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ABSTRACT In this paper, we use the CSS and Steane’s constructions to establish quantum error-correcting
codes (briefly, QEC codes) from cyclic codes of length 6ps over Fpm . We obtain several new classes of QEC
codes in the sense that their parameters are different from all the previous constructions. Among them, we
identify all quantum MDS (briefly, qMDS) codes, i.e., optimal quantum codes with respect to the quantum
Singleton bound. In addition, we construct quantum synchronizable codes (briefly, QSCs) from cyclic codes
of length 6ps over Fpm . Furthermore, we give many new QSCs to enrich the variety of available QSCs. A lot
of them are QSCs codes with shorter lengths and much larger minimum distances than known non-primitive
narrow-sense BCH codes.

INDEX TERMS Cyclic codes, negacyclic codes, MDS codes, CSS construction, Steane construction,
Hermitian construction, quantum MDS codes, quantum synchronizable codes.

I. INTRODUCTION

AN [n, k] linear code C over Fpm is a k-dimensional
subspace of Fnpm , where p is a prime number and Fpm

is a finite field. Let C be a linear code of length n over Fpm .
Then C is called a λ-constacyclic code if it is an ideal of
Fpm [x]
〈xn−λ〉 . If λ = 1,−1, those λ-constacyclic codes are called
cyclic codes, negacyclic codes, respectively.

In 1959, cyclic codes over finite fields were first studied by
Prange [68]. In 1967, [3] studied the case (n, p) = 1 and such
codes when (n, p) = 1 are so-called repeated-root codes.
After that, [64] and [70] also considered repeated-root codes.
They are optimal in a few cases, that motivates researchers
to further study this class of repeated-root constacyclic codes
over finite fields, and even more generally, over finite com-
mutative chain rings (see, e.g., [8], [9], [10], [11], [12], [13],
[14], [15], [16]).

Recently, Dinh ( [25], [26], [27]), studied the structure of
all constacyclic codes of lengths 2ps, 3ps and 6ps over Fpm .
He also discussed about dual constacyclic codes of these
lengths. In 2014, [20] determined the structure of codes of
length lps over Fpm .

Let C = [n, k, dH]q be a code. Then [62] showed that

n, k, dH must satisfy k ≤ n− dH +1 (the Singleton bound).
If k = n − dH +1, then C is called a maximum-distance-
separable (briefly, MDS) code. The problem of constructing
MDS codes is a hot topic because an MDS code has the
greatest detecting and error-correcting capabilities.

In 1985, Deutsch [23] gave an idea that computers use
quantum bits (briefly, qubit) to solve certain problems, in-
cluding prime factorization, exponentially faster than classi-
cal computers. Similar to classical bits, a qubit can be defnied
as |ϕ〉 = z1|0〉 + z2|1〉, where z1, z2 ∈ C are complex
numbers such that |z1|2 + |z2|2 = 1.

By empirical evidence, we can not use classical error-
correcting codes in quantum computation. However, A class
of codes is proposed to protect quantum information that is
the class of QEC codes. In 1995, in the paper [74], Shor
first introduced QEC codes. And then Hamming codes, BCH
codes and Reed-Solomon codes are used to construct many
QEC codes. By applying the idea in [2], [6], [56], [74], [78],
QEC codes have been studied extensively (for example, [2],
[7], [21], [38], [55]). Recently, using [74] and [6], some
QEC codes are constructed from the CSS and Hermitian
constructions.
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Since qMDS codes have great applications in quan-
tum computation and quantum communication, constructing
qMDS code has become an important topic. Therefore, some
authors used graph theory to construct qMDS codes [40],
[46], [71], [72]. In addition, applying the classical codes,
some qMDS codes were constructed [19], [45], [51]. In 2009,
[45] gave a class of qMDS codes from cyclic codes. After
that, [51] gave two new classes of qMDS codes from nega-
cyclic codes in 2013. Recent years, many researchers worked
on construction of qMDS code with minimum distance larger
than q

2 + 1 (for examples, [19], [31], [32], [73], [84], [85]).

An [[n, k]] QEC code encodes k logical qubits into n phys-
ical qubits. An (ab, ae)− [[n, k]] QSC is an [[n, k]] quantum
error-correcting code that corrects not only bit errors and
phase errors but also misalignment to the left by ab qubits
and to the right by ae qubits for some non-negative integers
ab and ae.

Block synchronization is an important problem in classi-
cal digital communications which was studied in [4], [34],
[57], [65], [67], [76]. However, in quantum information,
the methods in [4], [34], [57], [65], [67], [76] don’t apply.
Therefore, Fujiwara [33] first proposed QSCs to correct both
quantum noise and block synchronization errors. After that,
[60] proposed a class of QSCs from repeated-root codes
using the CSS construction.

In [28], we studied qMDS codes from negacyclic and
cyclic codes of length 2ps over Fpm . We also gave some
QSCs constructed from cyclic and negacyclic codes of length
2ps over Fpm . However, in [28], we did not find some
QEC codes using the CSS and Steane’s constructions. In
this paper, we construct some new QEC codes from cyclic
codes of length 6ps using the CSS and Steane’s constructions
and some new QSCs from cyclic codes of length 6ps. By
applying the CSS construction, we also provide all qMDS
codes built from cyclic codes of length 6ps. Note that the
structure of codes of length 6ps is much more complicated
than cyclic and negacyclic codes of length 2ps. Repeated-root
cyclic codes of length 6ps over Fpm form a very interesting
class of constacyclic codes. Their algebraic structures in term
of generator polynomials were provided in 2014 in [27].
Recently, these structures were used in [29] to completely
determine the Hamming distances of all such cyclic codes.

Motivated by these, in this research, we construct QEC
codes from cyclic codes of length 6ps over Fpm using CSS
and Steane’s constructions. Especially, we compare our QEC
codes with all previous QEC codes to show that some our
QEC codes are new in the sense that their parameters are
different from all the previous results. We also provide all
qMDS codes from cyclic codes of length 6ps over Fpm using
the CSS construction. Furthermore, we also construct QSCs
from cyclic codes of length 6ps over Fpm .

This paper is organized as follows. Section 2 gives some
basic results. Section 3 constructs QEC codes from cyclic

codes of length 6ps over Fpm using the CSS and Steane’s
constructions. Section 4 studies qMDS codes from cyclic
codes of length 6ps over Fpm using the CSS construction.
Section 5 constructs QSCs from cyclic codes of length 6ps

over Fpm . Section 6 gives some examples to illustrate our
results in Sections 3, 4 and 5, where we present numerous
qMDS and QSCs codes. Section 7 concludes our paper with
some possible open direction for future studies.

II. PRELIMINARIES

The following lemma is given in [62].

Lemma 2.1. (cf. [62]) LetC be a linear code of length n over
Fpm . Then C is Λ-constacyclic over Fpm if and only if C is
an ideal of Fpm [x]

〈xn−Λ〉 .

