Some classes of new quantum MDS and synchronizable codes constructed from repeated-root cyclic codes of length $6 p^{s}$

HAI Q. DINH ${ }^{1}$, Ha T Le ${ }^{2}$, BAC T NGUYEN ${ }^{1}$, PARAVEE MANEEJUK ${ }^{3}$
${ }^{1}$ Department of Mathematical Sciences, Kent State University, Warren, Ohio, USA
${ }^{2}$ Department of Basic Sciences, Thai Nguyen University of Economics and Business Administration, Thai Nguyen province, Vietnam
${ }^{3}$ Centre of Excellence in Econometrics, Chiang Mai University, Thailand e-mail: (paravee.m@cmu.ac.th)
Corresponding author: Bac Nguyen (e-mail: bactienminh2013@gmail.com).

Abstract

In this paper, we use the CSS and Steane's constructions to establish quantum error-correcting codes (briefly, QEC codes) from cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$. We obtain several new classes of QEC codes in the sense that their parameters are different from all the previous constructions. Among them, we identify all quantum MDS (briefly, qMDS) codes, i.e., optimal quantum codes with respect to the quantum Singleton bound. In addition, we construct quantum synchronizable codes (briefly, QSCs) from cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$. Furthermore, we give many new QSCs to enrich the variety of available QSCs. A lot of them are QSCs codes with shorter lengths and much larger minimum distances than known non-primitive narrow-sense BCH codes.

INDEX TERMS Cyclic codes, negacyclic codes, MDS codes, CSS construction, Steane construction, Hermitian construction, quantum MDS codes, quantum synchronizable codes.

I. INTRODUCTION

A$\mathrm{N}[n, k]$ linear code C over $\mathbb{F}_{p^{m}}$ is a k-dimensional subspace of $\mathbb{F}_{p^{m}}^{n}$, where p is a prime number and $\mathbb{F}_{p^{m}}$ is a finite field. Let C be a linear code of length n over $\mathbb{F}_{p^{m}}$. Then C is called a λ-constacyclic code if it is an ideal of $\frac{\mathbb{F}_{p^{m}}[x]}{\left\langle x^{n}-\lambda\right\rangle}$. If $\lambda=1,-1$, those λ-constacyclic codes are called cyclic codes, negacyclic codes, respectively.

In 1959, cyclic codes over finite fields were first studied by Prange [68]. In 1967, [3] studied the case $(n, p)=1$ and such codes when $(n, p)=1$ are so-called repeated-root codes. After that, [64] and [70] also considered repeated-root codes. They are optimal in a few cases, that motivates researchers to further study this class of repeated-root constacyclic codes over finite fields, and even more generally, over finite commutative chain rings (see, e.g., [8], [9], [10], [11], [12], [13], [14], [15], [16]).

Recently, Dinh ([25], [26], [27]), studied the structure of all constacyclic codes of lengths $2 p^{s}, 3 p^{s}$ and $6 p^{s}$ over $\mathbb{F}_{p^{m}}$. He also discussed about dual constacyclic codes of these lengths. In 2014, [20] determined the structure of codes of length $l p^{s}$ over $\mathbb{F}_{p^{m}}$.

Let $C=\left[n, k, \mathrm{~d}_{\mathrm{H}}\right]_{q}$ be a code. Then [62] showed that
$n, k, \mathrm{~d}_{\mathrm{H}}$ must satisfy $k \leq n-\mathrm{d}_{\mathrm{H}}+1$ (the Singleton bound). If $k=n-\mathrm{d}_{\mathrm{H}}+1$, then C is called a maximum-distanceseparable (briefly, MDS) code. The problem of constructing MDS codes is a hot topic because an MDS code has the greatest detecting and error-correcting capabilities.

In 1985, Deutsch [23] gave an idea that computers use quantum bits (briefly, qubit) to solve certain problems, including prime factorization, exponentially faster than classical computers. Similar to classical bits, a qubit can be defnied as $|\varphi\rangle=z_{1}|0\rangle+z_{2}|1\rangle$, where $z_{1}, z_{2} \in \mathbb{C}$ are complex numbers such that $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1$.

By empirical evidence, we can not use classical errorcorrecting codes in quantum computation. However, A class of codes is proposed to protect quantum information that is the class of QEC codes. In 1995, in the paper [74], Shor first introduced QEC codes. And then Hamming codes, BCH codes and Reed-Solomon codes are used to construct many QEC codes. By applying the idea in [2], [6], [56], [74], [78], QEC codes have been studied extensively (for example, [2], [7], [21], [38], [55]). Recently, using [74] and [6], some QEC codes are constructed from the CSS and Hermitian constructions.

Since qMDS codes have great applications in quantum computation and quantum communication, constructing qMDS code has become an important topic. Therefore, some authors used graph theory to construct qMDS codes [40], [46], [71], [72]. In addition, applying the classical codes, some qMDS codes were constructed [19], [45], [51]. In 2009, [45] gave a class of qMDS codes from cyclic codes. After that, [51] gave two new classes of qMDS codes from negacyclic codes in 2013. Recent years, many researchers worked on construction of qMDS code with minimum distance larger than $\frac{q}{2}+1$ (for examples, [19], [31], [32], [73], [84], [85]).

An $[[n, k]]$ QEC code encodes k logical qubits into n physical qubits. An $\left(a_{b}, a_{e}\right)-[[n, k]]$ QSC is an $[[n, k]]$ quantum error-correcting code that corrects not only bit errors and phase errors but also misalignment to the left by a_{b} qubits and to the right by a_{e} qubits for some non-negative integers a_{b} and a_{e}.

Block synchronization is an important problem in classical digital communications which was studied in [4], [34], [57], [65], [67], [76]. However, in quantum information, the methods in [4], [34], [57], [65], [67], [76] don't apply. Therefore, Fujiwara [33] first proposed QSCs to correct both quantum noise and block synchronization errors. After that, [60] proposed a class of QSCs from repeated-root codes using the CSS construction.

In [28], we studied qMDS codes from negacyclic and cyclic codes of length $2 p^{s}$ over $\mathbb{F}_{p^{m}}$. We also gave some QSCs constructed from cyclic and negacyclic codes of length $2 p^{s}$ over $\mathbb{F}_{p^{m}}$. However, in [28], we did not find some QEC codes using the CSS and Steane's constructions. In this paper, we construct some new QEC codes from cyclic codes of length $6 p^{s}$ using the CSS and Steane's constructions and some new QSCs from cyclic codes of length $6 p^{s}$. By applying the CSS construction, we also provide all qMDS codes built from cyclic codes of length $6 p^{s}$. Note that the structure of codes of length $6 p^{s}$ is much more complicated than cyclic and negacyclic codes of length $2 p^{s}$. Repeated-root cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ form a very interesting class of constacyclic codes. Their algebraic structures in term of generator polynomials were provided in 2014 in [27]. Recently, these structures were used in [29] to completely determine the Hamming distances of all such cyclic codes.

Motivated by these, in this research, we construct QEC codes from cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ using CSS and Steane's constructions. Especially, we compare our QEC codes with all previous QEC codes to show that some our QEC codes are new in the sense that their parameters are different from all the previous results. We also provide all qMDS codes from cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ using the CSS construction. Furthermore, we also construct QSCs from cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$.

This paper is organized as follows. Section 2 gives some basic results. Section 3 constructs QEC codes from cyclic
codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ using the CSS and Steane's constructions. Section 4 studies qMDS codes from cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ using the CSS construction. Section 5 constructs QSCs from cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$. Section 6 gives some examples to illustrate our results in Sections 3, 4 and 5, where we present numerous qMDS and QSCs codes. Section 7 concludes our paper with some possible open direction for future studies.

II. PRELIMINARIES

The following lemma is given in [62].
Lemma 2.1. (cf. [62]) Let C be a linear code of length n over $\mathbb{F}_{p^{m}}$. Then C is Λ-constacyclic over $\mathbb{F}_{p^{m}}$ if and only if C is an ideal of $\frac{\mathbb{F}_{p^{m}}[x]}{\left\langle x^{n}-\Lambda\right\rangle}$.

Given n-tuples

$$
u=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right), v=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right) \in \mathbb{F}_{p^{m}}^{n}
$$

the inner product (dot product) of two vectors u, v is defined:

$$
u \cdot v=u_{0} v_{0}+u_{1} v_{1}+\cdots+u_{n-1} v_{n-1}
$$

evaluated in $\mathbb{F}_{p^{m}}$. If $u \cdot v=0$, then two vectors u, v are called orthogonal. Dual code of a linear code C over $\mathbb{F}_{p^{m}}$, denoted by C^{\perp}, is defined as follows:

$$
C^{\perp}=\left\{u \in \mathbb{F}_{p^{m}}^{n} \mid u \cdot v=0, \forall v \in C\right\}
$$

The result on the dual of a Λ-constacyclic code is provided in [24] as follows.

