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where p is a positive polynomial on R and k > {. Let @q, ¢y, ... be the
sigenfunctions of L with eigenvalues Ao, Ay, ... By Corollary 2.9 there exists
an « such that for every fel' (R)

lim ¥ (1= (S, @) @p(x) = f(x) ac
Hor o ljﬁﬂ
In more dimensions our method gives a similar result only for the
operators L with the potentials which are sums of squares ol pelynomials,
since in several variables not every positive polynomial is a sum of squares of
polynomials.
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Some classes of commuting n-tuples of operators
by
MUNEQ CHO and MAKOTO TAKAGUCHI (Mirosaki)

Abstract. In this paper we study the inclusion relations among some classes of operator-
families and the topological properties of these classes,

1. Introduction. Throughout this paper, H will be a complex Hilbert
space with the scalar product (, ) and the norm |||, and all operators on H
will be assumed to be linear and bounded. For an operator T on H, let ¢(T)
denote its spectrum, r(7T) its spectral radius, W(T) its numerical range and
w(T) its numerical radius.

In case of a single operator, the properties of a normal operator are well
known because it has spectral resolution. Thus many authors have discussed
some classes of operators which are close to being normal in some sense. It
is well known that there exists an inclusion relation among these classes. We

spectraloid
o~
normalold convexoid
transloid (G,)
g
hyponormal spectroid .
subnormal
quasinormal

nermal

shall indicate il by the diagram above (e. g. see [10]). Here, T is called
normatoid iff {|T| = w(T), and transloid if T—Al is normaloid for each
e C. Tis called convexold iff W(T) = coa(T). (X denotes the closure of the
set X < € and co X its convex hull) T is called spectraloid iff w(T) = r(T).
T belongs to (Gy) ¥F [(T—AD"Y} = 1/d(4, a(T)) for each 1e C—oa(T), where
d(, X) denotes the distance between A and the set X < C. And T is called
speciroid iff a(T) is a spectral set for T in the sense of von Neumann.

4~ Sidin Mathenutiva 803 . '
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In this paper we study analogous situations for commuting n-tuples
of operators. The properties of a commuting n-tuple of normal operators
are well known, becavse there exists a suitable measure space (X, u} and
an n-tuple @ ={(q@;, ..., @,) of functions in L* (¥, u} such that each A,,
k=1,...,m1is umlarlly equ1valent to ‘multiplication by ¢, on [? (X, u). So we
shall introduce some classes of n-tuples of operators similar to the classes of
single operator case. In Section 3 we shall give some results on a doubly
commuting n-tuple of hyponormal operators. In Section 4 we shall show that
there exists an inclusion relation among these classes which is similar to the
inclusion relation among the corresponding classes of single operators. And
finally, in Section 5, we shall study the topological properties of these classes.

2. Definitions and preliminaries. In the sequel, by an eperator-fumily
we shall mean a commuling n-tuple of operators and denote the set of all
operator-families by B"(H),

Let A =(A,, ..., A,)e B"(H). We shall say that a point z = (zy, ..., z,}
of C"is in the joint approximate point spectrum o, (A) of A if there exists
a sequence {x,} of unit vectors in H such that

i—oo) k=1,...,n

A point z=(z, ..., z,) of C" will be said to be in the joimt approximate
compression spectrum a,(A4) of A if there exists a sequence {x;} of unit vectors
in H such that

lze — Ay xill =0

ze— A* x|l =0 (f—o0), k=1,...,n

And a point z = (z,, ..., z,) will be said to be in the joint point spectrum
a,(A) of A4 if there exists a non-zero vector x such that

k=1,...,n

Next we shall describe a definition of joint spectrum. There are several
definitions of the joint spectrum, but since the concept of Taylor's joint
spectrum seems to be the most natural generalization of the usual spectrum
of an operator, we shall describe it (cf. [183, [5T).

Let E" be the complex exierior algebra on n generators ¢, ..., ¢, with
multiplication dencted by A. Ej will stand [or the space of elements of
degres p in E" (p=1,..., n). Then we denote by Ej(H) the tensor product
H®E}. Define a map D,: Ey(H)~ E5_(H) by

Ay x =z, x,

r
Dp(x@ej; Avoney) =3 (—1" 1A x@eyy AL AG AL A,
i=1
where " means deletion. Also define Dy = D,,; = 0. Then we see that every

D, is a continuous linear map and D,0D,,, = 0. Thus, we get the sequence
E(H, A)
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D" n n—
E(H, A): 03 Exgey 2 B1_, (1 255 22 pr o 25 BagE) 2% 0,

Then A =(A,, ..., A,) is said to be nonsingular if E (H, A) is exact, ie.,
kerD, =ranD,,, for all p. Taylor's joint spectrum Sp(4) of A is the set
of pomts Z2=(z1, ..., 2) of C" such that z—A =(z,~A,,...,2,—A,)
is singular (but the spectrum of a single operator T will be denoted
by o(T)).