Given n-tuples

u = (u0, u1, . . . , un−1), v = (v0, v1, . . . , vn−1) ∈ Fnpm ,

the inner product (dot product) of two vectors u, v is defined:

u · v = u0v0 + u1v1 + · · ·+ un−1vn−1,

evaluated in Fpm . If u ·v = 0, then two vectors u, v are called
orthogonal. Dual code of a linear code C over Fpm , denoted
by C⊥, is defined as follows:

C⊥ = {u ∈ Fnpm | u · v = 0,∀v ∈ C}.

The result on the dual of a Λ-constacyclic code is provided
in [24] as follows.

Proposition 2.2. (cf. [24]) The dual of a Λ-constacyclic code
is a Λ−1-constacyclic code.

In [27], Dinh studied cyclic codes of length 6ps over Fpm .
We recall the structure of cyclic codes of length 6ps over Fpm
when pm ≡ 2 (mod 3).

Theorem 2.3. [27, Theorem 3.2] Assume that pm ≡
2 (mod 3). All cyclic codes of length 6ps over Fpm
which are of the form 〈h0(x)u0h1(x)u1h2(x)u2h3(x)u3 ,
where 0 ≤ ut ≤ ps (t = 0, 1, 2, 3). Each
code C = 〈h0(x)u0h1(x)u1h2(x)u2h3(x)u3 contains
pm(6ps−u0−u1−2u2−2u3) codewords, its dualC⊥ is the cyclic
codeC⊥ = 〈h0(x)p

s−u0h1(x)p
s−u1h2(x)p

s−u2h3(x)p
s−u3 ,

where h0(x) = x − 1, h1(x) = x + 1, h2(x) = x2 − x +
1, h3(x) = x2 + x+ 1.

We recall the definition of QEC codes appeared in [69].

Definition 2.4. [69] Let q = pm and Hq(C) be a
q-dimensional Hilbert vector space. Denote Hn

q (C) =
Hq(C)⊗· · ·⊗Hq(C) (n times). A quantum code of length n
and dimension k over Fq is defined to be a qk dimensional
subspace of Hn

q (C) and simply denoted by [[n, k, dH ]]q ,
where dH is the Hamming distance of the quantum code.

We give a small lemma.
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Lemma 2.5. Let 0 < t ∈ N. Then there are (t+2)(t+1)
2 pairs

of non-negative integers x, y such that x+ y ≤ t.

Proof. If x = 0, then we have t+ 1 options for y. If x = 1,
then we have t options for y. In general, for any x = j, where
0 ≤ j ≤ t, there are t − j + 1 options for y. That means y
can be any integer from 0 to t − j. It implies that there are
1+2+3+· · ·+t+(t+1) = (t+2)(t+1)

2 pairs of non-negative
integers x, y such that x+ y ≤ t. �

III. QUANTUM CODES FROM CYCLIC CODES OF
LENGTH 6ps OVER Fpm

In 1995, QEC codes were first introduced by Shor [74]. After
that, in 1996, by using the structure of classical codes over
GF(4), [6] found some QEC codes. In 1998, [7] gave a
new method to construct QEC codes from classical codes.
Recently, [2], [7], [21], [38], [55] constructed some QEC
codes over finite fields and some classes of finite rings.
However, QEC codes constructed from cyclic codes of length
6ps over Fpm using the CSS and Steane’s constructions have
not been studied in the past.

We recall a construction of QEC codes, the so-called CSS
construction.

Theorem 3.1. (CSS construction) [6] Let C1=[n, k1, d1]q
and C2=[n, k2, d2]q be two linear codes satisfying C2 ⊆ C1.
Then there exists a QEC code with the parameters [[n, k1 −
k2,min{d1, d

⊥
2 }]]q , where d⊥2 is the Hamming distance of

the dual code C⊥2 . Moreover, if C2 = C⊥1 , then there exists a
QEC code with the parameters [[n, 2k1 − n, d1]]q.

Throughout this paper, pm ≡ 2 (mod 3). Recall that C
is dual-containing if C⊥ ⊆ C. We give the condition of a
cyclic code of length 6ps over Fpm to be dual-containing to
construct QEC codes.

Proposition 3.2. Let C be a cyclic code of length 6ps over
Fpm which is of the form 〈h0(x)u0h1(x)u1h2(x)u2h3(x)u3〉,
where 0 ≤ ut ≤ ps (t = 0, 1, 2, 3), where h0(x) = x −
1, h1(x) = x+ 1, h2(x) = x2 − x+ 1, h3(x) = x2 + x+ 1.
Then C⊥ ⊆ C if and only if 0 ≤ ut <

ps

2 . In addition, the
number of dual-containing codes is (p

s+1
2 )4.

Proof. By Theorem 2.3, it is easy to see that
C⊥ = 〈h0(x)p

s−u0h1(x)p
s−u1h2(x)p

s−u2h3(x)p
s−u3〉.

Hence, C⊥ ⊆ C if ps − ut ≤ ut (t = 0, 1, 2, 3). It means
that 0 ≤ ut <

ps

2 (t = 0, 1, 2, 3). We see that p
s+1
2 values

to choose ut (t = 0, 1, 2, 3). Hence, the number of dual-
containing codes is (p

s+1
2 )4. �

Recently, [29] studied the Hamming distance of cyclic
codes of length 6ps over Fpm . So, we can determine all
Hamming distances of cyclic codes of length 6ps over Fpm
when pm ≡ 2 (mod 3). Combining Proposition 3.2 and
Theorem 3.1, we construct QEC codes from the class of
cyclic codes of length 6ps over Fpm .

Theorem 3.3. Let C be a cyclic code of length 6ps over
Fpm which is of the form 〈h0(x)u0h1(x)u1h2(x)u2h3(x)u3〉,
where h0(x) = x − 1, h1(x) = x + 1, h2(x) = x2 − x +
1, h3(x) = x2 + x + 1, and 0 ≤ ut ≤ ps (t = 0, 1, 2, 3). If
0 ≤ ut <

ps

2 , then there exists a QEC code with parameters
[[6ps, 6ps − 2i0 − 2i1 − 4i2 − 4i3,dH(C)]]pm . In this case,
the number of QEC codes constructed from cyclic codes of
length 6ps over Fpm using the CSS construction is (p

s+1
2 )4.

Proof. Since 0 ≤ u0, u1, u2, u3 < ps

2 , by using Propo-
sition 3.2, we have C⊥ ⊆ C. Using Theorem 3.1, there
exists a QEC code with parameters [[6ps, 6ps − 2i0 − 2i1 −
4i2 − 4i3,dH(C)]]pm . Using Proposition 3.2, the number of
dual-containing codes is (p

s+1
2 )4. Hence, the number of QEC

codes constructed from cyclic codes of length 6ps over Fpm
using the CSS construction is (p

s+1
2 )4. �

A construction which links between linear codes and QEC
codes is the Steane’s construction.

Theorem 3.4. (the Steane’s construction) [79] Let C1

and C2 be two linear codes over Fpm with parameters
[n, kC1

,dH(C1)]pm and [n, kC2
,dH(C2)]pm , where kC1

, kC2

are the dimensions of C1 and C2, respectively. If C⊥1 ⊆
C1 ⊆ C2 and kC2

≥ kC1
+ 1, then there exists an

[[n, kC1 +kC2−n,min{dH(C1), dp
m+1
pm ·dH(C2)e}]]pm QEC

code.