Proposition 2.2. (cf. [24]) The dual of a Λ-constacyclic code is a Λ^{-1}-constacyclic code.

In [27], Dinh studied cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$. We recall the structure of cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ when $p^{m} \equiv 2(\bmod 3)$.

Theorem 2.3. [27, Theorem 3.2] Assume that $p^{m} \equiv$ $2(\bmod 3)$. All cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ which are of the form $\left\langle h_{0}(x)^{u_{0}} h_{1}(x)^{u_{1}} h_{2}(x)^{u_{2}} h_{3}(x)^{u_{3}}\right.$, where $0 \leq u_{t} \leq p^{s}(t=0,1,2,3)$. Each code $C=\left\langle h_{0}(x)^{u_{0}} h_{1}(x)^{u_{1}} h_{2}(x)^{u_{2}} h_{3}(x)^{u_{3}}\right.$ contains $p^{m\left(6 p^{s}-u_{0}-u_{1}-2 u_{2}-2 u_{3}\right)}$ codewords, its dual C^{\perp} is the cyclic code $C^{\perp}=\left\langle h_{0}(x)^{p^{s}-u_{0}} h_{1}(x)^{p^{s}-u_{1}} h_{2}(x)^{p^{s}-u_{2}} h_{3}(x)^{p^{s}-u_{3}}\right.$, where $h_{0}(x)=x-1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+$ $1, h_{3}(x)=x^{2}+x+1$.

We recall the definition of QEC codes appeared in [69].
Definition 2.4. [69] Let $q=p^{m}$ and $H_{q}(C)$ be a q-dimensional Hilbert vector space. Denote $H_{q}^{n}(C)=$ $H_{q}(C) \otimes \cdots \otimes H_{q}(C)$ (n times). A quantum code of length n and dimension k over \mathbb{F}_{q} is defined to be a q^{k} dimensional subspace of $H_{q}^{n}(C)$ and simply denoted by $\left[\left[n, k, d_{H}\right]\right]_{q}$, where d_{H} is the Hamming distance of the quantum code.

We give a small lemma.

Lemma 2.5. Let $0<t \in \mathbb{N}$. Then there are $\frac{(t+2)(t+1)}{2}$ pairs of non-negative integers x, y such that $x+y \leq t$.

Proof. If $x=0$, then we have $t+1$ options for y. If $x=1$, then we have t options for y. In general, for any $x=j$, where $0 \leq j \leq t$, there are $t-j+1$ options for y. That means y can be any integer from 0 to $t-j$. It implies that there are $1+2+3+\cdots+t+(t+1)=\frac{(t+2)(t+1)}{2}$ pairs of non-negative integers x, y such that $x+y \leq t$. \square

III. QUANTUM CODES FROM CYCLIC CODES OF LENGTH $6 p^{s}$ OVER $\mathbb{F}_{p^{m}}$

In 1995, QEC codes were first introduced by Shor [74]. After that, in 1996, by using the structure of classical codes over GF (4), [6] found some QEC codes. In 1998, [7] gave a new method to construct QEC codes from classical codes. Recently, [2], [7], [21], [38], [55] constructed some QEC codes over finite fields and some classes of finite rings. However, QEC codes constructed from cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ using the CSS and Steane's constructions have not been studied in the past.

We recall a construction of QEC codes, the so-called CSS construction.

Theorem 3.1. (CSS construction) [6] Let $C_{1}=\left[n, k_{1}, d_{1}\right]_{q}$ and $C_{2}=\left[n, k_{2}, d_{2}\right]_{q}$ be two linear codes satisfying $C_{2} \subseteq C_{1}$. Then there exists a QEC code with the parameters $\left[\left[n, k_{1}-\right.\right.$ $\left.\left.k_{2}, \min \left\{d_{1}, d_{2}^{\perp}\right\}\right]\right]_{q}$, where d_{2}^{\perp} is the Hamming distance of the dual code C_{2}^{\perp}. Moreover, if $C_{2}=C_{1}^{\perp}$, then there exists a $Q E C$ code with the parameters $\left[\left[n, 2 k_{1}-n, d_{1}\right]\right]_{q}$.

Throughout this paper, $p^{m} \equiv 2(\bmod 3)$. Recall that C is dual-containing if $C^{\perp} \subseteq C$. We give the condition of a cyclic code of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ to be dual-containing to construct QEC codes.

Proposition 3.2. Let C be a cyclic code of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ which is of the form $\left\langle h_{0}(x)^{u_{0}} h_{1}(x)^{u_{1}} h_{2}(x)^{u_{2}} h_{3}(x)^{u_{3}}\right\rangle$, where $0 \leq u_{t} \leq p^{s}(t=0,1,2,3)$, where $h_{0}(x)=x-$ $1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+1, h_{3}(x)=x^{2}+x+1$. Then $C^{\perp} \subseteq C$ if and only if $0 \leq u_{t}<\frac{p^{s}}{2}$. In addition, the number of dual-containing codes is $\left(\frac{p^{s}+1}{2}\right)^{4}$.

Proof. By Theorem 2.3, it is easy to see that $C^{\perp}=\left\langle h_{0}(x)^{p^{s}-u_{0}} h_{1}(x)^{p^{s}-u_{1}} h_{2}(x)^{p^{s}-u_{2}} h_{3}(x)^{p^{s}-u_{3}}\right\rangle$. Hence, $C^{\perp} \subseteq C$ if $p^{s}-u_{t} \leq u_{t}(t=0,1,2,3)$. It means that $0 \leq u_{t}<\frac{p^{s}}{2}(t=0,1,2,3)$. We see that $\frac{p^{s}+1}{2}$ values to choose $u_{t}(t=0,1,2,3)$. Hence, the number of dualcontaining codes is $\left(\frac{p^{s}+1}{2}\right)^{4}$.

Recently, [29] studied the Hamming distance of cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$. So, we can determine all Hamming distances of cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ when $p^{m} \equiv 2(\bmod 3)$. Combining Proposition 3.2 and Theorem 3.1, we construct QEC codes from the class of cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$.

Theorem 3.3. Let C be a cyclic code of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ which is of the form $\left\langle h_{0}(x)^{u_{0}} h_{1}(x)^{u_{1}} h_{2}(x)^{u_{2}} h_{3}(x)^{u_{3}}\right\rangle$, where $h_{0}(x)=x-1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+$ $1, h_{3}(x)=x^{2}+x+1$, and $0 \leq u_{t} \leq p^{s}(t=0,1,2,3)$. If $0 \leq u_{t}<\frac{p^{s}}{2}$, then there exists a QEC code with parameters $\left[\left[6 p^{s}, 6 p^{s}-2 i_{0}-2 i_{1}-4 i_{2}-4 i_{3}, \mathrm{~d}_{\mathrm{H}}(C)\right]\right]_{p^{m}}$. In this case, the number of QEC codes constructed from cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ using the CSS construction is $\left(\frac{p^{s}+1}{2}\right)^{4}$.

Proof. Since $0 \leq u_{0}, u_{1}, u_{2}, u_{3}<\frac{p^{s}}{2}$, by using Proposition 3.2, we have $C^{\perp} \subseteq C$. Using Theorem 3.1, there exists a QEC code with parameters $\left[\left[6 p^{s}, 6 p^{s}-2 i_{0}-2 i_{1}-\right.\right.$ $\left.\left.4 i_{2}-4 i_{3}, \mathrm{~d}_{\mathrm{H}}(C)\right]\right]_{p^{m}}$. Using Proposition 3.2, the number of dual-containing codes is $\left(\frac{p^{s}+1}{2}\right)^{4}$. Hence, the number of QEC codes constructed from cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ using the CSS construction is $\left(\frac{p^{s}+1}{2}\right)^{4}$.

A construction which links between linear codes and QEC codes is the Steane's construction.

Theorem 3.4. (the Steane's construction) [79] Let C_{1} and C_{2} be two linear codes over $\mathbb{F}_{p^{m}}$ with parameters $\left[n, k_{C_{1}}, \mathrm{~d}_{\mathrm{H}}\left(C_{1}\right)\right]_{p^{m}}$ and $\left[n, k_{C_{2}}, \mathrm{~d}_{\mathrm{H}}\left(C_{2}\right)\right]_{p^{m}}$, where $k_{C_{1}}, k_{C_{2}}$ are the dimensions of C_{1} and C_{2}, respectively. If $C_{1}^{\perp} \subseteq$ $C_{1} \subseteq C_{2}$ and $k_{C_{2}} \geq k_{C_{1}}+1$, then there exists an $\left[\left[n, k_{C_{1}}+k_{C_{2}}-n, \min \left\{\overline{\mathrm{~d}}_{\mathrm{H}}\left(C_{1}\right),\left\lceil\frac{p^{m}+1}{p^{m}} \cdot \mathrm{~d}_{\mathrm{H}}\left(C_{2}\right)\right\rceil\right\}\right]\right]_{p^{m}} Q E C$ code.

