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ABSTRACT. For q ∈ (0, 1) let the q-difference operator be defined as follows

∂qf(z) =
f(qz) − f(z)

z(q − 1)
(z ∈ U),

where U denotes the open unit disk in a complex plane. Making use of the above
operator the extended Ruscheweyh differential operator Rλ

q f is defined. Applying

Rλ
q f a subfamily of analytic functions is defined. Several interesting properties

of a defined family of functions are investigated.
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1. Introduction

Let A be the class of analytic functions f on the open unit disk U :=
{
z ∈ C :

|z| < 1
}
of the form

f(z) = z +
∞∑

n=2

anz
n, (1.1)

and let S be the class of univalent functions in A.

Goodman [5] introduced the class UCV of uniformly convex functions. Here,
a function f ∈ A is called uniformly convex if every (positively oriented) circular
arc of the form

{
z ∈ U : |z− ζ| = r

}
with ζ ∈ U and 0 < r < |ζ|+1, is mapped

by f univalently onto a convex arc. In particular, UCV is a subset of univalent,
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convex functions. An analytic characterization for the members of UCV was
obtained by Ma and Minda [13] and Rønning [19].

������� 1.1� ([13], [19]) Let f ∈ A. Then f ∈ UCV if and only if

Re

{
1 +

zf ′′(z)
f ′(z)

}
>

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ (z ∈ U). (1.2)

Applying the well known Alexander relation Rønning in [18], [19] considered
the class, denoted Sp, consisting of functions f ∈ A satisfying the inequality

Re

{
zf ′(z)
f(z)

}
>

∣∣∣∣zf ′(z)
f(z)

− 1

∣∣∣∣ (z ∈ U). (1.3)

Discarding an assertion that ζ have to lie in the unit disk, and that a con-
sideration concerns whole circular arcs with center at ζ, the first author and
Wísniowska in [7] introduced a family of k-uniformly convex functions, denoted
k-UCV . Let 0 ≤ k < ∞. A function f ∈ A is said to be k-uniformly con-
vex in U, if the image of every (positively oriented) circular arc of the form{
z ∈ U : |z − ζ| = r

}
with ζ ∈ C and |ζ| ≤ k, is mapped by f univalently onto

a convex arc. We note that 1-UCV = UCV. An analytic characterization for the
members of k-UCV was given in [7] (see also [8], [9], [6], [10] and [11] for related
results).

������� 1.2� ([7]) Let f ∈ A and let 0 ≤ k < ∞. Then f ∈ k-UCV if and
only if

Re

{
1 +

zf ′′(z)
f ′(z)

}
> k

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ (z ∈ U). (1.4)

In [8] a class of k-starlike functions, denoted k-ST , and related with k-UCV
by the Alexander relation was considered. Such a class consists of functions
f ∈ A which satisfy the inequality

Re

{
zf ′(z)
f(z)

}
> k

∣∣∣∣zf ′(z)
f(z)

− 1

∣∣∣∣ (z ∈ U). (1.5)

We note that 1-ST = ST . The classes k-UCV and k-ST have been generalized
as follows (see [4], [16]).

A function f ∈ A is said to be in the class ST (k, α) of k-starlike functions of
order α, 0 ≤ α < 1, if

Re

{
zf ′(z)
f(z)

}
> k

∣∣∣∣zf ′(z)
f(z)

− 1

∣∣∣∣+ α (k ≥ 0, 0 ≤ α < 1). (1.6)

Replacing f in (1.6) by zf ′(z), we obtain the inequality

Re

{
1 +

zf ′′(z)
f ′(z)

}
> k

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣+ α. (1.7)
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Following the original definition the functions satisfying (1.7) are called k-uni-
formly convex of order α and denoted UCV(k, α).

We note that UCV(k, 0) = k-UCV and ST (k, 0) = k-ST . The classes
UCV(1, α) and ST (1, α) were investigated in [1], [2] and [18].

The aim of this work is to adopt a notion of uniform convexity onto some
classes defined by a difference operator. To do this, we first introduce a notion
of q-difference operator related to the q-calculus (see, e.g., [3: Ch. 10]). Let
q > 0. For any non-negative integer n, the q-integer number n [n] is defined by:

[n] =
1− qn

1− q
= 1 + q + · · ·+ qn−1, [0] = 0. (1.8)

The q-number shifted factorial is defined by [0]! = 1 and [n]! = [1][2] · · · [n].
Clearly, lim

q→1−
[n] = n and lim

q→1−
[n]! = n!. In general we will denote [t] = 1−qt

1−q

also for a non-integer number. Throughout this paper we will assume q to be a
fixed number between 0 and 1.