Combining Proposition 3.2 and Theorem 3.4, we construct
QEC codes from the class of cyclic codes of length 6ps over
Fpm using the Steane’s construction.

Theorem 3.5. Let C be a cyclic code of length 6ps over
Fpm which is of the form 〈h0(x)u0h1(x)u1h2(x)u2h3(x)u3〉,
where h0(x) = x − 1, h1(x) = x + 1, h2(x) = x2 − x +
1, h3(x) = x2 + x + 1 and 0 ≤ ut ≤ ps (t = 0, 1, 2, 3).
Let C1 = 〈h0(x)u0h1(x)u1h2(x)u2h3(x)u3〉, C2 =
〈h0(x)j0h1(x)j1h2(x)j2h3(x)j3〉 be cyclic codes of length
6ps over Fpm , where 0 ≤ jt, ut ≤ ps (t = 0, 1, 2, 3). If
kC2 ≥ kC1 + 1 and 0 ≤ jt ≤ ut <

ps

2 (t = 0, 1, 2, 3), then
there exists a QEC code with parameters [[6ps, kC1 + kC2 −
6ps,min{dH(C1), dp

m+1
pm · dH(C2)e}]]pm .

Proof. From 0 ≤ jt ≤ ut ≤ ps (t = 0, 1, 2, 3), we
have C1 ⊆ C2. By Proposition 3.2, we have C⊥1 ⊆ C1.
Hence, C⊥1 ⊆ C1 ⊆ C2. Using Theorem 3.4, there exists
an [[n, kC1

+ kC2
− n,min{dH(C1), dp

m+1
pm · dH(C2)e}]]pm

QEC code. �

IV. QUANTUM MDS CODES

In 1992, The Singleton bound is given in [77] as follows:
|C| ≤ pm(n−dH(C)+1). The case of binary codes was first
proved in [53]. Motivated by this, [50] also considered this
problem. In 1974, the proof for general q-ary case is given
by Denes and Keedwell [22]. A code C satisfying |C| =
pm(n−dH(C)+1) which is called an MDS code. In 1952, Bush
gave some results on MDS codes. After that, [75], [37] and
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[63] also provided several interesting results on MDS codes.
The problem of the weight enumerator for such codes was
considered by many researchers (for examples, [62], [80],
[30]).

In 2020, [29] investigated the Hamming distances of cyclic
codes of length 6ps over Fpm and provided all MDS consta-
cyclic codes of length 6ps over Fpm as follows.

Theorem 4.1. Let C = 〈f?(x)〉 be a cyclic code of length
6ps. Then C is an MDS code if and only if

• deg(f?(x)) = 0, in this case, dH(C) = 1.
• deg(f?(x)) = 1, in this case, dH(C) = 2.
• deg(f?(x)) = 6ps − 1, in this case, dH(C) =
6ps.

Using Theorem 4.1, we give all MDS cyclic codes of
length 6ps over Fpm .

Theorem 4.2. Let C be a cyclic code of length 6ps over
Fpm which is of the form 〈h0(x)u0h1(x)u1h2(x)u2h3(x)u3〉,
where h0(x) = x − 1, h1(x) = x + 1, h2(x) = x2 − x +
1, h3(x) = x2 +x+1 and 0 ≤ ut ≤ ps (t = 0, 1, 2, 3). Then
C is an MDS cyclic code if and only if

• u0 = u1 = u2 = u3 = 0, in this case, dH(C) =
1.
• u0 + u1 + u2 + u3 = 1, in this case, dH(C) = 2.
• u0 = ps − 1, u1 = ps, u2 = ps, u3 = ps or
u0 = ps, u1 = ps − 1, u2 = ps, u3 = ps, in this
case, dH(C) = 6ps.

In the next part, we construct qMDS codes from cyclic
codes of length 6ps over Fpm using the CSS construction. To
do so, we recall the quantum Singleton bound for all classes
of codes over finite fields as follows.

Theorem 4.3. (Quantum Singleton Bound) [41, Theorem 1]
Let C = [[n, k, dH ]]pm be a QEC code. Then k + 2dH ≤
n+ 2.

If k+ 2dH = n+ 2, then C is called a qMDS code. Since
the Hamming distance of qMDS codes is maximal, these
codes form an important class of QEC codes. Therefore,
many researchers gave new qMDS codes (see [19], [39], [47],
[48], [49], [51], [52], [58]).

Combining Theorems 3.2, 4.2 and 4.3, we construct qMDS
codes from cyclic codes of length 6ps over Fpm as follows.

Theorem 4.4. Let C be a cyclic code of length 6ps over
Fpm which is of the form 〈h0(x)u0h1(x)u1h2(x)u2h3(x)u3〉,
where h0(x) = x − 1, h1(x) = x + 1, h2(x) = x2 − x +
1, h3(x) = x2 +x+1 and 0 ≤ ut ≤ ps (t = 0, 1, 2, 3). Then
the following statements hold:

• If u0 = u1 = u2 = u3 = 0, then there exists a
qMDS code with parameters [[6ps, 6ps, 1]]pm .
• If u0+u1+u2+u3 = 1, then there exists a qMDS
code with parameters [[6ps, 6ps − 2, 2]]pm .

Proof. Let C = 〈h0(x)u0h1(x)u1h2(x)u2h3(x)u3〉 be an
MDS cyclic code such that C⊥ ⊆ C. Then we see that
kC = 6ps − dH(C) + 1 and 0 ≤ u0, u1, u2, u3 ≤ ps

2 . From
C⊥ ⊆ C, by applying Theorem 3.1 (the CSS construction),
there exists a quantum code D with parameters [[6ps, 2kC −
6ps,dH(C)]]pm . Since kC = 6ps − dH(C) + 1, we have
2kC − 6ps = 6ps − 2 dH(C) + 2. By Theorem 4.3, D is
a qMDS code with parameters [[6ps, 2kC − 6ps,dH(C)]]pm .
Hence, if C = [6ps, kC ,dH(C)]pm is an MDS cyclic code
andC⊥ ⊆ C, then there exists a qMDS code with parameters
[[6ps, 6ps−2 dH(C)+2, dH(C)]]pm . We consider 2 cases as
follows:

Case 1: u0 = u1 = u2 = u3 = 0. In this case, we have
dH(C0,0) = 1. From Theorem 4.2, C = [6ps, 6ps, 1]pm is
an MDS cyclic code. From u0 = u1 = u2 = u3 = 0, we
have C⊥ ⊆ C. As there exists a qMDS code with parameters
[[6ps, 6ps− 2 dH(C) + 2,dH(C)]]pm , we have a qMDS code
with parameters [[6ps, 6ps, 1]]pm .

Case 2: u0 + u1 + u2 + u3 = 1. In this case, we
have dH(C) = 2. Applying Theorem 4.2, C is an MDS
cyclic code. From u0 + u1 + u2 + u3 = 1, we have
C⊥ ⊆ C. Hence, there exists a qMDS code with parameters
[[6ps, 6ps − 2, 2]]pm . �

V. QUANTUM SYNCHRONIZABLE CODES

QSCs are used for correcting the extract the Pauli errors
on qubits and preventing the destruction of qubits in the
quantum states. Therefore, several QSCs are provided to use
in quantum synchronizable codes (for examples, [33], [35],
[36], [81], [82], [60], [61]).