Combining Proposition 3.2 and Theorem 3.4, we construct QEC codes from the class of cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ using the Steane's construction.

Theorem 3.5. Let C be a cyclic code of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ which is of the form $\left\langle h_{0}(x)^{u_{0}} h_{1}(x)^{u_{1}} h_{2}(x)^{u_{2}} h_{3}(x)^{u_{3}}\right\rangle$, where $h_{0}(x)=x-1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+$ $1, h_{3}(x)=x^{2}+x+1$ and $0 \leq u_{t} \leq p^{s}(t=0,1,2,3)$. Let $C_{1}=\left\langle h_{0}(x)^{u_{0}} h_{1}(x)^{u_{1}} h_{2}(x)^{u_{2}} h_{3}(x)^{u_{3}}\right\rangle, C_{2}=$ $\left\langle h_{0}(x)^{j_{0}} h_{1}(x)^{j_{1}} h_{2}(x)^{j_{2}} h_{3}(x)^{j_{3}}\right\rangle$ be cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$, where $0 \leq j_{t}, u_{t} \leq p^{s}(t=0,1,2,3)$. If $k_{C_{2}} \geq k_{C_{1}}+1$ and $0 \leq j_{t} \leq u_{t}<\frac{p^{s}}{2}(t=0,1,2,3)$, then there exists a QEC code with parameters $\left[\left[6 p^{s}, k_{C_{1}}+k_{C_{2}}-\right.\right.$ $\left.\left.6 p^{s}, \min \left\{\mathrm{~d}_{\mathrm{H}}\left(C_{1}\right),\left\lceil\frac{p^{m}+1}{p^{m}} \cdot \mathrm{~d}_{\mathrm{H}}\left(C_{2}\right)\right\rceil\right\}\right]\right]_{p^{m}}$.

Proof. From $0 \leq j_{t} \leq u_{t} \leq p^{s}(t=0,1,2,3)$, we have $C_{1} \subseteq C_{2}$. By Proposition 3.2, we have $C_{1}^{\perp} \subseteq C_{1}$. Hence, $C_{1}^{\perp} \subseteq C_{1} \subseteq C_{2}$. Using Theorem 3.4, there exists an $\left[\left[n, k_{C_{1}}+k_{C_{2}}-n, \min \left\{\mathrm{~d}_{\mathrm{H}}\left(C_{1}\right),\left[\frac{p^{m}+1}{p^{m}} \cdot \mathrm{~d}_{\mathrm{H}}\left(C_{2}\right)\right]\right\}\right]\right]_{p^{m}}$ QEC code. \square

IV. QUANTUM MDS CODES

In 1992, The Singleton bound is given in [77] as follows: $|C| \leq p^{m\left(n-\mathrm{d}_{\mathrm{H}}(C)+1\right)}$. The case of binary codes was first proved in [53]. Motivated by this, [50] also considered this problem. In 1974, the proof for general q-ary case is given by Denes and Keedwell [22]. A code C satisfying $|C|=$ $p^{m\left(n-\mathrm{d}_{\mathrm{H}}(C)+1\right)}$ which is called an MDS code. In 1952, Bush gave some results on MDS codes. After that, [75], [37] and
[63] also provided several interesting results on MDS codes. The problem of the weight enumerator for such codes was considered by many researchers (for examples, [62], [80], [30]).

In 2020, [29] investigated the Hamming distances of cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ and provided all MDS constacyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ as follows.

Theorem 4.1. Let $C=\left\langle f^{\star}(x)\right\rangle$ be a cyclic code of length $6 p^{s}$. Then C is an MDS code if and only if

- $\operatorname{deg}\left(f^{\star}(x)\right)=0$, in this case, $\mathrm{d}_{\mathrm{H}}(C)=1$.
- $\operatorname{deg}\left(f^{\star}(x)\right)=1$, in this case, $\mathrm{d}_{\mathrm{H}}(C)=2$.
- $\operatorname{deg}\left(f^{\star}(x)\right)=6 p^{s}-1$, in this case, $\mathrm{d}_{\mathrm{H}}(C)=$ $6 p^{s}$.

Using Theorem 4.1, we give all MDS cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$.

Theorem 4.2. Let C be a cyclic code of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ which is of the form $\left\langle h_{0}(x)^{u_{0}} h_{1}(x)^{u_{1}} h_{2}(x)^{u_{2}} h_{3}(x)^{u_{3}}\right\rangle$, where $h_{0}(x)=x-1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+$ $1, h_{3}(x)=x^{2}+x+1$ and $0 \leq u_{t} \leq p^{s}(t=0,1,2,3)$. Then C is an MDS cyclic code if and only if

- $u_{0}=u_{1}=u_{2}=u_{3}=0$, in this case, $\mathrm{d}_{\mathrm{H}}(C)=$ 1.
- $u_{0}+u_{1}+u_{2}+u_{3}=1$, in this case, $\mathrm{d}_{\mathrm{H}}(C)=2$.
- $u_{0}=p^{s}-1, u_{1}=p^{s}, u_{2}=p^{s}, u_{3}=p^{s}$ or $u_{0}=p^{s}, u_{1}=p^{s}-1, u_{2}=p^{s}, u_{3}=p^{s}$, in this case, $\mathrm{d}_{\mathrm{H}}(C)=6 p^{s}$.

In the next part, we construct qMDS codes from cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ using the CSS construction. To do so, we recall the quantum Singleton bound for all classes of codes over finite fields as follows.

Theorem 4.3. (Quantum Singleton Bound) [41, Theorem 1] Let $C=\left[\left[n, k, d_{H}\right]\right]_{p^{m}}$ be a QEC code. Then $k+2 d_{H} \leq$ $n+2$.

If $k+2 d_{H}=n+2$, then C is called a qMDS code. Since the Hamming distance of qMDS codes is maximal, these codes form an important class of QEC codes. Therefore, many researchers gave new qMDS codes (see [19], [39], [47], [48], [49], [51], [52], [58]).

Combining Theorems 3.2, 4.2 and 4.3, we construct qMDS codes from cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ as follows.

Theorem 4.4. Let C be a cyclic code of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ which is of the form $\left\langle h_{0}(x)^{u_{0}} h_{1}(x)^{u_{1}} h_{2}(x)^{u_{2}} h_{3}(x)^{u_{3}}\right\rangle$, where $h_{0}(x)=x-1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+$ $1, h_{3}(x)=x^{2}+x+1$ and $0 \leq u_{t} \leq p^{s}(t=0,1,2,3)$. Then the following statements hold:

- If $u_{0}=u_{1}=u_{2}=u_{3}=0$, then there exists a $q M D S$ code with parameters $\left[\left[6 p^{s}, 6 p^{s}, 1\right]\right]_{p^{m}}$.
- If $u_{0}+u_{1}+u_{2}+u_{3}=1$, then there exists a $q M D S$ code with parameters $\left[\left[6 p^{s}, 6 p^{s}-2,2\right]\right]_{p^{m}}$.

Proof. Let $C=\left\langle h_{0}(x)^{u_{0}} h_{1}(x)^{u_{1}} h_{2}(x)^{u_{2}} h_{3}(x)^{u_{3}}\right\rangle$ be an MDS cyclic code such that $C^{\perp} \subseteq C$. Then we see that $k_{C}=6 p^{s}-\mathrm{d}_{\mathrm{H}}(C)+1$ and $0 \leq u_{0}, u_{1}, u_{2}, u_{3} \leq \frac{p^{s}}{2}$. From $C^{\perp} \subseteq C$, by applying Theorem 3.1 (the CSS construction), there exists a quantum code D with parameters $\left[\left[6 p^{s}, 2 k_{C}-\right.\right.$ $\left.\left.6 p^{s}, \mathrm{~d}_{\mathrm{H}}(C)\right]\right]_{p^{m}}$. Since $k_{C}=6 p^{s}-\mathrm{d}_{\mathrm{H}}(C)+1$, we have $2 k_{C}-6 p^{s}=6 p^{s}-2 \mathrm{~d}_{\mathrm{H}}(C)+2$. By Theorem 4.3, D is a qMDS code with parameters $\left[\left[6 p^{s}, 2 k_{C}-6 p^{s}, \mathrm{~d}_{\mathrm{H}}(C)\right]\right]_{p^{m}}$. Hence, if $C=\left[6 p^{s}, k_{C}, \mathrm{~d}_{\mathrm{H}}(C)\right]_{p^{m}}$ is an MDS cyclic code and $C^{\perp} \subseteq C$, then there exists a qMDS code with parameters $\left[\left[6 p^{s}, 6 p^{s}-2 \mathrm{~d}_{\mathrm{H}}(C)+2, \mathrm{~d}_{\mathrm{H}}(C)\right]\right]_{p^{m}}$. We consider 2 cases as follows:

Case 1: $u_{0}=u_{1}=u_{2}=u_{3}=0$. In this case, we have $\mathrm{d}_{\mathrm{H}}\left(C_{0,0}\right)=1$. From Theorem 4.2, $C=\left[6 p^{s}, 6 p^{s}, 1\right]_{p^{m}}$ is an MDS cyclic code. From $u_{0}=u_{1}=u_{2}=u_{3}=0$, we have $C^{\perp} \subseteq C$. As there exists a qMDS code with parameters $\left[\left[6 p^{s}, 6 p^{s}-2 \mathrm{~d}_{\mathrm{H}}(C)+2, \mathrm{~d}_{\mathrm{H}}(C)\right]\right]_{p^{m}}$, we have a qMDS code with parameters $\left[\left[6 p^{s}, 6 p^{s}, 1\right]\right]_{p^{m}}$.