Next we shall define the joint inf-spectral set and Joint sup-spectral set.
Suppose that a closed subset X of C" includes Sp(4). Denote the set
of all rational functions without singularities on X by U(X). For
w(z) = ulzy, ..., )€ WX), u(d) =u(d,, ..., 4,) is well defined (see [197).
Then X is said to be a joint inf-spectral set for A if

a n
inf{hz1 e (A)xlf?: 1€l =1} = inf { ¥ fu ()] % zeX}
= k=1
for all n-tuples (u;, ..., u,) of elements of U(X). And 'sirnilarly X is said to
be a joint sup-spectral ser for A if
sup{z s () x))?: fixl = 1) < sup{z @ ze X}
for all n-tuples (uy, ..., u,) of elements of H(X). In case of n = I, both the
joint inf-spectral set and joint. sup-spectral -set coincide with the usual
spectral set (see [12]).
The joint mumerical range of A is the subset W(A) of € such that

W) = {4, %, %), ..., (4,x, ®): xeH, ||x]| =1}.

The joint operator norm, joint spectral radius and joint humerical radius of
A, denoted by |[All, r(4) and w(4) respectively, are defined by

1] = sup {(g AP Il =1,

7{A) = sup {(Z zklz).i: (21, .--,.2)ESp(4)}

and

(A)_sup{(z (4, x, %) ) lixll =1},

respectively.

It is well known that o,{4), s,(4) and Sp(4) are non-empty compact
sets, and that o,(4) v a,(4) <Sp(d) ccoW(4) (cf. [21], [20], [18], [3],
[97). Consequently it is evident that [|A4j| = w(A) = r(4). H. in particular,
A=(Ay, ..., 4,) is a doubly commuting n-tuple (ie, Ayd;=4A;4, and
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A A¥ = Ar 4, for k#j) of hyponormal eperators, then Sp(A) = o,(4)
(cf. [5]). And, moreover, if 4 is an operator-family of normal operators,
then Sp(4) = 0,(4) = 0,(4) and coSp(4) = W(4) (. [7]).

In particular, the spectral mapping theorem also holds for the joint spec-
trum as follows.

TueoreM A ([19], Theorem 4.8). Let A4 =(A4,, ..., A)e B"(H) and
Ugy o, Uy € U(SP(A)). Let u: Sp(d) —C™ be defined by u(z) =(uy(2), ...
ceny g (2)) and Lot u(A) = (ug (A), ..., tm(A). Then Sp(u(4)) =u(Sp(4)).

Next we shall define some classes of operator-families. An operator-
family A =(Ay,..., Ay is called jointly normaloid if ||A|| =w(4). An
operator-family A={(A4,, ..., 4,) is called jointly transloid if A~z = (A~
w2y, -e:, Ay—2,) i jointly normaloid for any point z =(zy, ..., z,) of C"
Similarly A are called jointly spectraloid and jointly convexoid if w(A4) = r(A)
and co Sp(A4) = co W(4), respectively. An operatorfamily A is said to belong
to joint (Gy) if

i"f{(él Ay 2 X% [l = 1} > d(z, Sp(a)

for all z=(z,, ..
linear combinations of {4, ..

. z,)€ C", Especially if for all n-tuples B = (B, ..
o A}

., B) of

inf{( 3 B2 517 [l = 1} > d(r, Sp(0),

we call 4 to belong to complete joint (G,). An operator-family A is called
Jointly inf-spectroid if the joint spectrum Sp(4) is a joint inf-spectral set and
Jointly sup-spectroid if Sp(A) is a joint sup-spectral set for A.

It is easily seen that every jointly convexoid operator-family and jointly
normaloid operator-family are jointly spectraloid (cf. [2]).