���	
	�	�
 1.1� Let f ∈ A, and let the q-derivative operator or q-difference
operator be defined by

∂qf(z) =
f(qz)− f(z)

z(q − 1)
(z ∈ U). (1.9)

It is easy to check that for n ∈ N := {1, 2, . . .} and z ∈ U

∂qz
n = [n]zn−1. (1.10)

Let t ∈ R and n ∈ N. Let the q-generalized Pochhammer symbol be defined
as

[t]n = [t][t + 1][t+ 2] · · · [t+ n− 1],

and for t > 0 let the q-gamma function be defined by

Γq(t+ 1) = [t]Γq(t) and Γq(1) = 1. (1.11)

���	
	�	�
 1.2� For f ∈ A let the Ruscheweyh q-differential operator be de-
fined as follows

Rλ
q f(z) = f(z) ∗ Fq,λ+1(z) (z ∈ U, λ > −1) (1.12)

where

Fq,λ+1(z) = z +

∞∑
n=2

Γq(n+ λ)

[n− 1]!Γq(1 + λ)
zn = z +

∞∑
n=2

[λ+ 1]n−1

[n− 1]!
zn (z ∈ U).

(1.13)
The symbol “∗” stands for Hadamard product (or convolution).

From (1.12) we obtain that

R0
qf(z) = f(z), R1

qf(z) = z∂qf(z)
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and

Rm
q f(z) =

z∂m
q

(
zm−1f(z)

)
[m]!

(m ∈ N).

Making use of (1.12) and (1.13), the power series of Rλ
q f(z) for f of the form

(1.1) is given by

Rλ
q f(z) = z +

∞∑
n=2

Γq(n+ λ)

[n− 1]!Γq(1 + λ)
anz

n = z +

∞∑
n=2

[λ+ 1]n−1

[n− 1]!
anz

n (z ∈ U).

(1.14)
Note that

lim
q→1−

Fq,λ+1(z) =
z

(1− z)λ+1

and

lim
q→1−

Rλ
q f(z) = f(z) ∗ z

(1− z)λ+1
.

Thus, we can say that Ruscheweyh q-differential operator reduces to the differ-
ential operator defined by Ruscheweyh [20] in the case when q → 1−.

It is easy to check that

z∂q(Fq,λ+1(z)) =

(
1 +

[λ]

qλ

)
Fq,λ+2(z)−

[λ]

qλ
Fq,λ+1(z) (z ∈ U). (1.15)

Making use of (1.12), (1.15) and the properties of Hadamard product, we obtain
the following equality

z∂q(R
λ
q f(z)) =

(
1 +

[λ]

qλ

)
Rλ+1

q f(z)− [λ]

qλ
Rλ

q f(z) (z ∈ U). (1.16)

If q → 1−, the equality (1.16) implies

z(Rλf(z))′ = (1 + λ)Rλ+1f(z)− λRλf(z) (z ∈ U)

which is the well known recurrent formula for Ruscheweyh differential operator.

Using Ruscheweyh differential operator various new classes of convex and star-
like functions have been defined. Therefore it seems natural to use Ruscheweyh
q-differential operator to introduce the following class of functions.

���	
	�	�
 1.3� Let 0 ≤ α < 1, k ≥ 0 and λ > −1. A function f ∈ A is in the
class ST (k, α, λ, q) if it satisfies the condition

Re

{
z∂q

(
Rλ

q f(z)
)

Rλ
q f(z)

}
> k

∣∣∣∣∣z∂q
(
Rλ

q f(z)
)

Rλ
q f(z)

− 1

∣∣∣∣∣+ α (z ∈ U). (1.17)

Note that if λ = 0 and q → 1− the class ST (k, α, λ, q) reduces to the class
ST (k, α).
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In a present work we study several properties of the family ST (k, α, λ, q), e.g.
necessary and sufficient conditions to be a member of ST (k, α, λ, q), coefficients
bounds and Fekete-Szegö problem.

2. Properties of the class ST (k, α, λ, q)

We begin this section with a sufficient condition for a function f to be in the
class ST (k, α, λ, q).

