf} .
Replacing e_{f} with e_{f*} and adding it to (1. 4) we have

(1. 5) R_{ik*k*i}=R_{ikki} (i\neq k)

Since (1. 5) is true for every \varphi-base, computing (1. 5) with respect_{\overline{-}}to

\varphi- base(^{*}),

g (R(e_{i}’, e_{f*}’)e_{j*}’ , e_{i}’)=g(R(e_{i}’, e_{f}’)e_{f}’, e_{i}’) ,

we obtain after all,

(1. 6) R_{ii*i*i}+R_{ff*f*f}.=8R_{iffi} (i\neq j) .
Then we have

\sum_{f(\neq i)}^{m}(R_{ii*i*i}+R_{ff*f*f})=8\sum_{j=1}^{m}R_{iffi}

(m-2)R_{ii*i*i}+ \mu=4(\sum_{f=1}^{m}R_{iffi}+\sum_{f(\neq i)}^{m}R_{if*f*i})

=4(R_{ii}-R_{ii*i*\dot{\psi}}) ,

i.e.
(1. 7) R_{ii\# i*i}= \frac{1}{m+2}(4R_{ii}-\mu)

where we put \mu=\sum R_{ff*f*f}m and take account of R_{iffi}=R_{if*f*i} . Taking
f=1

sum of (1. 7) from i=1 to i=m, we have

(1. 8) R=(m+1)_{f}i .
So from (1. 7) and (1. 8) we get

(1. 9) R_{ii*i*i}= \frac{1}{n+4}(8R_{ii}-\frac{4R}{n+2}) .
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On account of (1. 6), it follows

(1. 10) R_{ifji}= \frac{1}{n+4}(R_{ii}+R_{fj}-\frac{R}{n+2}) .
On the other hand,

(1. 11) R_{i*f*f*i*}=R_{ijfi1}

Then, from (1. 1), (1. 5) and (1. 9)\sim(1.11) we obtain

B_{abba}=R_{abba}+ \frac{1}{n+4}U_{abba}=0 (|a|\neq|b|) ,
(1. 12)

B_{ii*i*i}=R_{ii*i*i}+ \frac{1}{n+4}U_{ii*i*i}=0 .

So by lemma, we get

B=01

The converse is trivial since U_{abcd}=0 for |a| , |b| , |c| , |d|\neq . Q. E. D.
REMARK: In this proof, we know that the property (1. 12) depends

only the property (1. 6).

\S 2. Theorems. We have several necessary and sufficient conditions
to be B=0 in terms of the sectional curvature.

THEOREM 1.1) Let M^{2m}, m\geqq 4, be a K\"ahler manifold. Thm, the fol-
lowings are equivalent at every point p\in M.

(1) The Bochner curvature tmsor B(p)=0.
(2)^{2)} For every \varphi-base at p,

\rho(e_{i}, e_{i*})+\rho(e_{f}, e_{f*})=8\rho(e_{i}, e_{f})^{3)} .
(3) For each holomorphic 8-plane W\subseteqq T_{p}(M),

k_{p}(W, b)=\rho(e_{1}, e_{2})+\rho(e_{3}, e_{4})

is independmt of \varphi-base b=\{e_{1}, \cdots, e_{4}, \varphi e_{1}, \cdots, \varphi e_{4}\} of W.
(4) For every orthogonal 8 vectors of T_{p}(M) such that \{e_{1} , \cdots , e_{4} , \varphi e_{1} ,

\ldots , \varphi e_{4}\} ,
\rho(e_{1}, e_{2})+\rho(e_{3}, e_{4})=\rho(e_{1}, e_{4})+\rho(e_{2}, e_{3}) .

Proof. (2)arrow(1) is noted at the last of proof of proposition.
(1)\Rightarrow(2) is trivial since (1. 1) and

1) An analogous theorem have been got independently by Ogitsu and Iwasaki, [5].
2) This was remarked by Mr. M. Sekizawa.
3) \rho(e_{a}, e_{b}) means Riemannian sectional curvature with respect to tse plane spanned by

e_{a} , eb .



294 T. Kashiwada

R_{abba}= \frac{-1}{n+4}U_{abba}\iota

(3)\subset\Rightarrow(4) is trivial.
(4) \frac{-\backslash }{/}(1) : Let \{e_{1}, \cdots, e_{m}, \varphi e_{1}, \cdots, \varphi e_{m}\} be arbitrary \varphi-base of T_{p}(M) .

For \{e_{i}, e_{f}, e_{k}, e_{l}, \varphi e_{i}, \varphi e_{f}, \varphi e_{k}, \varphi e_{l}\} , by assumption,

R_{iffi}+R_{kllk}=R_{illi}+R_{fkkf} .
We take another orthonormal vectors \{e_{i}, e_{\acute{j}}, e_{k}’, e_{l}, \varphi e_{i}, \varphi e_{f}’, \varphi e_{k}’, \varphi e_{l}\}

such that
e_{\acute{f}}=ce_{f}+se_{k}

e_{k}’=-se_{f}+ce_{k} , (c^{2}+s^{2}=1, cs\neq 0) .