3. A doubly commuting r-tuple of hyponormal operators.

Turorem 3.1. Let A =(Ay, ..., A,) be a doubly commuting n-tuple of
hyponormal operators and suppose that

r=(rg ..., 7)€ Sp(4* A) USp(44%),

where A*A = (AT Ay, ..., A¥A,) and AA* = (4, 4T, ..., 4;AD). Then there
exists a point z ={z,, ..., 2,)eSp(A) for which |z,| = \ﬁ';, k=1...,n

We shall prepare the following lemmas for.the proof of the above
theorem.

Lemma 3.2. ([16], Theorem 7). Let T be a hyponormal operator and
suppose that - . )

reo(T* T)ua(TT.
Then there exists a point zeo(T) Jor which |z = \/;
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°

Lemma 3.3 ([1], Theorem 1). Let B(H) be the *-algebra of all operators
on H. Then there exist gn extension space K of H and a faithful
*-representation of B(H) into B(K): T>T° such that o,(Ay,..., A,)
=0 (A], ..., ANy = 0,(A49, ..., AD).

Proof of Theorem 3.1. In what follows, for an operator T we shall
denote (T* T)'? by [T]. We shall prove the theorem by induction.

For n =1, the theorem holds by Lemma 3.2.
For nz 2, assume that it holds for any doubly commuting (n—I)-tuple

of hyponormal operators. Then we shall prove that the theorem also holds
for a doubly commuting n-tuple A =(4,, ..., 4,) of hyponormal operators.
We assume that r =(ry, ..., 7 )eSp(A* 4). Since Sp(A* A) = o, (A* 4), we
have (\/;;, vy \/r-,,)ea,,(lAll, <.y JA,)). Consider the -extension space
K of H and the faithful *-representation B(H) — B(K): T - T? in Lemma
33. Then A®= (A%, ..., 4% is a doubly commuting n-tuple of hypo-
normal operators on K. Let ETR=ker(|A,?|—\/r_,,) (#{0}). Then M is a
reducing subspace of A9, ..., 4%, and (A% +--» Ae— 1) is @ doubly
commuting (r—1)-tuple of hyponormal operators. Since

k; (14~ /i)’
is not invertible, it follows that
Kex( 3 (481~ /70 = () Kerfl = )} 0 31 (0
Hence
AN

i$ not invertible, and so, by the dssumption of the induction, there exist
Z1y vevy Zy—1 6 C such that |z =./r, k=1, .., n—1, and

n—1
Z (Al?mn —2zy) (AI?M"'ZI:)*
K=1

is not invertible. Therefore

n—1
T (A9~ 2 )AL —2)* + (1A% — /)
k=1

is not invertible, and so

ker {"f (A9 —2) (4] —2)* +( A% — /) # {0} @
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Set

l?_"zh)*‘

n—1 a—1
9N = ker (’21 (AP —z) (A2 —z)*) = a=ﬂ1 ker (4,

Then 9t reduces A°. And since 9~ M {0}, \/r-,,ecr([A,‘,’,qtl). Hence by

Lemma 3.2 there exists a point z,,ecr(A,,,m) such that |z,| = \/r_,, . Since 43y is
‘hyponormal, (A3,—z,) (An|g,—zn)* is not invertible. Hence

Z (A2 —2)(AQ—z)*

k=1

is mot invertible, and so

(A — 2z (Ay~z,)*

it

k

is not invertible. Thus this point z =(z,, ..., z,) belongs to 6,(A) = Sp(A)
and satisfies |z, = /r,, k=1,..., n. In case of reSp(44¥), the proof is
similar. Consequently, the proof is complete.

In consequence of Theorem 3.1 we have the following resulis.

THEOREM 3.4. Let A =(A,,..., A,) be a doubly commuting n-tuple of
hyponormal operators. Then there exists a z=(z,, .. - Z) €Sp(A) such that
lz] =1|All. That is, A is jointly normaloid.

Proof. Since 4* A is an operator-family of Hermitian operators. we
have coSp(4*4) = W{4* 4). And observing that li4l1% -sup{z (A Ay x, %):
||x|J =1}, we sce that there exists a point (re, s ,,)eSp(A*A) such that
Z 7. = {|4]|%. Hence by Theorem 3.1 there exists a point z =(zy, ..., z,}€

GSp(A) such that |z} = ||| Thus the proof is complete.