������� 2.1� Let f ∈ A be given by (1.1). If the inequality

∞∑
n=2

([n](k + 1)− k − α)
Γq(n+ λ)

[n− 1]!Γq(1 + λ)
|an| ≤ 1− α (2.1)

holds true for some k (0 ≤ k < ∞), λ > −1 and α (0 ≤ α < 1), then f ∈
ST (k, α, λ, q). The result is sharp for the function

fn(z) = z − (1− α)[n− 1]!Γq(1 + λ)

([n](k + 1)− k − α) Γq(n+ λ)
zn.

P r o o f. Making use of the Definition 1.3 it suffices to prove that

k

∣∣∣∣∣z∂q
(
Rλ

q f(z)
)

Rλ
q f(z)

− 1

∣∣∣∣∣− Re

{
z∂q

(
Rλ

q f(z)
)

Rλ
q f(z)

− 1

}
< 1− α.

Observe, that

k

∣∣∣∣∣z∂q
(
Rλ

q f(z)
)

Rλ
q f(z)

− 1

∣∣∣∣∣− Re

{
z∂q

(
Rλ

q f(z)
)

Rλ
q f(z)

− 1

}

≤ (k + 1)

∣∣∣∣∣z∂q
(
Rλ

q f(z)
)

Rλ
q f(z)

− 1

∣∣∣∣∣
= (k + 1)

∣∣∣∣∣∣∣∣

∞∑
n=2

([n]− 1)
Γq(n+λ)

[n−1]!Γq(1+λ)anz
n−1

1 +
∞∑

n=2

Γq(n+λ)
[n−1]!Γq(1+λ)anz

n−1

∣∣∣∣∣∣∣∣

< (k + 1)

∞∑
n=2

([n]− 1)
Γq(n+λ)

[n−1]!Γq(1+λ) |an|

1−
∞∑

n=2

Γq(n+λ)
[n−1]!Γq(1+λ) |an|

.

The last expression is bounded by 1− α if inequality (2.1) holds.
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It is obvious that the function fn satisfies inequality (2.1) thus the number
1− α can not be replaced by a larger number. Therefore, we only need to show
that fn ∈ ST (k, α, λ, q). Since

k

∣∣∣∣z∂q
(
Rλ

q fn(z)
)

Rλ
q fn(z)

− 1

∣∣∣∣ = k

∣∣∣∣ (1− α)(1− [n])zn−1

([n](k + 1)− k − α)− (1− α)zn−1

∣∣∣∣
<

k(1− α)

k + 1
,

and

Re

{
z∂q

(
Rλ

q fn(z)
)

Rλ
q fn(z)

}
= Re

{
[n](k + 1)− k − α− [n](1 − α)zn−1

[n](k + 1)− k − α− (1− α)zn−1

}
>

k + α

k + 1
,

the condition (1.17) holds true for fn(z). Thus, fn ∈ ST (k, α, λ, q). �

The next Corollary can be easily obtained from Theorem 2.1.

������� 2.1� Let f(z) = z + anz
n. If

|an| ≤
(1− α)[n− 1]!Γq(1 + λ)

([n](k + 1)− k − α) Γq(n+ λ)
(n ≥ 2),

then f ∈ ST (k, α, λ, q).

Consider p(z) = z∂q(R
λ
q f(z))/R

λ
q f(z). We can rewrite the condition (1.17)

into the form

Re p(z) > k|p(z)− 1|+ α (z ∈ U). (2.2)

It follows that the range of the expression p(z) (z ∈ U) is a conic domain

Ωk,α =
{
w ∈ C : Rew > k|w − 1|+ α

}
, (2.3)

or

Ωk,α =
{
w = u+ iv : u > k

√
(u− 1)2 + v2 + α

}
, (2.4)

where 0 ≤ k < ∞ and 0 ≤ α < 1.

Note that Ωk,α is such that 1 ∈ Ωk,α and ∂Ωk,α is a curve defined by

∂Ωk,α =
{
w = u+ iv : (u− α)2 = k2(u− 1)2 + k2v2

}
. (2.5)

Elementary computations show that ∂Ωk,α represents a conic section sym-
metric about the real axis. It follows that the domain Ωk,α is bounded by an
ellipse for k > 1, by a parabola for k = 1 and by a hyperbola if 0 < k < 1.
Finally, for k = 0, Ωk,α is the right half plane Rew > α.