Let ` be an integer satisfying gcd(`, p) = 1, where ` ≥
2. Assume that Ct,` is the cyclotomic coset of t modulo `
over Fq and denote by T` the set of representatives of all q-
ary cyclotomic cosets. Let ft(x) =

∏
i∈Ct,`(x − ξ

i) be the
minimal polynomial of ξt over Fq , where ξ is a primitive `-th
root of unity in Fq . Then the polynomial x`p

s−1 over Fq can
be factored as

x`p
s

− 1 = (x` − 1)p
s

=
∏
t∈T`

(ft(x))p
s

.

In 2015, by using the class of cyclic codes of length `ps over
Fq , [60] constructed some QSCs.

Theorem 5.1. [60, Theorem 3] Let C1 = 〈
∏
t∈T`(ft(x))ut〉

and C2 = 〈
∏
t∈T`(ft(x))jt〉 be cyclic codes of length `ps

over Fpm satisfying C⊥1 ⊆ C1, C
⊥
2 ⊆ C2, and C1 ⊂ C2.

Then the following conditions hold:
(i) ut + i−t ≤ ps.
(ii) jt + j−t ≤ ps.
(iii) 0 ≤ jt < ut ≤ ps.

In such cases, if there exists an integer r ∈ T` with
gcd(r, `) = 1 satisfying either ir − jr > ps−1 or ir − jr > 0
and ir′ − jr′ > ps−1 for some r′ 6= r ∈ T`, then for any pair
of non-negative integers ab, ae satisfying ab+ae < `ps, there
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n q d Reference
n ≤ q + 1 prime power d ≤ bn

2
c+ 1 [39]

mq − l prime power d ≤ m− l + 1, 0 ≤ l < m, 1 < m < q [58]
mq − l prime power 3 ≤ d ≤ (q + 1− b l

m
c)/2, 0 ≤ l ≤ q − 1, 1 ≤ m ≤ 4 [48]

r(q − 1) + 1 q ≡ r − 1 (mod 2r) d ≤ q+r+1
2

[49]
q2 − s prime power q

2
+ 1 < d ≤ q − s [49]

q2+1
2

q odd 3 ≤ d ≤ q, d odd [51]
4 ≤ n ≤ q2 + 1, n 6= 4 q 6= 2 3 [48]

q2 − 1 prime power d ≤ q − l, 0 ≤ l ≤ q − 2 [58]
q2 + 1 prime power 2 ≤ d ≤ q + 1 [48], [51], [49]
q2−1

2
q odd 2 ≤ d ≤ q [52]

q2−1
r

, r even, r 6= 2, r|(q + 1) q odd 2 ≤ d ≤ q+1
2

[52]
λ(q + 1), λ odd, λ|(q − 1) q odd 2 ≤ d ≤ q+1

2
+ λ [52]

2λ(q + 1), λ odd, λ|(q − 1) q ≡ 1 (mod 4) 2 ≤ d ≤ q+1
2

+ 2λ [52]
q2+1

5
q ≡ 20m+ 3, q ≡ 20m+ 7 2 ≤ d ≤ q+5

2
, d even [52]

q2−1
3

3|(q + 1) 2 ≤ d ≤ 2(q−2)
3

+ 1 [19]
q2−1

5
5|(q + 1) 2 ≤ d ≤ 3(q+1)

5
− 1 [19]

q2−1
7

7|(q + 1) 2 ≤ d ≤ 4(q+1)
7
− 1 [19]

q2+1
10

4 q = 10m+ 3, q = 10m+ 7 3 ≤ d ≤ 4m+ 1, d odd [19]

n = 1 +
r(q2−1)
2t+1

, 1 ≤ t ∈ Z, 1 ≤ r ≤ 2t+ 1 gcd(r, q) = 1, q ≡ −1 (mod 2t+ 1) d ≤ t+1
2t+1

× q − t
2t+1

+ 1 [47]

n =
r(q2−1)
2t+1

, 1 ≤ t ∈ Z, 1 ≤ r ≤ 2t+ 1 gcd(r, q) > 1, q ≡ −1 (mod 2t+ 1) d ≤ t+1
2t+1

× q − t
2t+1

+ 1 [47]
2(d− 1) ≤ n ≤ (d2 − 2d+ 2) prime power 2 ≤ d ≤ q [47]

Table 1: Known families of qMDS codes

exists an (ab, ae)-[[`ps + ab + ae, `p
s − 2

∑
t∈T` ut |̇Ct,`|]]q

QSC.

Using Theorem 5.1, we construct QSCs from cyclic codes
of length 6ps over Fpm as follows.

Theorem 5.2. Let C be a cyclic code of length 6ps over
Fpm which is of the form 〈h0(x)u0h1(x)u1h2(x)u2h3(x)u3〉,
where h0(x) = x − 1, h1(x) = x + 1, h2(x) = x2 − x +
1, h3(x) = x2 + x + 1 and 0 ≤ ut ≤ ps (t = 0, 1, 2, 3).
Let C1 = 〈h0(x)u0h1(x)u1h2(x)u2h3(x)u3〉, C2 =
〈h0(x)j0h1(x)j1h2(x)j2h3(x)j3〉 be cyclic codes of length
6ps over Fpm satisfying C⊥1 ⊆ C1, C⊥2 ⊆ C2 and C1 ⊂ C2.
Then the following conditions hold:

(i) 0 ≤ u0, u1, u2, u3 ≤ ps

2 .
(ii) 0 ≤ j0, j1, j2, j3 ≤ ps

2 .
(iii) 0 ≤ jt < ut ≤ ps, where t = 0, 1, 2, 3.
In such cases, if there exists an integer r ∈ T6

satisfying either ur−jr > ps−1 or ur−jr > 0 and
ur′ − jr′ > ps−1 for some r′ 6= r ∈ T6, then for
any pair of non-negative integers ab, ae satisfying
ab + ae < 6ps, there exists an (ab, ae) − [[6ps +
ab+ae, 6p

s−2u0−2u1−4u2−4u3]]q QSC. If we
fix ut, jt, r, where t = 0, 1, 2, 3 and r ∈ T6, then
there are 3ps · (6ps + 1) such QSCs.