Tueorem 3.5. If A=(Ay, ..., 4,) is a doubly commuting n-tuple of
hyponormal operators, then it follows that

inf {(k; 0y~ z)* an)f: lIxil = 1} = d{z, Sp(4)),

Jor every z =(zy, ..., z)eC",

Proof Since A—z=(d,~z, ... A,—z) is a doubly commuting
n-tuple of hyponormal operators, in a smmlar way as in the proof of Theorem
34 there exists a point 1 =(i,, ..., A)€Sp(4—z) such that

Y inf {h; lI(d~2)% X)) [ixl| = 1} = [4]2.
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Since Sp(A—z) = Sp(A4)—z, it follows that

inf { 3 (4y—20% 5% ] = 1} > de, Sp(A)".

Conversely, let u = (1, ... |z— 4. Then

it is clear that
1

( (Z e = ) %17

for every unit vector x. So we obtain the opposite inequality, and so the
proof is complete.

, 1) £ 8p(A) be such that d(z, Sp(4)) =

1

lI(Ag —2* xII7)* <

+d (z, Sp(A))

M:

H

k=1

4. The inclusion relations for classes of operator-families. First we shall
show the following theorem.

TreorREM 4.1. Let A =(A4,, ..., A) be a normal operator-family. Then
Sp(A) is a joint inf-spectral set and joint sup-spectral set for A.

Proof. Since A is a commuting n-tuple of normal operators, it is well
known that there exists a suitable measure space (X, ) and an n-tuple
@ = (@, ..., @) of functions in I® (X, ) such that each A4, is unitarily
equivalent to multiplication by @, on (X, ). That is,

Acf =@ f forall feB (X, p, k=1,....,n

Then the joint spectrum Sp(4) of A is the joint essential range of
=A@, ..., @) (cf. [8], Theorem 52), that is, the set of all points z
=(zy, ..., 2, in C" such that for every ¢> 0

plfre®: Zﬂ lou()—z] <e}) > 0.

Here we claim that a({te¥: (¢, (), ..., ¢,(1)#Sp(4)}) = 0. Because, for
each z = (zy, ..., z,) €Sp(4), there exists an open sphere U/, about z such rhat
p{re®: (010, .., a0)eU}) =
Hence by Lindelsfs theorem it follows that
p(ite®: (p1 (1), ..., @a(D)¢Sp(A}) =

Therefore, for each n-tuple u =(uy,...,u,) of elements in U(Sp(4)) and
fel (X, i |Ifl| =1, we have

3 Il fIP = 3 Jjulon )

_ T luelos ),

(e (1 ()i p(tNESp(A)} k= 1

o @)1 @ dult)

e @u O 1S (0 dp ).
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And so it follows that

i (5 (1% 11 = 1} {5 2% 2e8p(4)
and ) '

SUP.Z e (A SN2 11 f1l = 1} < SUP{E fr4 ( Z)IZ' z&eSp(d)}.

Thus the proof is complete.

Next we cite the following theorem due to R. E. Curto.

THEOREM B ([6], Theorem 1). Ler A =(Ay, ..., A,) be a doubly com-
muting n-tuple of subnormal operators on H with minimal normal exrension
N =(Ny,...,N,) on K > H. Then Sp(A4) > Sp(N).

Note that any doubly commuting r-tuple of subnormal operators has a
commuting normal extension. The following theorem follows from Theorem
4.1 and Theorem B.

TreOREM 4.2. A doubly commuting n-tuple of subnormal operators is
jointly inf-spectroid and jointly sup-spectroid.

Proof. Let A=(4,,.... 4,) be a doubly commuting n-tuple of sub-
normal operators on H and N =(N;,..., N) be its minimal commuting
normal extension acting on K = H. Then for any n-tuple (uq,...,u,) of
clements of U(Sp(d)), we have

mf{z (A% xeH, 1Ml =1} 2 _ﬁ (N X2 xe K, x| =1}

inf{ 3 (el z&Sp(N))

Z u, (2))?

: zeSp(A)}.
Hence A4 is jointly inf-spectroid. Similarly we can show A4 is jointly sup-
spectroid.

Next we shall prepare a lemma to study jointly convexmd operalor-
farmhcs In what follows we shall abbreviate ((A, XX, o, (Ayx,x) and

(3 el 9 1o
L

LemMma 43. Let X be a closed convex set of the n-dimensional unitar y
space C" such that p,(X) is contained in tue ieft closed half-plane of C, where
Py is the projection of C" onto the kth coordinate space. Then, if

A =2 = d(4, X)- (A=A x, x)

0 (dx,x) and ||Ax]|, respectively.
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Jor all e C" and x€ H, p,(W(A)) is also contained in the left closed half-plane
of C.