From (1.17) we obtain that f ∈ ST (k, α, λ, q) if and only if

z∂q(R
λ
q f(z))

Rλ
q f(z)

∈ Ωk,α. (2.6)
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Making use of the properties of the domain Ωk,α and (2.6) it follows that if
f ∈ ST (k, α, λ, q), then

Re
z∂q(R

λ
q f(z))

Rλ
q f(z)

>
k + α

k + 1
(z ∈ U)

and ∣∣∣∣∣Arg z∂q(R
λ
q f(z))

Rλ
q f(z)

∣∣∣∣∣ ≤
{
arctan 1−α√

|k2−α2| if 0 ≤ α < 1, k > 0,

π
2 if k = 0.

Denote by P the class of analytic and normalized Carathèodory functions and
by pk,α ∈ P the function such that pk,α(U) = Ωk,α. Following Ma and Minda
notation [15] let P(pk,α), where 0 ≤ k < ∞ and 0 ≤ α < 1, denotes the following
class of functions

P(pk,α) =
{
p ∈ P : p(U) ⊂ Ωk,α

}
=

{
p ∈ P : p ≺ pk,α in U

}
.

The functions which play the role of extremal functions for the class P(pk,α),
may be obtained by a simple modification of related functions described in [7]
(see also [11]), and are defined by

pk,α(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1+(1−2α)z
1−z if k = 0,

1 + 2(1−α)
π2

(
log 1+

√
z

1−√
z

)2

if k = 1,

1−α
1−k2 cos

(
A(k)i log 1+

√
z

1−√
z

)
− k2−α

1−k2 if 0 < k < 1,

1−α
k2−1

sin

⎛
⎝ π

2K(t)

u(z)√
t∫

0

dx√
1−x2

√
1−t2x2

⎞
⎠+ k2−α

k2−1
if k > 1.

(2.7)
with A(k) = 2

π arccos k,

u(z) =
z −

√
t

1−
√
tz

(0 < t < 1, z ∈ U),

where t is chosen such that

k = cosh
πK′(t)
4K(t)

,

and K(t) is Legendre’s complete elliptic integral of the first kind and K′(t) is
complementary integral of K(t).

Obviously, if k = 0

p0,α(z) = 1 + 2(1− α)z + 2(1− α)z2 + · · · .
For k = 1, we have (see [13] and also [19])

p1,α(z) = 1 +
8

π2
(1− α)z +

16

3π2
(1− α)z2 + · · · . (2.8)
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Using Taylor expansion in [7] and [8], for 0 < k < 1, we have

pk,α(z) = 1 +
1− α

1− k2

∞∑
n=1

[
2n∑
l=1

2l
(
A(k)
l

)(
2n− 1
2n− l

)]
zn. (2.9)

Finally, when k > 1

pk,α(z) = 1 +
π2(1− α)

4
√
t(k2 − 1)K2(t)(1 + t)

×
{
z +

4K2(t)(t2 + 6t+ 1)− π2

24
√
tK2(t)(1 + t)

z2 + · · ·
}
,

(2.10)

so that, denoting pk,α(z) = 1 + P1z + P2z
2 + · · · (Pj = Pj(k, α), j = 1, 2, . . . ),

we get

P1 =

⎧⎪⎪⎨
⎪⎪⎩

8(1−α)(arccos k)2

π2(1−k2) if 0 ≤ k < 1,
8(1−α)

π2 if k = 1,
π2(1−α)

4
√
t(1+t)K2(t)(k2−1)

if k > 1.

(2.11)

Let fk,α(z) = z + A2z
2 + A3z

3 + · · · be the extremal function in the class
ST (k, α, λ, q). Then, the relation between the extremal functions in the classes
P(pk,α) and ST (k, α, λ, q) is given by

pk,α(z) =
z∂q(R

λ
q fk,α(z))

Rλ
q fk,α(z)

(z ∈ U). (2.12)

Making use of (1.14), (1.17) and (2.12) we obtain for pk,α(z) the following coef-
ficient relation

qΓq(n+ λ)

[n− 2]!Γq(1 + λ)
An =

n−1∑
m=1

Γq(m+ λ)

[m − 1]!Γq(1 + λ)
AmPn−m, A1 = 1. (2.13)

In particular, by a straightforward computation, we get

A2 =
P1

q[1 + λ]
, (2.14)

A3 =
qP2 + P 2

1

q2[1 + λ][2 + λ]
. (2.15)

Since λ > −1, q ∈ (0, 1) and Pn are nonnegative, it follows that An are nonneg-
ative.