Case 2: $u_{0}+u_{1}+u_{2}+u_{3}=1$. In this case, we have $\mathrm{d}_{\mathrm{H}}(C)=2$. Applying Theorem 4.2, C is an MDS cyclic code. From $u_{0}+u_{1}+u_{2}+u_{3}=1$, we have $C^{\perp} \subseteq C$. Hence, there exists a qMDS code with parameters $\left[\left[6 p^{s}, 6 p^{s}-2,2\right]\right]_{p^{m}}$.

V. QUANTUM SYNCHRONIZABLE CODES

QSCs are used for correcting the extract the Pauli errors on qubits and preventing the destruction of qubits in the quantum states. Therefore, several QSCs are provided to use in quantum synchronizable codes (for examples, [33], [35], [36], [81], [82], [60], [61]).

Let ℓ be an integer satisfying $\operatorname{gcd}(\ell, p)=1$, where $\ell \geq$ 2. Assume that $C_{t, \ell}$ is the cyclotomic coset of t modulo ℓ over \mathbb{F}_{q} and denote by T_{ℓ} the set of representatives of all q ary cyclotomic cosets. Let $f_{t}(x)=\prod_{i \in C_{t, \ell}}\left(x-\xi^{i}\right)$ be the minimal polynomial of ξ^{t} over \mathbb{F}_{q}, where ξ is a primitive ℓ-th root of unity in \mathbb{F}_{q}. Then the polynomial $x^{\ell p^{s}}-1$ over \mathbb{F}_{q} can be factored as

$$
x^{\ell p^{s}}-1=\left(x^{\ell}-1\right)^{p^{s}}=\prod_{t \in T_{\ell}}\left(f_{t}(x)\right)^{p^{s}}
$$

In 2015, by using the class of cyclic codes of length ℓp^{s} over $\mathbb{F}_{q},[60]$ constructed some QSCs.

Theorem 5.1. [60, Theorem 3] Let $C_{1}=\left\langle\prod_{t \in T_{\ell}}\left(f_{t}(x)\right)^{u_{t}}\right\rangle$ and $C_{2}=\left\langle\prod_{t \in T_{\ell}}\left(f_{t}(x)\right)^{j_{t}}\right\rangle$ be cyclic codes of length ℓp^{s} over $\mathbb{F}_{p^{m}}$ satisfying $C_{1}^{\perp} \subseteq C_{1}, C_{2}^{\perp} \subseteq C_{2}$, and $C_{1} \subset C_{2}$. Then the following conditions hold:
(i) $u_{t}+i_{-t} \leq p^{s}$.
(ii) $j_{t}+j_{-t} \leq p^{s}$.
(iii) $0 \leq j_{t}<u_{t} \leq p^{s}$.

In such cases, if there exists an integer $r \in T_{\ell}$ with $\operatorname{gcd}(r, \ell)=1$ satisfying either $i_{r}-j_{r}>p^{s-1}$ or $i_{r}-j_{r}>0$ and $i_{r^{\prime}}-j_{r^{\prime}}>p^{s-1}$ for some $r^{\prime} \neq r \in T_{\ell}$, then for any pair of non-negative integers a_{b}, a_{e} satisfying $a_{b}+a_{e}<\ell p^{s}$, there

n	q	d	Reference
$n \leq q+1$	prime power	$d \leq\left\lfloor\frac{n}{2}\right\rfloor+1$	[39]
$m q-l$	prime power	$d \leq m-l+1,0 \leq l<m, 1<m<q$	[58]
$m q-l$	prime power	$3 \leq d \leq\left(q+1-\left\lfloor\frac{l}{m}\right\rfloor\right) / 2,0 \leq l \leq q-1,1 \leq m \leq 4$	[48]
$r(q-1)+1$	$q \equiv r-1(\bmod 2 r)$	$d \leq \frac{q+r+1}{2}$	[49]
$q^{2}-s$	prime power	$\frac{q}{2}+1<d \leq q-s$	[49]
$\frac{q^{2}+1}{2}$	q odd	$3 \leq d \leq q, d$ odd	[51]
$4 \leq n \leq q^{2}+1, n \neq 4$	$q \neq 2$	3	[48]
$q^{2}-1$	prime power	$d \leq q-l, 0 \leq l \leq q-2$	[58]
$q^{2}+1$	prime power	$2 \leq d \leq q+1$	[48], [51], [49]
$\frac{q^{2}-1}{2}$	q odd	$2 \leq d \leq q$	[52]
$\frac{q^{2}-1}{r}, r$ even, $r \neq 2, r \mid(q+1)$	q odd	$2 \leq d \leq \frac{q+1}{2}$	[52]
$\lambda(q+1), \lambda$ odd, $\lambda \mid(q-1)$	q odd	$2 \leq d \leq \frac{q+1}{2}+\lambda$	[52]
$2 \lambda(q+1), \lambda$ odd, $\lambda \mid(q-1)$	$q \equiv 1(\bmod 4)$	$2 \leq d \leq \frac{q+1}{2}+2 \lambda$	[52]
$\frac{q^{2}+1}{5}$	$q \equiv 20 m+3, q \equiv 20 m+7$	$2 \leq d \leq \frac{q+5}{2}, d$ even	[52]
$\frac{q^{2}-1}{3}$	$3 \mid(q+1)$	$2 \leq d \leq \frac{2(q-2)}{3}+1$	[19]
$\frac{q^{2}-1}{5}$	$5 \mid(q+1)$	$2 \leq d \leq \frac{3(q+1)}{5}-1$	[19]
$\frac{q^{2}-1}{7}$	$7 \mid(q+1)$	$2 \leq d \leq \frac{4(q+1)}{7}-1$	[19]
$\frac{q^{2}+1}{10} 4$	$q=10 m+3, q=10 m+7$	$3 \leq d \leq 4 m+1, d$ odd	[19]
$n=1+\frac{r\left(q^{2}-1\right)}{2 t+1}, 1 \leq t \in \mathbb{Z}, 1 \leq r \leq 2 t+1$	$\operatorname{gcd}(r, q)=1, q \equiv-1(\bmod 2 t+1)$	$d \leq \frac{t+1}{2 t+1} \times q-\frac{t}{2 t+1}+1$	[47]
$n=\frac{r\left(q^{2}-1\right)}{2 t+1}, 1 \leq t \in \mathbb{Z}, 1 \leq r \leq 2 t+1$	$\operatorname{gcd}(r, q)>1, q \equiv-1(\bmod 2 t+1)$	$d \leq \frac{t+1}{2 t+1} \times q-\frac{t}{2 t+1}+1$	[47]
$2(d-1) \leq n \leq\left(d^{2}-2 d+2\right)$	prime power	$2 \leq d \leq q$	[47]

Table 1: Known families of qMDS codes
exists an $\left(a_{b}, a_{e}\right)-\left[\left[\ell p^{s}+a_{b}+a_{e}, \ell p^{s}-2 \sum_{t \in T_{\ell}} u_{t}\left|C_{t, \ell}\right|\right]\right]_{q}$ QSC.

Using Theorem 5.1, we construct QSCs from cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ as follows.