Proof Let A4, > 0. Then from the assumption
=21 > inf {lz~ A e pe(X0} (A~ A)x, =)

n 1
= Ak'( Z I(4; x, x)—]-ilz)i
i=1

for every vector x. Squaring both sides of the above inequality, dividing by
13 and lettmg A — 00, we obtain

—4:Re(d, x, x) = —2-Re(d, x, x).

This implies Re(A4, x,x) < 0, and the proof is complete.
THEOREM 4.4. If, for ail n-tuples B = (B, ..., B,) of linear combinations of
an operator-family A =(A, ..., 4,), .

(B—4)x]* > d(4, coSp(B))-|((B

Jor all Ae C™" and xecH, then A is jointly convexoid.

~A)x, x)

Proof. Since coSp(4) < co W(4), we have only to show the opposite
inclusion. That is, we have only to show that a closed half space which
contains Sp(A), also contains W(A), since a closed convex set is the
intersection of closed half spaces that contain it. Let = be a hyperplane of
support to coSp(4) and y = (y;, ..., v, a point at which = touches co Sp(4).
7 decomposes the entire space C" into two half spaces. Let § be the closed
half space which contains Sp(4), among the two. Here we may assume
=0 k=1,...,n because the translation: z=(z,...,2,)—>z—7
= (23 — Y1, ..., Z,—V,) takes v, Sp(B) and W(B) into (0,...,0), Sp(B—7v)
and W(B—vy), respectively, and the following inequality holds:

HB—y)—(—p} x> d M- [{(B=p—G=}x, x).

Then there exists a regular matrix M:

(A—y, coSp(B—

Gyg oo Oy

Eny -oo Oy

such that p, (Mn) and p, (MS) are the y-axis and left closed half-plane of the
first coordinate space, respectively. Then p, (M Sp(4)) = p, (Sp(Dy, ..., D,))
is contained in the left closed half-plane of the first coordinate space, where
Dyis oy Ay +en As+ ...+, A, k=1, ..., n. And then, from Lemma 4.3
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and the assumption, p; (W(D,, ﬁﬁﬁ) is contained in the ]eﬁw flf?ASCd half-
plane of it. Therefore, since M™'W(D;, ..., D,) is W(A), coW(4) is con-
tained in S. Hence coSp(4) o co W (4) and the proof is 'complete,

CoroLLaRY 4.5. For an operatordfamily 4 =(4;, ..., A)), the following
five conditions are mutually equivalent:

(@) 4 is jointly comvexoid,

(ii) d(, coSpB) < inf{{(B~A)x, x)|: Il =1} for all AeC" and
n-tuples B = (B, ..., B,) of linear combinations of {A;, ..., A},

(iiiy 4(4, coSp( ) <inf{|(B=A)x: ||Ix| = 1} for all leC” and n-tuples
B =(By, ..., B,) of linear combinations of Ay, ..., 4,},

(iv) d(4,coSp(B)-|(B~4)x, ) < [[(B—24)x* jo; all leC", xeX and
n-tuples B =(By, ..., B)) of linear combinations af {A(, ..., A,},

(v} A—2 are jointly spectraloid for all poimts 4 =(4,,..., 4,) in C".

Proof. Obviously, (i} implies (if), (ii) implies (iifi) and (i) implies (iv). And
(iv) implies (i) from Theorem 4.4. Thus we have only to show the equivalence

between (i) and (v).
Suppose that w(d—J1) = r(4— 2} for every point A in C". Since a closed
convex set of C” is the intersection of all spheres that contain it, we have

1

co Sp(4) Q{(uu-- s ) (Z i —Wi2F < r(d—4)]
" 1
= ﬂ{ Hiyeeny ) Z “Akl P wid - /1)
=co W(A).

Hence (v) implies (i).
Conversely, if 4 is jointly convexoid, then w(A—A) = r(4—A), for every
point Ae C" since

com = CDWTE—-A =co Sp(d)—
=coSp(d—1J).
Hence (i) implies (v).
5. Topological properties for classes of operator-families. First we shall

show that the set of all normal operator-families is a very thin subset of
complete joint (G,). For this purpose we prepare the following lemmas.