������� 2.2� Let k ∈ [0,∞), λ > −1, q ∈ (0, 1) and α ∈ [0, 1). If f of the
form (1.1) belongs to the class ST (k, α, λ, q), then

|a2| ≤ A2 and |a3| ≤ A3. (2.16)
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P r o o f. Let p(z) = z∂q(R
λ
q f(z))/R

λ
q f(z). Using the relation (1.14) for p(z) =

1 + p1z + p2z
2 + · · · , we have

Γq(n+ λ)

[n− 2]!Γq(1 + λ)
qan =

n−1∑
m=1

Γq(m+ λ)

[m− 1]!Γq(1 + λ)
ampn−m, a1 = 1. (2.17)

Since pk,α is univalent in U, the function

q(z) =
1 + p−1

k,α(p(z))

1− p−1
k,α(p(z))

= 1 + c1z + c2z
2 + · · · ,

is analytic in U and Re q(z) > 0. From

p(z) = pk,α

(
q(z)− 1

q(z) + 1

)
= 1 +

1

2
c1P1z +

(
1

2
c2P1 +

1

4
c21(P2 − P1)

)
z2 + · · · ,

we have

|a2| =
1

q[1 + λ]
|p1| =

1

2q[1 + λ]
|c1P1| ≤

P1

q[1 + λ]
= A2, (2.18)

where we used the inequality |cn| ≤ 2 and (2.13). In view of a relation |p1|2+|p2|
≤ P 2

1 + P2 (cf. [8]) and (2.14), we obtain

|a3| =
|qp2 + p21|

q2[1 + λ][2 + λ]
≤

q
(
|p2|+ |p1|2

)
+ (1− q)|p1|2

q2[1 + λ][2 + λ]

≤
q
(
P2 + P 2

1

)
+ (1− q)P 2

1

q2[1 + λ][2 + λ]
≤ qP2 + P 2

1

q2[1 + λ][2 + λ]
= A3.

(2.19)

Thus, the proof of the theorem is completed. �

������� 2.3� Let 0 ≤ k < ∞, λ > −1, q ∈ (0, 1) and 0 ≤ α < 1. If f of the
form (1.1) is in the class ST (k, α, λ, q), then

|an| ≤
P1(P1 + q)(P1 + [2]q) · · · (P1 + [n− 2]q)

qn−1[1 + λ]n−1
, n ≥ 2. (2.20)

P r o o f. The result is clearly true for n = 2. Let n be an integer number with
n ≥ 2, and assume that the inequality is true for all m ≤ n − 1. Making use of
(2.13), we have

|an| =
[n− 2]!Γq(1 + λ)

qΓq(n+ λ)

∣∣∣∣ pn−1 +
n−1∑
m=2

Γq(m+ λ)

[m − 1]!Γq(1 + λ)
ampn−m

∣∣∣∣
≤ [n− 2]!Γq(1 + λ)

qΓq(n+ λ)

{
P1 +

n−1∑
m=2

Γq(m+ λ)

[m− 1]!Γq(1 + λ)
|am|P1

}
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≤ [n− 2]!Γq(1 + λ)

qΓq(n+ λ)
P1

{
1 +

n−1∑
m=2

Γq(m+ λ)

[m − 1]!Γq(1 + λ)

× P1(P1 + q) · · · (P1 + [m− 2]q)

qm−1[1 + λ]m−1

}
,

where we applied the induction hypothesis to |am| and the Rogosinski result
([17]) |pn| ≤ P1. Since

Γq(m+ λ)

Γq(1 + λ)
= [1 + λ]m−1

we have

|an| ≤
[n− 2]!P1

q([1 + λ])n−1

{
1 +

n−1∑
m=2

P1(P1 + q) · · · (P1 + [m− 2]q)

qm−1[m− 1]!

}
.

Applying again mathematical induction, we find that

1 +
n−1∑
m=2

P1(P1 + q) · · · (P1 + [m − 2]q)

qm−1[m− 1]!
=

(P1 + q) · · · (P1 + [n− 2]q)

qn−2[n− 2]!
.

Consequently, the inequality (2.20) follows. �

To obtain a solution of the Fekete-Szegö problem over the class ST (k, α, λ, q),
we need the following lemmas.