Theorem 5.2. Let C be a cyclic code of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ which is of the form $\left\langle h_{0}(x)^{u_{0}} h_{1}(x)^{u_{1}} h_{2}(x)^{u_{2}} h_{3}(x)^{u_{3}}\right\rangle$, where $h_{0}(x)=x-1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+$ $1, h_{3}(x)=x^{2}+x+1$ and $0 \leq u_{t} \leq p^{s}(t=0,1,2,3)$. Let $C_{1}=\left\langle h_{0}(x)^{u_{0}} h_{1}(x)^{u_{1}} h_{2}(x)^{u_{2}} h_{3}(x)^{u_{3}}\right\rangle, C_{2} \quad=$ $\left\langle h_{0}(x)^{j_{0}} h_{1}(x)^{j_{1}} h_{2}(x)^{j_{2}} h_{3}(x)^{j_{3}}\right\rangle$ be cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ satisfying $C_{1}^{\perp} \subseteq C_{1}, C_{2}^{\perp} \subseteq C_{2}$ and $C_{1} \subset C_{2}$. Then the following conditions hold:
(i) $0 \leq u_{0}, u_{1}, u_{2}, u_{3} \leq \frac{p^{s}}{2}$.
(ii) $0 \leq j_{0}, j_{1}, j_{2}, j_{3} \leq \frac{p^{\frac{p}{2}}}{2}$.
(iii) $0 \leq j_{t}<u_{t} \leq p^{s}$, where $t=0,1,2,3$. In such cases, if there exists an integer $r \in T_{6}$ satisfying either $u_{r}-j_{r}>p^{s-1}$ or $u_{r}-j_{r}>0$ and $u_{r^{\prime}}-j_{r^{\prime}}>p^{s-1}$ for some $r^{\prime} \neq r \in T_{6}$, then for any pair of non-negative integers a_{b}, a_{e} satisfying $a_{b}+a_{e}<6 p^{s}$, there exists an $\left(a_{b}, a_{e}\right)-\left[\left[6 p^{s}+\right.\right.$ $\left.a_{b}+a_{e}, 6 p^{s}-2 u_{0}-2 u_{1}-4 u_{2}-4 u_{3}\right]_{q}$ QSC. If we fix u_{t}, j_{t}, r, where $t=0,1,2,3$ and $r \in T_{6}$, then there are $3 p^{s} \cdot\left(6 p^{s}+1\right)$ such QSCs.

Proof. Since $C_{1}^{\perp}=\left\langle(x-1)^{p^{s}-u_{0}}(x+1)^{p^{s}-u_{1}}\left(x^{2}-x+\right.\right.$ 1) $\left.{ }^{u_{2}}\left(x^{2}+x+1\right)^{u_{3}}\right\rangle \subseteq C_{1}$ and $C_{2}^{\perp}=\left\langle(x-1)^{p^{s}-j_{0}}(x+\right.$ 1) $\left.{ }^{p^{s}-j_{1}}\left(x^{2}-x+1\right)^{p^{s}-u_{2}}\left(x^{2}+x+1\right)^{p^{s}-u_{3}}\right\rangle \subseteq C_{2}$, we have $p^{s}-u_{t} \geq u_{t}, p^{s}-j_{t} \geq j_{t}$, where $t=0,1,2,3$, i.e., $0 \leq u_{t} \leq \frac{p^{s}}{2}$ and $0 \leq j_{t} \leq \frac{p^{s}}{2}$, showing (i) and (ii). From $C_{1} \subseteq C_{2}$, it implies that $0 \leq j_{t}<u_{t} \leq p^{s}$, proving (iii). Since $C_{1}^{\perp} \subseteq C_{1}, C_{2}^{\perp} \subseteq C_{2}$, and $C_{1} \subseteq C_{2}$, by using Theorem 5.1, if there is an integer $r \in T_{6}$ such that either $u_{r}-j_{r}>$
p^{s-1} or $u_{r}-j_{r}>0$ and $u_{r^{\prime}}-j_{r^{\prime}}>p^{s-1}$ for some $r^{\prime} \neq r \in$ T_{6}, then for any pair of non-negative integers a_{b}, a_{e} satisfying $a_{b}+a_{e}<6 p^{s}$, there exists an $\left(a_{b}, a_{e}\right)-\left[\left[6 p^{s}+a_{b}+a_{e}, 6 p^{s}-\right.\right.$ $\left.\left.2 u_{0}-2 u_{1}-4 u_{2}-4 u_{3}\right]\right]_{q}$ QSC. Assume that u_{t}, j_{t}, r are fixed, where $t=0,1,2,3$ and $r \in T_{6}$. Using Lemma 2.5 for $n=6 p^{s}-1$, there are $3 p^{s} \cdot\left(6 p^{s}+1\right)$ pairs of non-negative integers a_{b}, a_{e} satisfying $a_{b}+a_{e}<6 p^{s}$. It means that there are $3 p^{s} \cdot\left(6 p^{s}+1\right)$ such QSCs.

BCH codes are used in coding theory since they have useful in encoding and decoding algorithms. Let n be a divisor of $p^{m}-1$ and γ be an element of $\mathbb{F}_{p^{m}}$ with multiplicative order n. A BCH code of length n is a cyclic code such that its generator polynomial has a set of $\alpha-1$ consecutive roots $\gamma^{e}, \gamma^{e+1}, \cdots, \gamma^{e+\alpha-2}$, where $e \in \mathbb{N}^{\star}$. Applying the BCH bound, we see that the minimum distance of the BCH code is at least α. Therefore, the designed distance of the BCH code is α. If C is a BCH code satisfying the length $n=p^{m}-1$, then C is called primitive. If $e=1$, i.e., the $\alpha-1$ consecutive roots start from γ, then C is called narrow-sense .

Remark 5.3. In 2015, [60, Table 2] gave some parameters of non-primitive, narrow-sense BCH codes C over \mathbb{F}_{q} in Table 2. Some parameters of cyclic codes of length $6 p^{s}$ over \mathbb{F}_{p} are listed in Table 3 to show that the code lengths of cyclic codes of length $6 p^{s}$ over \mathbb{F}_{p} are smaller than BCH codes given in Table 2 but the Hamming distances of repeated-root cyclic codes of length $6 p^{s}$ over \mathbb{F}_{p} are better than $\gamma_{\text {max }}$, where $\gamma_{\text {max }}$ is a precise lower bound for the largest minimum distance of a dual-containing BCH code. This is the reason why QSCs constructed from repeated-root cyclic codes of length $6 p^{s}$ over \mathbb{F}_{p} are better than QSCs constructed from non-primitive, narrow-sense BCH codes.

p	length	$\delta_{\max }$
5	312	12
5	1562	60
7	8403	168
11	3660	30
13	92823	546

Table 2: Some parameters of non-primitive, narrow-sense BCH codes over \mathbb{F}_{p}.
Put $h_{0}(x)=x-1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+$ $1, h_{3}(x)=x^{2}+x+1$. Then we have the following table.

p	s	C	length	d_{H}
5	2	$\left\langle h_{0}(x)^{24} h_{1}(x)^{25} h_{2}(x)^{25} h_{3}(x)^{25}\right\rangle$	150	150
5	3	$\left\langle h_{0}(x)^{125} h_{1}(x)^{124} h_{2}(x)^{125} h_{3}(x)^{125}\right\rangle$	750	750
7	3	$\left\langle h_{0}(x)^{342} h_{1}(x)^{343} h_{2}(x)^{343} h_{3}(x)^{343}\right\rangle$	2058	2058
11	2	$\left\langle h_{0}(x)^{121} h_{1}(x)^{120} h_{2}(x)^{121} h_{3}(x)^{121}\right\rangle$	726	726
13	3	$\left\langle h_{0}(x)^{2196} h_{1}(x)^{2197} h_{2}(x)^{2197} h_{3}(x)^{2197}\right\rangle$	13182	13182

Table 3: Some parameters of cyclic codes of length $6 p^{s}$ over \mathbb{F}_{p}.

VI. EXAMPLES

We start this section by providing some examples to illustrate Theorems 3.3 and 3.5.