Proof. Since C⊥1 = 〈(x− 1)p
s−u0(x+ 1)p

s−u1(x2 − x+
1)u2(x2 + x + 1)u3〉 ⊆ C1 and C⊥2 = 〈(x − 1)p

s−j0(x +
1)p

s−j1(x2 − x + 1)p
s−u2(x2 + x + 1)p

s−u3〉 ⊆ C2, we
have ps − ut ≥ ut, p

s − jt ≥ jt, where t = 0, 1, 2, 3, i.e.,
0 ≤ ut ≤ ps

2 and 0 ≤ jt ≤ ps

2 , showing (i) and (ii). From
C1 ⊆ C2, it implies that 0 ≤ jt < ut ≤ ps, proving (iii).
SinceC⊥1 ⊆ C1,C⊥2 ⊆ C2, andC1 ⊆ C2, by using Theorem
5.1, if there is an integer r ∈ T6 such that either ur − jr >

ps−1 or ur − jr > 0 and ur′ − jr′ > ps−1 for some r′ 6= r ∈
T6, then for any pair of non-negative integers ab, ae satisfying
ab+ae < 6ps, there exists an (ab, ae)−[[6ps+ab+ae, 6p

s−
2u0 − 2u1 − 4u2 − 4u3]]q QSC. Assume that ut, jt, r are
fixed, where t = 0, 1, 2, 3 and r ∈ T6. Using Lemma 2.5 for
n = 6ps − 1, there are 3ps · (6ps + 1) pairs of non-negative
integers ab, ae satisfying ab + ae < 6ps. It means that there
are 3ps · (6ps + 1) such QSCs.

BCH codes are used in coding theory since they have use-
ful in encoding and decoding algorithms. Let n be a divisor
of pm − 1 and γ be an element of Fpm with multiplicative
order n. A BCH code of length n is a cyclic code such that
its generator polynomial has a set of α− 1 consecutive roots
γe, γe+1, · · · , γe+α−2, where e ∈ N?. Applying the BCH
bound, we see that the minimum distance of the BCH code is
at least α. Therefore, the designed distance of the BCH code
is α. If C is a BCH code satisfying the length n = pm − 1,
then C is called primitive. If e = 1, i.e., the α−1 consecutive
roots start from γ, then C is called narrow-sense .

Remark 5.3. In 2015, [60, Table 2] gave some parameters of
non-primitive, narrow-sense BCH codes C over Fq in Table
2. Some parameters of cyclic codes of length 6ps over Fp are
listed in Table 3 to show that the code lengths of cyclic codes
of length 6ps over Fp are smaller than BCH codes given in
Table 2 but the Hamming distances of repeated-root cyclic
codes of length 6ps over Fp are better than γmax, where γmax
is a precise lower bound for the largest minimum distance of
a dual-containing BCH code. This is the reason why QSCs
constructed from repeated-root cyclic codes of length 6ps

over Fp are better than QSCs constructed from non-primitive,
narrow-sense BCH codes.
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p length δmax

5 312 12
5 1562 60
7 8403 168

11 3660 30
13 92823 546

Table 2: Some parameters of non-primitive, narrow-sense BCH codes over Fp .

Put h0(x) = x − 1, h1(x) = x + 1, h2(x) = x2 − x +
1, h3(x) = x2 + x+ 1. Then we have the following table.

p s C length dH
5 2 〈h0(x)24h1(x)25h2(x)25h3(x)25〉 150 150
5 3 〈h0(x)125h1(x)124h2(x)125h3(x)125〉 750 750
7 3 〈h0(x)342h1(x)343h2(x)343h3(x)343〉 2058 2058

11 2 〈h0(x)121h1(x)120h2(x)121h3(x)121〉 726 726
13 3 〈h0(x)2196h1(x)2197h2(x)2197h3(x)2197〉 13182 13182

Table 3: Some parameters of cyclic codes of length 6ps over Fp.

VI. EXAMPLES

We start this section by providing some examples to illustrate
Theorems 3.3 and 3.5.

Example 6.1. Let p = 11, s = 1 and m = 1. We have
x66 − 1 = h0(x)11h1(x)11h2(x)11h3(x)11, where h0(x) =
x−1, h1(x) = x+1, h2(x) = x2−x+1, h3(x) = x2+x+1.
(i) Let C1 = 〈h0(x)7g1(x)2g3(x)2〉 and C2 =
〈h0(x)6g1(x)2g3(x)2〉. Using Theorem 3.13 in [29],
dH(C1) = 4 and dH(C2) = 4. It is easy to see that kC1

= 53
and kC2

= 54. By Theorem 3.5, we see that there exists
a QEC code with parameters [[66, 41,min{4, d 48

11e}]]11 =
[[66, 41, 4]]11. We compare the QEC code and online table
[44] to see that the QEC code with parameters [[66, 41, 4]]11

is new in the sense that the parameters are different from all
the previous constructions.
(ii) Let C3 = 〈h0(x)2g1(x)h3(x)〉 and C4 = 〈g0(x)h1(x)〉.
It is easy to see that C3 ⊆ C4. We have kC3 = 61 and
kC4 = 64. Using Theorem 3.13 in [29], dH(C3) = 3 and
dH(C4) = 2. By Theorem 3.5, we see that there exists
a QEC code with parameters [[66, 59,min{3, d 24

11e}]]11 =
[[66, 59, 3]]11. We compare the QEC code and online table
[44] to see that the QEC code with parameters [[66, 59, 3]]11

is new in the sense that the parameters are different from
all the previous constructions. Moreover, the QEC code with
parameters [[66, 59, 3]]11 is better than all QEC codes with
same length and Hamming distance listed in [44], i.e., the
QEC code constructed from cyclic code C3 and C4 using the
Steane’s construction has the dimension that is larger than the
dimension of all QEC codes with same length and Hamming
distance listed in [44].
(ii) Let C5 = 〈h0(x)3g1(x)h3(x)〉 and C6 =
〈g0(x)g1(x)h3(x)〉. It is easy to see that C5 ⊆ C6. We
have kC5

= 60 and kC6
= 61. Using Theorem 3.13

in [29], dH(C5) = 4 and dH(C6) = 3. By Theorem
3.5, we see that there exists a QEC code with parameters
[[66, 55,min{4, d 36

11e}]]11 = [[66, 55, 4]]11. We compare the
QEC code and online table [44] to see that the QEC code
with parameters [[66, 55, 4]]11 is new in the sense that the
parameters are different from all the previous constructions.

Moreover, the QEC code with parameters [[66, 55, 4]]11 is
better than all QEC codes with same length and Hamming
distance listed in [44], i.e., the QEC code constructed from
cyclic code C5 and C6 using the Steane’s construction has
the dimension that is larger than the dimension of all QEC
codes with same length and Hamming distance listed in [44].

Example 6.2. Let p = 17, s = 1,m = 1. We have x102 −
1 = h0(x)17h1(x)17h2(x)17h3(x)17, where h0(x) = x −
1, h1(x) = x+ 1, h2(x) = x2 − x+ 1, h3(x) = x2 + x+ 1.