����� 2.1� ([12], [15]) If q(z) = 1 + c1z + c2z
2 + · · · is an analytic function

with positive real part in U, then

|c2 − vc21| ≤ 2max {1; |2v − 1|} . (2.21)

The result is sharp for the functions q(z) = 1+z2

1−z2 or q(z) = 1+z
1−z .

����� 2.2� ([6]) If q(z) = 1 + c1z + c2z
2 + · · · ∈ P(pk) is an analytic function

in U, then

|c2 − vc21| ≤

⎧⎨
⎩

P1 − vP 2
1 if v ≤ 0,

P1 if 0 < v < 1,
P1 + (v − 1)P 2

1 if v ≥ 1.
(2.22)

The result is sharp for the functions q(z) = 1+z2

1−z2 for 0 < v < 1 and q(z) = 1+z
1−z

otherwise.

������� 2.4� Let 0 ≤ k < ∞, λ > −1, q ∈ (0, 1) and 0 ≤ α < 1. Suppose that
the function f given by (1.1) is in the class ST (k, α, λ, q). Then, for a complex
number µ

|a3 − µa22| ≤
2

q[1 + λ][2 + λ]
max

{
1;

∣∣∣∣2µ[2 + λ]

q[1 + λ]
− 3

∣∣∣∣
}
. (2.23)
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Moreover for a real parameter µ, we obtain more rigorous bounds, as follows.

|a3 − µa22|

≤ 1

[1 + λ][2 + λ]

⎧⎪⎪⎨
⎪⎪⎩

P1 − 1
q

(
1− µ [2+λ]

[1+λ]

)
P 2
1 if µ ≥ [1+λ]

[2+λ]

P1 if µ ∈ [1+λ]
[2+λ] (1− q, 1)

P1 +
1
q

(
1− q − µ [1+λ]

[2+λ]

)
P 2
1 if µ ≤ (1− q) [1+λ]

[2+λ] ,

where P1 given by (2.11). The results are sharp.

P r o o f. From (2.18) and (2.19), it follows that

a2 =
p1

q[1 + λ]
(2.24)

and

a3 =
qp2 + p21

q2[1 + λ][2 + λ]
. (2.25)

In view of (2.24) and (2.25), for a complex number µ, we have

|a3 − µa22| =
1

q[1 + λ][2 + λ]

∣∣∣∣p2 − p21
q

(
µ
[2 + λ]

[1 + λ]
− 1

)∣∣∣∣ .
Applying Lemma 2.1, we get

|a3 − µa22| ≤
2

q[1 + λ][2 + λ]
max

{
1;

∣∣∣∣2µ[2 + λ]

q[1 + λ]
− 3

∣∣∣∣
}
,

which is the thesis. The sharpness of (2.23) follows from the sharpness of (2.22).
Assume now, that a parameter µ is real. Since

|a3 − µa22| =
∣∣∣∣ qp2 + p21
q2[1 + λ][2 + λ]

− µ
p21

q2[1 + λ]2

∣∣∣∣ ,
=

1

[1 + λ][2 + λ]

∣∣∣∣p2 +
(
1

q
− µ

[2 + λ]

q[1 + λ]

)
p21

∣∣∣∣
therefore, making use of (2.22) from Lemma 2.2 the thesis follows. �

A necessary and sufficient condition for a function f ∈ A to be in the class
ST (k, α, λ, q) in terms of Hadamard product is given in the following theorem.

������� 2.5� Let 0 ≤ k < ∞, λ > −1, q ∈ (0, 1) and 0 ≤ α < 1. Then the
function f belongs to the class ST (k, α, λ, q) if and only if (f ∗Hq,λ)(z)/z 
= 0
in U, where

Hq,λ(z) = Fq,λ+2(z)

{
1−

(
1− Fq,λ+1(z)

Fq,λ+2(z)

)
w(t)qλ + [λ]

qλ(w(t)− 1)

}
(2.26)

with
w(t) = (kt+ α)±i

√
t2 − (kt+ α− 1)2

and t2 − (kt+ α− 1)2 ≥ 0.
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P r o o f. From (2.6) we have that the values of z∂q(R
λ
q f(z))/R

λ
q f(z) lie in Ωk,α.