Example 6.1. Let $p=11, s=1$ and $m=1$. We have $x^{66}-1=h_{0}(x)^{11} h_{1}(x)^{11} h_{2}(x)^{11} h_{3}(x)^{11}$, where $h_{0}(x)=$ $x-1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+1, h_{3}(x)=x^{2}+x+1$. (i) Let $C_{1}=\left\langle h_{0}(x)^{7} g_{1}(x)^{2} g_{3}(x)^{2}\right\rangle$ and $C_{2}=$ $\left\langle h_{0}(x)^{6} g_{1}(x)^{2} g_{3}(x)^{2}\right\rangle$. Using Theorem 3.13 in [29], $\mathrm{d}_{\mathrm{H}}\left(C_{1}\right)=4$ and $\mathrm{d}_{\mathrm{H}}\left(C_{2}\right)=4$. It is easy to see that $k_{C_{1}}=53$ and $k_{C_{2}}=54$. By Theorem 3.5, we see that there exists a QEC code with parameters $\left[\left[66,41, \min \left\{4,\left\lceil\frac{48}{11}\right\rceil\right\}\right]\right]_{11}=$ $[[66,41,4]]_{11}$. We compare the QEC code and online table [44] to see that the QEC code with parameters $[[66,41,4]]_{11}$ is new in the sense that the parameters are different from all the previous constructions.
(ii) Let $C_{3}=\left\langle h_{0}(x)^{2} g_{1}(x) h_{3}(x)\right\rangle$ and $C_{4}=\left\langle g_{0}(x) h_{1}(x)\right\rangle$. It is easy to see that $C_{3} \subseteq C_{4}$. We have $k_{C_{3}}=61$ and $k_{C_{4}}=64$. Using Theorem 3.13 in [29], $\mathrm{d}_{\mathrm{H}}\left(C_{3}\right)=3$ and $\mathrm{d}_{\mathrm{H}}\left(C_{4}\right)=2$. By Theorem 3.5, we see that there exists a QEC code with parameters $\left[\left[66,59, \min \left\{3,\left\lceil\frac{24}{11}\right\rceil\right\}\right]\right]_{11}=$ $[[66,59,3]]_{11}$. We compare the QEC code and online table [44] to see that the QEC code with parameters $[[66,59,3]]_{11}$ is new in the sense that the parameters are different from all the previous constructions. Moreover, the QEC code with parameters $[[66,59,3]]_{11}$ is better than all QEC codes with same length and Hamming distance listed in [44], i.e., the QEC code constructed from cyclic code C_{3} and C_{4} using the Steane's construction has the dimension that is larger than the dimension of all QEC codes with same length and Hamming distance listed in [44].
(ii) Let $C_{5}=\left\langle h_{0}(x)^{3} g_{1}(x) h_{3}(x)\right\rangle$ and $C_{6}=$ $\left\langle g_{0}(x) g_{1}(x) h_{3}(x)\right\rangle$. It is easy to see that $C_{5} \subseteq C_{6}$. We have $k_{C_{5}}=60$ and $k_{C_{6}}=61$. Using Theorem 3.13 in [29], $\mathrm{d}_{\mathrm{H}}\left(C_{5}\right)=4$ and $\mathrm{d}_{\mathrm{H}}\left(C_{6}\right)=3$. By Theorem 3.5, we see that there exists a QEC code with parameters $\left[\left[66,55, \min \left\{4,\left\lceil\frac{36}{11}\right\rceil\right\}\right]\right]_{11}=[[66,55,4]]_{11}$. We compare the QEC code and online table [44] to see that the QEC code with parameters $[[66,55,4]]_{11}$ is new in the sense that the parameters are different from all the previous constructions.

Moreover, the QEC code with parameters $[[66,55,4]]_{11}$ is better than all QEC codes with same length and Hamming distance listed in [44], i.e., the QEC code constructed from cyclic code C_{5} and C_{6} using the Steane's construction has the dimension that is larger than the dimension of all QEC codes with same length and Hamming distance listed in [44].

Example 6.2. Let $p=17, s=1, m=1$. We have $x^{102}-$ $1=h_{0}(x)^{17} h_{1}(x)^{17} h_{2}(x)^{17} h_{3}(x)^{17}$, where $h_{0}(x)=x-$ $1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+1, h_{3}(x)=x^{2}+x+1$.
(i) Let $C_{1}=\left\langle h_{0}(x)^{3} g_{1}(x) h_{3}(x)\right\rangle$ and $C_{2}=$ $\left\langle h_{0}(x)^{2} g_{1}(x) h_{3}(x)\right\rangle$. Hence, $C_{1} \subseteq C_{2}$ and $k_{C_{1}}=$ $96, k_{C_{2}}=97$. Applying Theorem 3.13 in [29], $\mathrm{d}_{\mathrm{H}}\left(C_{1}\right)=4$ and $\mathrm{d}_{\mathrm{H}}\left(C_{2}\right)=3$. From Proposition 3.2, it is easy to see that $C_{1}^{\perp} \subseteq C_{1}$. Using Theorem 3.3 for C_{1}, there exists a QEC code with parameters $[[102,90,4]]_{17}$. We compare the QEC code and online table [44] to see that the QEC code with parameters $[[102,90,4]]_{17}$ is coincided with a QEC code listed in [44], i.e., it is not new in the sense that the parameters are different from all the previous constructions. However, by Theorem 3.5, we see that there exists a QEC code with parameters $\left[\left[102,91, \min \left\{4,\left\lceil\frac{54}{17}\right\rceil\right\}\right]\right]_{17}=[[102,91,4]]_{17}$. We compare the QEC code and online table [44] to see that the QEC code with parameters $[[102,91,4]]_{17}$ is new in the sense that the parameters are different from all the previous constructions. Moreover, the QEC code with parameters $[[102,91,4]]_{17}$ is better than all QEC codes with same length and Hamming distance listed in [44], i.e., the QEC code constructed from cyclic code C_{1} and C_{2} using the Steane's construction has the dimension that is larger than the dimension of all QEC codes with same length and Hamming distance listed in [44].
(ii) Let $C_{3}=\left\langle h_{0}(x)^{7} h_{1}(x)^{3} g_{2}(x) h_{3}(x)^{3}\right\rangle$ and $C_{4}=\left\langle h_{0}(x)^{6} g_{1}(x)^{3} g_{3}(x)\right\rangle$. Hence, $C_{3} \subseteq C_{4}$ and $k_{C_{3}}=84, k_{C_{4}}=85$. Applying Theorem 3.13 in [29], $\mathrm{d}_{\mathrm{H}}\left(C_{3}\right)=8$ and $\mathrm{d}_{\mathrm{H}}\left(C_{4}\right)=7$. From Proposition 3.2, it is easy to see that $C_{3}^{\perp} \subseteq C_{3}$. Using Theorem 3.3 for C_{3}, there exists a QEC code with parameters $[[102,66,8]]_{17}$. We compare the QEC code and online table [44] to see that the QEC code with parameters $[[102,66,8]]_{17}$ is coincided with a QEC code listed in [44], i.e., it is not new in the sense that the parameters are different from all the previous constructions. However, by Theorem 3.5, we see that there exists a QEC code with parameters $\left[\left[102,67, \min \left\{8,\left\lceil\frac{126}{17}\right\rceil\right\}\right]\right]_{17}=[[102,67,8]]_{17}$. We compare the QEC code and online table [44] to see that the QEC code with parameters $[[102,67,8]]_{17}$ is new in the sense that the parameters are different from all the previous constructions. Moreover, the QEC code with parameters $[[102,67,8]]_{17}$ is better than all QEC codes with same length and Hamming distance listed in [44], i.e., the QEC
code constructed from cyclic code C_{3} and C_{4} using the Steane's construction has the dimension that is larger than the dimension of all QEC codes with same length and Hamming distance listed in [44]. (iii) Let $C_{5}=\left\langle h_{0}(x)^{8} h_{1}(x)^{4} g_{2}(x)^{2} g_{3}(x)^{4}\right\rangle$ and $C_{6}=\left\langle h_{0}(x)^{7} g_{1}(x)^{3} g_{2}(x) h_{3}(x)^{3}\right\rangle$. Hence, $C_{5} \subseteq$ C_{6} and $k_{C_{5}}=78, k_{C_{6}}=84$. Applying Theorem 3.13 in [29], $\mathrm{d}_{\mathrm{H}}\left(C_{5}\right)=9$ and $\mathrm{d}_{\mathrm{H}}\left(C_{6}\right)=8$. From Proposition 3.2, it is easy to see that $C_{5}^{\perp} \subseteq C_{5}$. Using Theorem 3.3 for C_{5}, there exists a QEC code with parameters $[[102,54,9]]_{17}$. We compare the QEC code and online table [44] to see that the QEC code with parameters $[[102,54,9]]_{17}$ is coincided with a QEC code listed in [44], i.e., it is not new in the sense that the parameters are different from all the previous constructions. However, by Theorem 3.5, we see that there exists a QEC code with parameters $\left[\left[102,60, \min \left\{9,\left\lceil\frac{144}{17}\right\rceil\right\}\right]\right]_{17}=$ $[[102,60,9]]_{17}$. We compare the QEC code and online table [44] to see that the QEC code with parameters $[[102,60,9]]_{17}$ is new in the sense that the parameters are different from all the previous constructions. Moreover, the QEC code with parameters $[[102,60,9]]_{17}$ is better than all QEC codes with same length and Hamming distance listed in [44], i.e., the QEC code constructed from cyclic code C_{5} and C_{6} using the Steane's construction has the dimension that is larger than the dimension of all QEC codes with same length and Hamming distance listed in [44].