Lemwma S.1. If X is a non-empty compact subset of C", then there exisis a
commuting n-tuple N = (N, ..., N,) of -normal operators such thar Sp(N}=X.

icm
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Proof Let {DC,- =(Olns .-

_ : o %%y be a sequence of points in €” such
that {o;} is dense in X. Set

Then N =(Ny, ..., N,) is a commuting n«tuple of normal operaters, and
Sp(N) is the closure of {a;} and so Sp(N) =

Lemma 5.2, If A =(Ay,..., A,) is any commuting n-tuple of operarors
on H, then lhere exist a Hilbert space K and a commuting - n-tuple

=(Ny, .... Ny} of normal operators on K such that A®N =(4,®N,, ...

o ALBN,) belongs to joint (Gy). .

Proof. There exist a Hilbert space K and a commuting n-tuple of

normal operators N = (N, ..., N,) on K such that Sp(N) = co W(4), by the

above lemma. Then, since Sp(A(-EN) Sp(A)w Sp(N) = Sp(N), it follows
that for every ze C"

inf {[(A®N —2)x]: IIx]| =1}

=inf {[[A—2)x; DN —2) %312 [y ]]* +1xa]* = 1}
Zmin| inf [(4-z)x||, inf [KN—z}x]}
(1=l =1 flef}=1
n{d d(z, W(4)), d(z, Sp(N})}

>=m
>d (h, sp (A®N).

Thus A@N belongs to joint (G,) and the proof is complete.

Remark. The operator-family A@N constructed in the proof of
Lemma 5.2 belongs not only to joint (G,) but also to complete joint. {G,).

THeOREM 5.3. The set M of all commuting n-tuples of normal operators is
nowhere dense in complete joint (G{) when dimH = co.

Proof. Since 9 is closed, to show that 9 is a nowhere dense subset of
complete joint (G,), it suffices to show that M has empty interior in complete
joint (Gy). Let 4 = (A4, ..., 4)eN.

Here we cite the notations used in the proof of Theorem 4.1, Let £ be an
arbitrary positive number. For each point z = (z,, ..., z,)€ Sp(4) we denote
the open e-sphere about z by Ulz, ). Since {U(z, &)};e554y 15 an open
cover of Sp(4) and Sp(A) is compact, there exists a finite subcover of
Sp(A4). Consequently, since dim I? (X, y) = o0, there exists a subset
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Xo =it (01(1), ..., @ul0))E U(z° ¢)} of X such that dim I? (%,, ) = co. Then
set

o (1) if teX—%,,
20 if re X,

Y (0 = {

and let 7, be the multiplication operator induced by ¥, k=1,..., n And

then set
0¢ o0
- - =2, ...n
S“[oo} s, [OOJ, K .

Since § = (Sy, ..., ;) is commuting, in the same way as in Lemma 5.2 we
can construct an n-tuple N = (Ny, ..., N,) of normal operators such that
SN =(5,®N,, ..., S,®N,) acts on I} (¥,, 1) and belongs to complete
joint (G,). Let Z=(Z,, ..., Z,) be the n-tuple of the zero operator on
I2 (X—%,, ) and B = T+H{Z@S®N). Then B is a nom-normal operator-
family belonging to complete joint {G,). And since

(IS@NI <&

Sp(S@N) =coW(S) and
we have
lA—B|| <JA-T|+lIT-B|l s e+e.

Therefore, since. & > 0 is arbitrary, 4 is not contained in the interior of % in
complete joint (G,). Hence the interior of N in complete joint (G,) is empty
and the proof is complete.

Next we shall study the continuity of the joint spectrum. In general, the
joint spectrum Sp(A) is not a continuous function of 4 in B"(H), but Sp(4)
is upper semicontinuous (cf. [17] or it follows from Corollary 3.5 in Curto
[5]). Moreover, if we restrict 4 to normal operator-families, then Sp{A) is
continnous (cf. Theorem 3 in [4]). Furthermore, Janas [14, Theorem 1]
showed that the rationally convex hull of Sp(A4} is continuous if we restrict 4
to doubly commuting hyponormal operator-families.

The following theorem is an improvement on these resulis.

THEOREM 54. If {A4; = (4;y, ..., A} is a sequence of doubly commuting
operator-families of hyponormal operarors approaching an operator-family
A=(Ay,.... 4,) in joint operator norm, then Sp(A) —Sp(d) as i~ cc.

The proof of this theorem is directly deduced from the [ollowing:

LemMMa 55. Let A=(4y,..., 4,) and B=(B, .
commuting n-tuples of hyponormal operarors. Then

Sp(B) < Sp(A)+({|A*—B¥).