Therefore

z∂q(R
λ
q f(z))

Rλ
q f(z)


= (kt+ α)±i
√
t2 − (kt+ α− 1)2 = w(t) (2.27)

with z ∈ U , t2 − (kt+ α− 1)2 ≥ 0.

Applying the definition of Rλ
q f and the properties of Hadamard product, the

condition (2.27) will hold if

f(z) ∗
[
z∂q(Fq,λ+1(z))− w(t)Fq,λ+1(z)

]
/z 
= 0. (2.28)

Making use of (1.15), it follows from (2.28), that (f ∗ Hq,λ)(z)/z 
= 0, where
Hq,λ(z) is given by (2.26).

Conversely, if (f∗Hq,λ)(z)/z 
= 0 in U, then the values of z∂q(R
λ
q f(z))/R

λ
q f(z)

lie completely inside Ωk,α or its complement. Since

z∂q(R
λ
q f(z))

Rλ
q f(z)

∣∣∣∣∣
z=0

= 1 ∈ Ωk,α

we obtain z∂q(R
λ
q f(z))/R

λ
q f(z) ∈ Ωk,α which shows that f ∈ ST (k, α, λ, q). �

������� 2.6� Let 0 ≤ k < ∞, λ > −1, q ∈ (0, 1) and 0 ≤ α < 1. The
coefficients hn of the function Hq,λ given by (2.26) satisfy the inequality

|hn| ≤
Γq(n+ λ)[1− α+ [n](k + 1)]

(1− α)[n− 1]!Γq(1 + λ)
, n ≥ 2. (2.29)

P r o o f. From the power series of the function Hq,λ we have

hn =
Γq(n+ λ)

[n− 1]!Γq(1 + λ)

[n]− w(t)

1− w(t)

and therefore

|hn|2 =

(
Γq(n+ λ)

[n− 1]!Γq(1 + λ)

)2 (
1− 2k([n]− 1)

t
+ ([n]− 1)

[n] + 1− 2α

t2

)

=:

(
Γq(n+ λ)

[n− 1]!Γq(1 + λ)

)2

V (t).

The function V (t) is decreasing in the interval
〈
1−α
1+k , t0

)
and increasing in (t0,∞),

where t0 = [n]+1−2α
k , with its minimum at t0. The limit of V (t) as t tends to

infinity is equal to 1 and

V

(
1− α

k + 1

)
= 1− 2k([n]− 1)

1 + k

1− α
+ ([n]− 1)([n] + 1− 2α)

(1 + k)2

(1− α)2
≥ 1.
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Thus, the maximum value of V (t) is attained at the point 1−α
k+1 . Since

V

(
1− α

k + 1

)
≤

[
1− α+ [n](k + 1)

1− α

]2
the coefficients of Hq,λ satisfy the inequality (2.29). �

������� 2.2� Let g(z) = z + anz
n. If

|an| ≤
(1− α)[n− 1]!Γq(1 + λ)

(1− α+ [n](k + 1)) Γq(n+ λ)
(n ≥ 2),

then g ∈ ST (k, α, λ, q)

P r o o f. Since∣∣∣∣(g ∗Hq,λ)(z)

z

∣∣∣∣ = |1 + hnanz
n−1| ≥ 1− |hn||an||z| ≥ 1− |z| > 0 (z ∈ U)

it follows that g ∈ ST (k, α, λ, q). �

Remark 2.1� The q-analogue of the Leibniz rule is

∂q(f(z)g(z)) = g(z)∂qf(z) + f(qz)∂qg(z).

Replacing Rλ
q f(z) in (1.17) by z∂q(R

λ
q f(z)) we can obtain a new class of

functions which is the analogue of the class UCV(k, α) of k-uniformly convex
functions of order α.

���	
	�	�
 2.1� A function f ∈ A is said to be in the class UCV(k, α, λ, q) if
it satisfies the inequality

Re

{
1 + q

z∂2
q (R

λ
q f(z))

∂q(Rλ
q f(z))

}
> k

∣∣∣∣∣q z∂
2
q (R

λ
q f(z))

∂q(Rλ
q f(z))

∣∣∣∣∣+ α.

Note that if λ = 0 and q → 1−, the class UCV(k, α, λ, q) reduces to the class
UCV(k, α).
Remark 2.2� Making use of the properties of the functions in ST (k, α, λ, q)
we can obtain easily the properties of the functions that belong to the class
UCV(k, α, λ, q).
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