Example 6.3. Let $p=5, s=2$ and $m=1$. We have $x^{150}-1=h_{0}(x)^{25} h_{1}(x)^{25} h_{2}(x)^{25} h_{3}(x)^{25}$, where $h_{0}(x)=$ $x-1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+1, h_{3}(x)=x^{2}+x+1$. (i) Let $C_{1}=\left\langle h_{0}(x)^{3} g_{1}(x) h_{3}(x)\right\rangle$. From Proposition 3.2, we see that $C_{1}^{\perp} \subseteq C_{1}$. Using Theorem 3.13 in [29], $\mathrm{d}_{\mathrm{H}}\left(C_{1}\right)=4$. By Theorem 3.3, there exists a QEC code with parameters $[[150,138,4]]_{5}$. We compare the QEC codes and online table [44] to see that the QEC codes with parameters $[[150,138,4]]_{5}$ is new in the sense that the parameters are different from all the previous constructions. Moreover, the QEC code with parameters $[[150,138,4]]_{17}$ is better than all QEC codes with same length and Hamming distance listed in [44], i.e., the QEC code constructed from cyclic code C_{1} using CSS construction has the dimension that is larger than the dimension of all QEC codes with same length and Hamming distance listed in [44]. We see that the number of QEC codes constructed from all cyclic codes of length 150 over \mathbb{F}_{5} using the CSS construction is 11325 .
(ii) Let $C_{2}=h_{0}(x)^{2} f_{1}(x) h_{3}(x)$. Using Theorem 3.13 in [29], $\mathrm{d}_{\mathrm{H}}\left(C_{2}\right)=3$. It is easy to see that $k_{C_{1}}=144$ and $k_{C_{2}}=145$. By Theorem 3.5, we see that there exists a QEC code with parameters $\left[\left[150,139, \min \left\{4,\left\lceil\frac{18}{5}\right\rceil\right\}\right]\right]_{5}=$ $[[150,139,4]]_{5}$. We compare the QEC code and online table [44] to see that the QEC code with parameters $[[150,139,4]]_{5}$ is new in the sense that the parameters are different from
all the previous constructions. Moreover, the QEC code with parameters $[[150,139,4]]_{5}$ is better than all QEC codes with same length and Hamming distance listed in [44], i.e., the QEC code constructed from cyclic code C_{1} and C_{2} using the Steane's construction has the dimension that is larger than the dimension of all QEC codes with same length and Hamming distance listed in [44].

Example 6.4. Let $p=23, s=1$ and $m=1$. We have $x^{138}-1=h_{0}(x)^{23} h_{1}(x)^{23} h_{2}(x)^{23} h_{3}(x)^{23}$, where $h_{0}(x)=$ $x-1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+1, h_{3}(x)=x^{2}+x+1$. (i) Let $C_{1}=\left\langle h_{0}(x)^{6} g_{1}(x)^{2} g_{3}(x)\right\rangle$ and $C_{2}=$ $\left\langle h_{0}(x)^{5} g_{1}(x)^{2} g_{3}(x)\right\rangle$. Using Theorem 3.13 in [29], $\mathrm{d}_{\mathrm{H}}\left(C_{1}\right)=4$ and $\mathrm{d}_{\mathrm{H}}\left(C_{2}\right)=4$. It is easy to see that $k_{C_{1}}=$ 127 and $k_{C_{2}}=129$. By Theorem 3.5, we see that there exists a QEC code with parameters $\left[\left[138,118, \min \left\{4,\left\lceil\frac{96}{23}\right\rceil\right\}\right]\right]_{23}=$ $[[138,118,4]]_{23}$. We compare the QEC code and online table [44] to see that the QEC code with parameters $[[138,118,4]]_{23}$ is coincided with a QEC code listed in [44], i.e., it is not new in the sense that the parameters are different from all the previous constructions.
(ii) Let $C_{3}=\left\langle h_{0}(x)^{3} g_{1}(x)^{2} g_{3}(x)\right\rangle$ and $C_{4}=$ $\left\langle h_{0}(x)^{2} g_{1}(x) h_{3}(x)\right\rangle$. It is easy to see that $C_{3} \subseteq C_{4}$. We have $k_{C_{3}}=131$ and $k_{C_{4}}=133$. Using Theorem 3.13 in [29], $\mathrm{d}_{\mathrm{H}}\left(C_{3}\right)=4$ and $\mathrm{d}_{\mathrm{H}}\left(C_{4}\right)=3$. By Theorem 3.5, we see that there exists a QEC code with parameters $\left[\left[138,126, \min \left\{4,\left\lceil\frac{72}{23}\right\rceil\right\}\right]\right]_{23}=[[138,124,4]]_{23}$. We compare the QEC code and online table [44] to see that the QEC code with parameters $[[138,124,4]]_{23}$ is new in the sense that the parameters are different from all the previous constructions. Moreover, the QEC code with parameters $[[150,124,4]]_{23}$ is better than all QEC codes with same length and Hamming distance listed in [44], i.e., the QEC code constructed from cyclic code C_{3} and C_{4} using the Steane's construction has the dimension that is larger than the dimension of all QEC codes with same length and Hamming distance listed in [44].

Example 6.5. Let $p=29, s=1$ and $m=1$. We have $x^{174}-1=h_{0}(x)^{29} h_{1}(x)^{29} h_{2}(x)^{29} h_{3}(x)^{29}$, where $h_{0}(x)=$ $x-1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+1, h_{3}(x)=x^{2}+x+1$. (i) Let $C_{1}=\left\langle h_{0}(x)^{7} f_{1}(x)^{2} f_{3}(x)^{2}\right\rangle$ and $C_{2}=$ $\left\langle h_{0}(x)^{6} f_{1}(x)^{2} f_{3}(x)^{2}\right\rangle$. Using Theorem 3.13 in [29], $\mathrm{d}_{\mathrm{H}}\left(C_{1}\right)=4$ and $\mathrm{d}_{\mathrm{H}}\left(C_{2}\right)=4$. It is easy to see that $k_{C_{1}}=161$ and $k_{C_{2}}=162$. By Theorem 3.5, we see that there exists a QEC code with parameters $\left[\left[174,149, \min \left\{4,\left\lceil\frac{120}{29}\right\rceil\right\}\right]\right]_{29}=[[174,149,4]]_{29}$. We compare the QEC code and online table [44] to see that the QEC code with parameters $[[174,149,4]]_{29}$ is coincided with a QEC code listed in [44], i.e., it is not new in the sense that the parameters are different from all the previous constructions. (ii) Let $C_{3}=\left\langle h_{0}(x)^{3} f_{1}(x)^{2} f_{3}(x)\right\rangle$ and $C_{4}=$ $\left\langle h_{0}(x)^{2} f_{1}(x) h_{3}(x)\right\rangle$. It is easy to see that $C_{3} \subseteq C_{4}$. We have $k_{C_{3}}=167$ and $k_{C_{4}}=169$. Using Theorem 3.13 in [29], $\mathrm{d}_{\mathrm{H}}\left(C_{3}\right)=4$ and $\mathrm{d}_{\mathrm{H}}\left(C_{4}\right)=3$. By Theorem 3.5, we see that there exists a QEC code with parameters $\left[\left[174,162, \min \left\{4,\left\lceil\frac{90}{29}\right\rceil\right\}\right]\right]_{29}=[[174,162,4]]_{29}$. We com-
pare the QEC code and online table [44] to see that the QEC code with parameters $[[174,162,4]]_{29}$ is new in the sense that the parameters are different from all the previous constructions. Moreover, the QEC code with parameters $[[174,162,4]]_{29}$ is better than all QEC codes with same length and Hamming distance listed in [44], i.e., the QEC code constructed from cyclic code C_{3} and C_{4} using the Steane's construction has the dimension that is larger than the dimension of all QEC codes with same length and Hamming distance listed in [44].

Example 6.6. Let $p=11, s=1, m=1$. We see that $x^{66}-$ $1=h_{0}(x)^{11} h_{1}(x)^{11} h_{2}(x)^{11} h_{3}(x)^{11}$, where $h_{0}(x)=x-$ $1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+1, h_{3}(x)=x^{2}+x+1$.
(i) Let $C_{0}=\langle 1\rangle$. By Proposition 3.2, it is easy to see that $C_{0}^{\perp} \subseteq C_{0}$. By using Theorem 4.4, we see that there is a qMDS code with parameters $[[66,66,1]]_{11}$.
(ii) Let $C_{1}=\langle(x-1)\rangle$. From Proposition 3.2, it is easy to see that $C_{1}^{\perp} \subseteq C_{1}$. From Theorem 4.4, we see that there is a qMDS code with parameters $[[66,64,2]]_{11}$.
(ii) Let $C_{2}=\langle(x+1)\rangle$. From Proposition 3.2, it is easy to see that $C_{1}^{\perp} \subseteq C_{1}$. By using Theorem 4.4, we see that there is a qMDS code with parameters $[[66,64,2]]_{11}$.