Since \rho(e_{i}, e_{f}’)+\rho(e_{k}’, e_{l})=\rho(e_{i}, e_{l})+\rho(e_{f}’, e_{k}’), it follows

(2. 1) R_{fiik}=R_{fllk}

Since (2. 1) is true for every \varphi-base, for the above base,

g (R(e_{i}e_{j}’)e_{j}’ , e_{l})=g(R(e_{i}e_{k}’)e_{k}’, e_{l})

which implies
R_{ijkl}+R_{ikfl}=0

Then by Bianchi’s identity, we get R_{ifkl}=0 . Replacing e_{i}arrow e_{i*} , e_{j}arrow e_{f*}\cdots

etc, we obtain R_{abcd}=0(|a|, |b|, |c|, |d|\neq) . So, by proposition, the Bochner
curvature tensor vanishes.

(1)=\backslash (3) : Let B=0. Then, for a \varphi-base, it follows

R_{abba}= \frac{1}{n+4}(R_{aa}+R_{bb}-\frac{R}{n+2}) (|a|\neq|b|) .

Let b =\{e_{1}, e_{2}, e_{3}, e_{4}, \varphi e_{1}, \varphi e_{2}, \varphi e_{3}, \varphi e_{4}\} , b’=\{e_{1}’, e_{2}’, e_{3}’, e_{4}’, \varphi e_{1}’, \varphi e_{2}’, \varphi e_{3}’, \varphi e_{4}’\} ,

be basis of W\subseteq T_{p}(M) . We construct two basis of T_{p}(M) such that
f=\{e_{1}, \cdots, e_{m}, \varphi e_{1}, \cdots, \varphi e_{m}\}

f’=te_{1}’ ,\cdots ,e_{4}’ ,e_{5} ,\cdots ,e_{m} ,\varphi e_{1}’ ,\cdots ,\varphi e_{4}’ ,\varphi e_{5} ,\cdots ,\varphi e_{m}\}

Then we have

(2. 2) \rho(e_{1}, e_{2})+\rho(e_{3}, e_{4})=\frac{1}{n+4}\sum_{\lambda=1}^{4}(R_{\lambda\lambda}-\frac{2R}{n+2}) .

Let R_{aa} , R_{\acute{a}a} be components of the Ricci tensor with respect to base
f,f’. So, as R= \sum R_{aa}=\sum R_{\acute{a}a} and R_{ii}’=R_{ii}(i>4), we have

\sum_{\lambda=1}^{4}R_{\lambda\lambda}=\sum_{\lambda=1}^{4}R_{\lambda\lambda}’ .



Some characterizations of vanishing Bochner cumature tensor 295

Then by virtue of (2. 2), we know that k_{p}(W, b) is independent of b.
Q. E. D.

By this proof, we know “8-plane” can be changed with arbitrary “2d-

plane” (8\leqq 2d\leqq m) in this theorem. So, for example,
THEOREM 2. Let M be a K\"ahler manifold of dimension 4m\geqq 8 .

7’hen, B=0 if and only if, for every \varphi-base f of T_{p}(M),

k_{p}(f)=\rho(e_{1}, e_{2})+\cdots+\rho(e_{2m-1}, e_{2m})

is indepmdent of J^{\cdot}.

\S 3. Another proof1) of a part of Kulkarni’s result.

Theorem (Kulkarni [4], Theorem 3. 2). Let M^{n}, n\geqq 4, be a Riemennian
manifold. Then the Weyl conformal curvature tensor C vanishes if and
only if

\rho(e_{1}, e_{2})+\rho(e_{3}, e_{4})=\rho(e_{1}, e_{4})-\vdash\rho(e_{2}, e_{3})

for every quadruple of (orthogonal) vectors \{e_{1}, e_{2}, e_{3}, e_{4}\} .
Kulkarni proved this by conformal change of metric. Now, as equa-

tions in this theorem are all algebraic, we shall give an algebraic proof.
PROOF 0F KULKARNI’s THE0REM. Necessity is trivial.
Sufficiency : By assumption,

\rho(e_{i}, e_{f})+\rho(e_{k}, e_{l})=\rho(e_{i}, e_{l})+\rho(e_{f}, e_{k}) (i,j, k, l\neq) .
Taking summation with respect to l(\neq i,j, k) and k(\neq i,j), we have

(n-1)(n-2) \rho(e_{i}, e_{j})=(n-1)\{\sum_{t=1}^{n}\rho(e_{i}, e_{t})+\sum_{t=1}^{n}\rho(e_{f}, e_{t})\}-\sum_{t,r=1}^{n}\rho(e_{t}, e_{r}) .

This equation means

R_{iffi}- \frac{1}{n-2}(R_{ii}+R_{jj})-\frac{R}{(n-1)(n-2)}=0 ,

which is nothing but
C_{ifji}=0\ulcorner

As the last equation is valid for any base, we know C=0 by virtue of
lemma. Q. E. D.

Department of Mathematics,
Ochanomizu University, Tokyo, Japan

1) This proof was ramarked by Prof. S. Tachibana.
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