(i) Let C1 = 〈h0(x)3g1(x)h3(x)〉 and C2 =
〈h0(x)2g1(x)h3(x)〉. Hence, C1 ⊆ C2 and kC1

=
96, kC2

= 97. Applying Theorem 3.13 in [29],
dH(C1) = 4 and dH(C2) = 3. From Proposi-
tion 3.2, it is easy to see that C⊥1 ⊆ C1. Using
Theorem 3.3 for C1, there exists a QEC code with
parameters [[102, 90, 4]]17. We compare the QEC
code and online table [44] to see that the QEC code
with parameters [[102, 90, 4]]17 is coincided with a
QEC code listed in [44], i.e., it is not new in the
sense that the parameters are different from all the
previous constructions. However, by Theorem 3.5,
we see that there exists a QEC code with parameters
[[102, 91,min{4, d 54

17e}]]17 = [[102, 91, 4]]17. We
compare the QEC code and online table [44] to see
that the QEC code with parameters [[102, 91, 4]]17

is new in the sense that the parameters are differ-
ent from all the previous constructions. Moreover,
the QEC code with parameters [[102, 91, 4]]17 is
better than all QEC codes with same length and
Hamming distance listed in [44], i.e., the QEC
code constructed from cyclic code C1 and C2 using
the Steane’s construction has the dimension that is
larger than the dimension of all QEC codes with
same length and Hamming distance listed in [44].
(ii) Let C3 = 〈h0(x)7h1(x)3g2(x)h3(x)3〉 and
C4 = 〈h0(x)6g1(x)3g3(x)〉. Hence, C3 ⊆ C4 and
kC3

= 84, kC4
= 85. Applying Theorem 3.13 in

[29], dH(C3) = 8 and dH(C4) = 7. From Propo-
sition 3.2, it is easy to see that C⊥3 ⊆ C3. Using
Theorem 3.3 for C3, there exists a QEC code with
parameters [[102, 66, 8]]17. We compare the QEC
code and online table [44] to see that the QEC code
with parameters [[102, 66, 8]]17 is coincided with a
QEC code listed in [44], i.e., it is not new in the
sense that the parameters are different from all the
previous constructions. However, by Theorem 3.5,
we see that there exists a QEC code with parameters
[[102, 67,min{8, d 126

17 e}]]17 = [[102, 67, 8]]17. We
compare the QEC code and online table [44] to see
that the QEC code with parameters [[102, 67, 8]]17

is new in the sense that the parameters are differ-
ent from all the previous constructions. Moreover,
the QEC code with parameters [[102, 67, 8]]17 is
better than all QEC codes with same length and
Hamming distance listed in [44], i.e., the QEC
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code constructed from cyclic code C3 and C4 using
the Steane’s construction has the dimension that is
larger than the dimension of all QEC codes with
same length and Hamming distance listed in [44].
(iii) Let C5 = 〈h0(x)8h1(x)4g2(x)2g3(x)4〉 and
C6 = 〈h0(x)7g1(x)3g2(x)h3(x)3〉. Hence, C5 ⊆
C6 and kC5

= 78, kC6
= 84. Applying Theorem

3.13 in [29], dH(C5) = 9 and dH(C6) = 8. From
Proposition 3.2, it is easy to see that C⊥5 ⊆ C5.
Using Theorem 3.3 for C5, there exists a QEC code
with parameters [[102, 54, 9]]17. We compare the
QEC code and online table [44] to see that the
QEC code with parameters [[102, 54, 9]]17 is coin-
cided with a QEC code listed in [44], i.e., it is not
new in the sense that the parameters are different
from all the previous constructions. However, by
Theorem 3.5, we see that there exists a QEC code
with parameters [[102, 60,min{9, d 144

17 e}]]17 =
[[102, 60, 9]]17. We compare the QEC code and
online table [44] to see that the QEC code with pa-
rameters [[102, 60, 9]]17 is new in the sense that the
parameters are different from all the previous con-
structions. Moreover, the QEC code with param-
eters [[102, 60, 9]]17 is better than all QEC codes
with same length and Hamming distance listed in
[44], i.e., the QEC code constructed from cyclic
code C5 and C6 using the Steane’s construction
has the dimension that is larger than the dimension
of all QEC codes with same length and Hamming
distance listed in [44].

Example 6.3. Let p = 5, s = 2 and m = 1. We have
x150− 1 = h0(x)25h1(x)25h2(x)25h3(x)25, where h0(x) =
x−1, h1(x) = x+1, h2(x) = x2−x+1, h3(x) = x2+x+1.
(i) Let C1 = 〈h0(x)3g1(x)h3(x)〉. From Proposition 3.2,
we see that C⊥1 ⊆ C1. Using Theorem 3.13 in [29],
dH(C1) = 4. By Theorem 3.3, there exists a QEC code with
parameters [[150, 138, 4]]5. We compare the QEC codes and
online table [44] to see that the QEC codes with parameters
[[150, 138, 4]]5 is new in the sense that the parameters are
different from all the previous constructions. Moreover, the
QEC code with parameters [[150, 138, 4]]17 is better than all
QEC codes with same length and Hamming distance listed
in [44], i.e., the QEC code constructed from cyclic code
C1 using CSS construction has the dimension that is larger
than the dimension of all QEC codes with same length and
Hamming distance listed in [44]. We see that the number of
QEC codes constructed from all cyclic codes of length 150
over F5 using the CSS construction is 11325.
(ii) Let C2 = h0(x)2f1(x)h3(x). Using Theorem 3.13 in
[29], dH(C2) = 3. It is easy to see that kC1 = 144 and
kC2 = 145. By Theorem 3.5, we see that there exists a
QEC code with parameters [[150, 139,min{4, d 18

5 e}]]5 =
[[150, 139, 4]]5. We compare the QEC code and online table
[44] to see that the QEC code with parameters [[150, 139, 4]]5
is new in the sense that the parameters are different from

all the previous constructions. Moreover, the QEC code with
parameters [[150, 139, 4]]5 is better than all QEC codes with
same length and Hamming distance listed in [44], i.e., the
QEC code constructed from cyclic code C1 and C2 using the
Steane’s construction has the dimension that is larger than the
dimension of all QEC codes with same length and Hamming
distance listed in [44].

Example 6.4. Let p = 23, s = 1 and m = 1. We have
x138− 1 = h0(x)23h1(x)23h2(x)23h3(x)23, where h0(x) =
x−1, h1(x) = x+1, h2(x) = x2−x+1, h3(x) = x2+x+1.
(i) Let C1 = 〈h0(x)6g1(x)2g3(x)〉 and C2 =
〈h0(x)5g1(x)2g3(x)〉. Using Theorem 3.13 in [29],
dH(C1) = 4 and dH(C2) = 4. It is easy to see that kC1 =
127 and kC2

= 129. By Theorem 3.5, we see that there exists
a QEC code with parameters [[138, 118,min{4, d 96

23e}]]23 =
[[138, 118, 4]]23. We compare the QEC code and online
table [44] to see that the QEC code with parameters
[[138, 118, 4]]23 is coincided with a QEC code listed in [44],
i.e., it is not new in the sense that the parameters are different
from all the previous constructions.
(ii) Let C3 = 〈h0(x)3g1(x)2g3(x)〉 and C4 =
〈h0(x)2g1(x)h3(x)〉. It is easy to see that C3 ⊆ C4. We
have kC3

= 131 and kC4
= 133. Using Theorem 3.13

in [29], dH(C3) = 4 and dH(C4) = 3. By Theorem
3.5, we see that there exists a QEC code with parameters
[[138, 126,min{4, d 72

23e}]]23 = [[138, 124, 4]]23. We com-
pare the QEC code and online table [44] to see that the
QEC code with parameters [[138, 124, 4]]23 is new in the
sense that the parameters are different from all the previous
constructions. Moreover, the QEC code with parameters
[[150, 124, 4]]23 is better than all QEC codes with same
length and Hamming distance listed in [44], i.e., the QEC
code constructed from cyclic code C3 and C4 using the
Steane’s construction has the dimension that is larger than the
dimension of all QEC codes with same length and Hamming
distance listed in [44].