... B)) be two doubly

icm®
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Proof. Let z ={z;,...,2,)eC" be such that d(z, Sp(4)) > [j4* — B*|[.
Then, by Theorem 3.5, it follows that
d 1
dfz, Sp(A) < (T [I(Ax—z* xI1?)?
k=1
1
k=

n

<(X

1

1

|
WA= BY* xIPF 4 [(By—2)* 2P
k=1
" L
< 1A% B (3 WBem)* 7

for every unit vector x. Therefore,
1

0 <d(z, Sp(A)—[l4*-B*|| < inf{(i IBe—z* 5% l1¥ll = 1}
k=1

Hence z =(z, ..., 2,) ¢Sp(B) = ¢,(B) and the proof is complete.

Finally we shall investigate whether each class of operator-families
dealt with above is closed or not in B"(H). We note that if a sequence
{d; = (Ayy, ..., A)}2, of operatorfamilies approaches 4 = (4, ..., 4,) in
joint operator norm, then A¥, |14/l and W(4,) also approach A*, |l4]| and
W(A), respectively. Moreover, -if B, =(By, ..., Bi) = B =(By, ..., B,), then
A;B; - AB, where AB means (4, By, ..., A, B,).. From these facts we have
the following: ’

ProrosrrioN 5.6, The sets of normal, doubly commuting quasinormal,
doubly commuting hyporormal, joimtly normaloid and jointly spectraloid
operatorfamilies are all closed in B"(H).

ProrosiTioN 53.7. The set of all operator-families belonging to joint (G,) is
closed in B"(H).

Proof. Let {4, =(Ay, ..., Am)} be a sequence of operator-families
belonging to joint (G,) and 4; — A =(4,, ..., 4,), i— c0. Then by the upper
semicontinuity of the joint spectrum

liminfd(z, Sp(4) > d(z, Sp(4).
i

Since ||(d;,~2)x]| > |[(A~2)x|, i~ o0, and by the assumption ||(4;—z)x .
> d(z, Sp{4)) for every unit vector x and i=1,2, ..., it follows that

A —2) 3 = lim [ 4,~2) %) > limafd (s, Sp(4)) > d(z, Sp(A).

Hence A belongs to joint (G,) and the proof is complete._ . )
The set of all operator-families belonging to compl_ste joint {(G,) is also
closed; this is proved in the same way as the proposition above. :


GUEST


258 M. Cho and M. Takaguchi

ProrosiTion 58. The set of all jointly convexoid operator-fumilies is
closed in B"(H).

Proof. Let {4, =(4,.... 4} be a sequence of jointly convexoid
operator-families and A; > A =(A4;,...,4,) as i—od. Then coW(d,)
—coW(A4) as i —»cc. Let ¢ > 0. Then by the upper semicontinuity of the
joint spectrum, there exists a positive integer N such that

coSp(d;) < coSp(A)+(e)

for all i > N. Hence
co W(?ﬁ = lim co VVm = li;n coSp(4;) < coSp(A)+(s).

Since & > 0 is arbitrary, co W(A4) = coSp(4). On the other hand, in general,
coSp(4) = co W(A). Hence 4 is jointly convexoid and the proof is complete.

From this proposition we can see that the convex hull of the joint
spectrum coSp(A) is continuous if we restrict 4 to the convexoid operator-
families.

CoroLLARY 5.8. If {4, =(A4,. ..., 4;)} is a sequence of jointly convexoid
operator-families approaching an  operator-family A = (A, ..., A,), then
coSp(4;) approaches coSp(A).

Setting the foregoing results in order we get the following chart on the
classes of operator-families: :

[ joimtly spectralaid ]

/

[ jointly nofrmateid ] [ jointty convexoid 1

/ [joint (G Ji\ N

[ Jointly trahsioid ]

/ \ [compleiejcin‘r(Gﬂ]
jointly sup - i i jointly |
Jointly sup =spectroid  [doubly commuting hyponorrmal] ﬂﬂ}g{;spectroid

e
doubly commuting subnormal

[doubly commuting quasinarmal]

Inormal operator~famity]

where the symbol — indicates the inclusion relation and the symbol [9]
denotes that the class 9 of operator-families is closed in B"(H).

Here we should like to express our thanks to Professors K. Takahashi,
J. Tomiyama and T. Furuta for their valuable advices. And we are also
grateful to the referee for his advice.
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