Example 6.5. Let p = 29, s = 1 and m = 1. We have
x174− 1 = h0(x)29h1(x)29h2(x)29h3(x)29, where h0(x) =
x−1, h1(x) = x+1, h2(x) = x2−x+1, h3(x) = x2+x+1.
(i) Let C1 = 〈h0(x)7f1(x)2f3(x)2〉 and C2 =
〈h0(x)6f1(x)2f3(x)2〉. Using Theorem 3.13 in [29],
dH(C1) = 4 and dH(C2) = 4. It is easy to see
that kC1

= 161 and kC2
= 162. By Theorem 3.5,

we see that there exists a QEC code with parameters
[[174, 149,min{4, d 120

29 e}]]29 = [[174, 149, 4]]29. We com-
pare the QEC code and online table [44] to see that the QEC
code with parameters [[174, 149, 4]]29 is coincided with a
QEC code listed in [44], i.e., it is not new in the sense that the
parameters are different from all the previous constructions.
(ii) Let C3 = 〈h0(x)3f1(x)2f3(x)〉 and C4 =
〈h0(x)2f1(x)h3(x)〉. It is easy to see that C3 ⊆ C4. We
have kC3 = 167 and kC4 = 169. Using Theorem 3.13
in [29], dH(C3) = 4 and dH(C4) = 3. By Theorem
3.5, we see that there exists a QEC code with parameters
[[174, 162,min{4, d 90

29e}]]29 = [[174, 162, 4]]29. We com-
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pare the QEC code and online table [44] to see that the
QEC code with parameters [[174, 162, 4]]29 is new in the
sense that the parameters are different from all the previ-
ous constructions. Moreover, the QEC code with parameters
[[174, 162, 4]]29 is better than all QEC codes with same
length and Hamming distance listed in [44], i.e., the QEC
code constructed from cyclic code C3 and C4 using the
Steane’s construction has the dimension that is larger than the
dimension of all QEC codes with same length and Hamming
distance listed in [44].

Example 6.6. Let p = 11, s = 1,m = 1. We see that x66 −
1 = h0(x)11h1(x)11h2(x)11h3(x)11, where h0(x) = x −
1, h1(x) = x+ 1, h2(x) = x2 − x+ 1, h3(x) = x2 + x+ 1.

(i) Let C0 = 〈1〉. By Proposition 3.2, it is easy
to see that C⊥0 ⊆ C0. By using Theorem 4.4, we
see that there is a qMDS code with parameters
[[66, 66, 1]]11.
(ii) Let C1 = 〈(x − 1)〉. From Proposition 3.2, it
is easy to see that C⊥1 ⊆ C1. From Theorem 4.4,
we see that there is a qMDS code with parameters
[[66, 64, 2]]11.
(ii) Let C2 = 〈(x+ 1)〉. From Proposition 3.2, it is
easy to see that C⊥1 ⊆ C1. By using Theorem 4.4,
we see that there is a qMDS code with parameters
[[66, 64, 2]]11.

Example 6.7. Let p = 11, s = 2,m = 1. We see
that x726 − 1 = h0(x)121h1(x)121h2(x)121h3(x)121, where
h0(x) = x−1, h1(x) = x+1, h2(x) = x2−x+1, h3(x) =
x2 + x+ 1.

(i) Let C0 = 〈1〉. By Proposition 3.2, it is easy
to see that C⊥0 ⊆ C0. By using Theorem 4.4, we
see that there is a qMDS code with parameters
[[726, 726, 1]]11.
(ii) Let C1 = 〈(x − 1)〉. From Proposition 3.2, it
is easy to see that C⊥1 ⊆ C1. From Theorem 4.4,
we see that there is a qMDS code with parameters
[[726, 724, 2]]11.
(ii) Let C2 = 〈(x+ 1)〉. From Proposition 3.2, it is
easy to see that C⊥1 ⊆ C1. By using Theorem 4.4,
we see that there is a qMDS code with parameters
[[726, 724, 2]]11.

Example 6.8. Let p = 29, s = 1,m = 1. We have x174 −
1 = h0(x)29h1(x)29h2(x)29h3(x)29, where h0(x) = x −
1, h1(x) = x+ 1, h2(x) = x2 − x+ 1, h3(x) = x2 + x+ 1.

(i) Let C0 = 〈1〉. From Theorem 3.2, it is easy
to see that C⊥0 ⊆ C0. Using Theorem 4.4, we
see that there is a qMDS code with parameters
[[124, 124, 1]]29.
(ii) Let C1 = 〈(x+ 1)〉. From Proposition 3.2, it is
easy to see that C⊥1 ⊆ C1. Applying Theorem 4.4,
we see that there is a qMDS code with parameters
[[124, 122, 2]]29.

Example 6.9. Let p = 29, s = 2,m = 1. We have
x5046 − 1 = h0(x)841h1(x)841h2(x)841h3(x)841, where
h0(x) = x−1, h1(x) = x+1, h2(x) = x2−x+1, h3(x) =
x2 + x+ 1.

(i) Let C0 = 〈1〉. From Proposition 3.3, it is
easy to see that C⊥0 ⊆ C0. By applying Theo-
rem 4.4, there is a qMDS code with parameters
[[5046, 5046, 1]]29.
(ii)Let C1 = 〈(x + 1)〉. From Proposition 3.2,
it is easy to see that C⊥1 ⊆ C1. By using The-
orem 4.4, there is a qMDS code with parameters
[[5046, 5044, 2]]29.

Remark 6.10. We can compare our qMDS codes and known
families of qMDS codes (Table 1) and [44] to see that our
qMDS codes are new in the sense that their parameters are
different from all the known ones.

We finish this section by giving some examples of QSCs.

Example 6.11. Let p = 17, s = 1,m = 1. We see that x102−
1 = h0(x)17h1(x)17h2(x)17h3(x)17, where h0(x) = x −
1, h1(x) = x+ 1, h2(x) = x2 − x+ 1, h3(x) = x2 + x+ 1.

• If C1 = 〈f0(x)h1(x)8h2(x)5h3(x)3〉 and C2 =
〈h1(x)2f2(x)h3(x)〉, then C⊥1 ⊆ C1, C⊥2 ⊆ C2

and C1 ⊆ C2. We see that u3 − j3 > 1. Applying
Theorem 5.2, for any pair ab, ae of non-negative
integers satisfying ab + ae < 102, there exists an
(ab, ae)− [[102 +ab+ae, 52]]17 QSC. In this case,
there are 5253 such QSCs.
• If C3 = 〈h0(x)5f1(x)7f2(x)5f3(x)3〉 and C4 =
〈f0(x)f(x)f2(x)h3(x)2〉, then C⊥3 ⊆ C3, C⊥4 ⊆
C4 and C3 ⊆ C4. We see that u1 − j1 > 1.
Applying Theorem 5.2, for any pair ab, ae of non-
negative integers satisfying ab + ae < 102, there
exists an (ab, ae)− [[102 + ab + ae, 46]]17 QSC. In
this case, there are 5253 such QSCs.

Example 6.12. Let p = 17, s = 2,m = 1. We see that
x1734 − 1 = h0(x)289h1(x)289h2(x)289h3(x)289, where
h0(x) = x−1, h1(x) = x+1, h2(x) = x2−x+1, h3(x) =
x2 + x + 1. If C1 = 〈h0(x)19h1(x)109h2(x)38h3(x)24〉
and C2 = 〈h0(x)8h1(x)12h2(x)6h3(x)4〉, then C⊥1 ⊆ C1,
C⊥2 ⊆ C2 and C1 ⊆ C2. We see that u3 − j3 > 17.
Applying Theorem 5.2, for any pair ab, ae of non-negative
integers satisfying ab + ae < 1734, there exists an (ab, ae)−
[[1734 + ab + ae, 1230]]17 QSC. By applying Lemma 2.5,
there are 1504245 such QSCs.

Example 6.13. Let p = 23, s = 1,m = 1. We see that x138−
1 = h0(x)23h1(x)23h2(x)23h3(x)23, where h0(x) = x −
1, h1(x) = x+ 1, h2(x) = x2 − x+ 1, h3(x) = x2 + x+ 1.

• If C1 = 〈f0(x)h1(x)8h2(x)6h3(x)5〉 and C2 =
〈h1(x)2h2(x)3〉, then C⊥1 ⊆ C1, C⊥2 ⊆ C2 and
C1 ⊆ C2. We see that u3 − j3 > 1. Applying
Theorem 5.2, for any pair ab, ae of non-negative
integers satisfying ab + ae < 138, there exists an
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(ab, ae)−[[138+ab+ae, 88]]23 QSC. Using Lemma
2.5, there are 9591 such QSCs.
• If C3 = 〈h0(x)5h1(x)6h2(x)4h3(x)3〉 and C4 =
〈f0(x)f1(x)f2(x)h3(x)2〉, then C⊥3 ⊆ C3, C⊥4 ⊆
C4 and C3 ⊆ C4. We see that u1 − j1 > 1.
Applying Theorem 5.2, for any pair ab, ae of non-
negative integers satisfying ab + ae < 138, there
exists an (ab, ae)− [[138+ab+ae, 88]]23 QSC. By
using Lemma 2.5, we see that there are 9591 such
QSCs.

Example 6.13. Let p = 23, s = 2,m = 1. We have
x3174 − 1 = h0(x)529h1(x)529h2(x)529h3(x)529, where
h0(x) = x−1, h1(x) = x+1, h2(x) = x2−x+1, h3(x) =
x2 + x+ 1.

• If C1 = 〈f0(x)h1(x)48h2(x)26h3(x)15〉 and
C2 = 〈h1(x)12h2(x)9〉, then C⊥1 ⊆ C1, C⊥2 ⊆ C2

and C1 ⊆ C2. We see that u3 − j3 > 1. Applying
Theorem 5.2, for any pair ab, ae of non-negative
integers satisfying ab + ae < 3174, there exists an
(ab, ae)−[[3174+ab+ae, 2912]]23 QSC. Applying
Lemma 2.5, there are 5040312 such QSCs.
• If C3 = 〈h0(x)45h1(x)16h2(x)24h3(x)33〉 and
C4 = 〈f6

0 (x)f1(x)9f2(x)7g3(x)2〉, thenC⊥3 ⊆ C3,
C⊥4 ⊆ C4 and C3 ⊆ C4. We see that u1 − j1 > 1.
Applying Theorem 5.2, for any pair ab, ae of non-
negative integers satisfying ab + ae < 3174, there
exists an (ab, ae)− [[3174+ab+ae, 2938]]23 QSC.
Using Lemma 2.5, there are 5040312 such QSCs.

VII. CONCLUSION

In this paper, we use the CSS and Steane’s constructions to
establish QEC codes from cyclic codes of length 6ps over
Fpm (Theorems 3.3 and 3.5). We get some new QEC codes
in the sense that the parameters are different from all the
previous constructions (Examples 3.6 and 3.7). Applying the
quantum Singleton bound, all qMDS cyclic codes of length
6ps over Fpm using the CSS construction are determined
in Theorem 4.4. As in Section 5, we construct QSCs from
cyclic codes of length 6ps over Fpm (Theorem 5.2) and such
codes are applicable in quantum synchoronizable. Remark
5.3 shows that QSCs constructed from repeated-root cyclic
codes of length 6ps over Fpm are better than QSCs con-
structed from non-primitive, narrow-sense BCH codes. In
Section 6, we provide some examples to illustrate our work
in Sections 3, 4 and 5.

Although we only consider the case pm ≡ 2 (mod 3) in
this paper, the situation of pm ≡ 1 (mod 3) can be studied
in a similar fashion. When pm ≡ 1 (mod 3), from [27], all
cyclic codes of length 6ps have the form C = 〈(x−1)u0(x+

1)u1(x − ξ
pm−1

6 )u2(x − ξ
5(pm−1)

6 )u3(x − ξ
2(pm−1)

6 )u4(x −
ξ

4(pm−1)
6 )u5〉, where 0 ≤ ut ≤ ps (t = 0, 1, 2, 3, 4, 5) and

ξ ∈ Fpm is a primitive (pm − 1)th root of unity. Applying
the method used in [29], we can determine the Hamming
distances of all such cyclic codes. We also compute all

Hamming distances of negacyclic codes of length 6ps over
Fpm . Similar to Theorems 3.3 and 3.5, we can construct new
QEC codes from cyclic and negacyclic codes of length 6ps

over Fpm using the CSS and Steane’s constructions.

Let q = pm and Fq2 be a finite field of q2 elements. If e =
(e0, e1, . . . , en−1), t = (t0, t1, · · · , tn−1) are two vectors of
Fq2 , then Hermitian inner product of e and t is

e ◦Fq2 t = e0t̄0 + e1t̄1 + · · ·+ en−1t̄n−1,

where t̄i = tqi . The Hermitian dual code of C is defined as

C⊥H = {e ∈ Fnq2 |
n−1∑
i=0

eit̄i = 0,∀t ∈ C}.

IfC⊥H ⊆ C, thenC is said to be Hermitian dual-containing.

The Hermitian construction is also an important construc-
tion appeared in [1].

Theorem 7.1. (Hermitian construction) [1] Let C =
[n, k, dH ] be a q2-ary linear code satisfying C⊥H ⊆ C.
Then there exists a q-ary quantum code with parameters
[[n, 2k − n,≥ dH ]]q .

By giving the condition of a cyclic and negacyclic code
of length 6ps over Fq2 to construct QEC codes, similar
to Theorem 4.4, we can construct new QEC codes from
cyclic and negacyclic codes of length 6ps over Fq2 using the
Hermitian construction.

We also investigate the QSCs constructed from negacyclic
codes of length 6ps over Fpm , or more generally 2mps, for
any non-negative integer m in near future. We believe that
these lengths can provide good and new QEC codes and
QSCs.
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