Example 6.7. Let $p=11, s=2, m=1$. We see that $x^{726}-1=h_{0}(x)^{121} h_{1}(x)^{121} h_{2}(x)^{121} h_{3}(x)^{121}$, where $h_{0}(x)=x-1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+1, h_{3}(x)=$ $x^{2}+x+1$.
(i) Let $C_{0}=\langle 1\rangle$. By Proposition 3.2, it is easy to see that $C_{0}^{\perp} \subseteq C_{0}$. By using Theorem 4.4, we see that there is a qMDS code with parameters $[[726,726,1]]_{11}$.
(ii) Let $C_{1}=\langle(x-1)\rangle$. From Proposition 3.2, it is easy to see that $C_{1}^{\perp} \subseteq C_{1}$. From Theorem 4.4, we see that there is a qMDS code with parameters $[[726,724,2]]_{11}$.
(ii) Let $C_{2}=\langle(x+1)\rangle$. From Proposition 3.2, it is easy to see that $C_{1}^{\perp} \subseteq C_{1}$. By using Theorem 4.4, we see that there is a qMDS code with parameters $[[726,724,2]]_{11}$.

Example 6.8. Let $p=29, s=1, m=1$. We have $x^{174}-$ $1=h_{0}(x)^{29} h_{1}(x)^{29} h_{2}(x)^{29} h_{3}(x)^{29}$, where $h_{0}(x)=x-$ $1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+1, h_{3}(x)=x^{2}+x+1$.
(i) Let $C_{0}=\langle 1\rangle$. From Theorem 3.2, it is easy to see that $C_{0}^{\perp} \subseteq C_{0}$. Using Theorem 4.4, we see that there is a qMDS code with parameters $[[124,124,1]]_{29}$.
(ii) Let $C_{1}=\langle(x+1)\rangle$. From Proposition 3.2, it is easy to see that $C_{1}^{\perp} \subseteq C_{1}$. Applying Theorem 4.4, we see that there is a qMDS code with parameters $[[124,122,2]]_{29}$.

Example 6.9. Let $p=29, s=2, m=1$. We have $x^{5046}-1=h_{0}(x)^{841} h_{1}(x)^{841} h_{2}(x)^{841} h_{3}(x)^{841}$, where $h_{0}(x)=x-1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+1, h_{3}(x)=$ $x^{2}+x+1$.
(i) Let $C_{0}=\langle 1\rangle$. From Proposition 3.3, it is easy to see that $C_{0}^{\perp} \subseteq C_{0}$. By applying Theorem 4.4, there is a qMDS code with parameters $[[5046,5046,1]]_{29}$.
(ii)Let $C_{1}=\langle(x+1)\rangle$. From Proposition 3.2, it is easy to see that $C_{1}^{\perp} \subseteq C_{1}$. By using Theorem 4.4, there is a qMDS code with parameters $[[5046,5044,2]]_{29}$.
Remark 6.10. We can compare our qMDS codes and known families of qMDS codes (Table 1) and [44] to see that our qMDS codes are new in the sense that their parameters are different from all the known ones.

We finish this section by giving some examples of QSCs.
Example 6.11. Let $p=17, s=1, m=1$. We see that $x^{102}-$ $1=h_{0}(x)^{17} h_{1}(x)^{17} h_{2}(x)^{17} h_{3}(x)^{17}$, where $h_{0}(x)=x-$ $1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+1, h_{3}(x)=x^{2}+x+1$.

- If $C_{1}=\left\langle f_{0}(x) h_{1}(x)^{8} h_{2}(x)^{5} h_{3}(x)^{3}\right\rangle$ and $C_{2}=$ $\left\langle h_{1}(x)^{2} f_{2}(x) h_{3}(x)\right\rangle$, then $C_{1}^{\perp} \subseteq C_{1}, C_{2}^{\perp} \subseteq C_{2}$ and $C_{1} \subseteq C_{2}$. We see that $u_{3}-j_{3}>1$. Applying Theorem 5.2, for any pair a_{b}, a_{e} of non-negative integers satisfying $a_{b}+a_{e}<102$, there exists an $\left(a_{b}, a_{e}\right)-\left[\left[102+a_{b}+a_{e}, 52\right]\right]_{17}$ QSC. In this case, there are 5253 such QSCs.
- If $C_{3}=\left\langle h_{0}(x)^{5} f_{1}(x)^{7} f_{2}(x)^{5} f_{3}(x)^{3}\right\rangle$ and $C_{4}=$ $\left\langle f_{0}(x) f_{(}(x) f_{2}(x) h_{3}(x)^{2}\right\rangle$, then $C_{3}^{\perp} \subseteq C_{3}, C_{4}^{\perp} \subseteq$ C_{4} and $C_{3} \subseteq C_{4}$. We see that $u_{1}-j_{1}>1$. Applying Theorem 5.2, for any pair a_{b}, a_{e} of nonnegative integers satisfying $a_{b}+a_{e}<102$, there exists an $\left(a_{b}, a_{e}\right)-\left[\left[102+a_{b}+a_{e}, 46\right]\right]_{17}$ QSC. In this case, there are 5253 such QSCs.

Example 6.12. Let $p=17, s=2, m=1$. We see that $x^{1734}-1=h_{0}(x)^{289} h_{1}(x)^{289} h_{2}(x)^{289} h_{3}(x)^{289}$, where $h_{0}(x)=x-1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+1, h_{3}(x)=$ $x^{2}+x+1$. If $C_{1}=\left\langle h_{0}(x)^{19} h_{1}(x)^{109} h_{2}(x)^{38} h_{3}(x)^{24}\right\rangle$ and $C_{2}=\left\langle h_{0}(x)^{8} h_{1}(x)^{12} h_{2}(x)^{6} h_{3}(x)^{4}\right\rangle$, then $C_{1}^{\perp} \subseteq C_{1}$, $C_{2}^{\perp} \subseteq C_{2}$ and $C_{1} \subseteq C_{2}$. We see that $u_{3}-j_{3}>17$. Applying Theorem 5.2, for any pair a_{b}, a_{e} of non-negative integers satisfying $a_{b}+a_{e}<1734$, there exists an $\left(a_{b}, a_{e}\right)-$ $\left[\left[1734+a_{b}+a_{e}, 1230\right]\right]_{17}$ QSC. By applying Lemma 2.5, there are 1504245 such QSCs.

Example 6.13. Let $p=23, s=1, m=1$. We see that $x^{138}-$ $1=h_{0}(x)^{23} h_{1}(x)^{23} h_{2}(x)^{23} h_{3}(x)^{23}$, where $h_{0}(x)=x-$ $1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+1, h_{3}(x)=x^{2}+x+1$.

- If $C_{1}=\left\langle f_{0}(x) h_{1}(x)^{8} h_{2}(x)^{6} h_{3}(x)^{5}\right\rangle$ and $C_{2}=$ $\left\langle h_{1}(x)^{2} h_{2}(x)^{3}\right\rangle$, then $C_{1}^{\perp} \subseteq C_{1}, C_{2}^{\perp} \subseteq C_{2}$ and $C_{1} \subseteq C_{2}$. We see that $u_{3}-j_{3}>1$. Applying Theorem 5.2, for any pair a_{b}, a_{e} of non-negative integers satisfying $a_{b}+a_{e}<138$, there exists an
$\left(a_{b}, a_{e}\right)-\left[\left[138+a_{b}+a_{e}, 88\right]\right]_{23}$ QSC. Using Lemma 2.5, there are 9591 such QSCs.
- If $C_{3}=\left\langle h_{0}(x)^{5} h_{1}(x)^{6} h_{2}(x)^{4} h_{3}(x)^{3}\right\rangle$ and $C_{4}=$ $\left\langle f_{0}(x) f_{1}(x) f_{2}(x) h_{3}(x)^{2}\right\rangle$, then $C_{3}^{\perp} \subseteq C_{3}, C_{4}^{\perp} \subseteq$ C_{4} and $C_{3} \subseteq C_{4}$. We see that $u_{1}-j_{1}>1$. Applying Theorem 5.2, for any pair a_{b}, a_{e} of nonnegative integers satisfying $a_{b}+a_{e}<138$, there exists an $\left(a_{b}, a_{e}\right)-\left[\left[138+a_{b}+a_{e}, 88\right]\right]_{23}$ QSC. By using Lemma 2.5 , we see that there are 9591 such QSCs.

Example 6.13. Let $p=23, s=2, m=1$. We have $x^{3174}-1=h_{0}(x)^{529} h_{1}(x)^{529} h_{2}(x)^{529} h_{3}(x)^{529}$, where $h_{0}(x)=x-1, h_{1}(x)=x+1, h_{2}(x)=x^{2}-x+1, h_{3}(x)=$ $x^{2}+x+1$.

- If $C_{1}=\left\langle f_{0}(x) h_{1}(x)^{48} h_{2}(x)^{26} h_{3}(x)^{15}\right\rangle$ and $C_{2}=\left\langle h_{1}(x)^{12} h_{2}(x)^{9}\right\rangle$, then $C_{1}^{\perp} \subseteq C_{1}, C_{2}^{\perp} \subseteq C_{2}$ and $C_{1} \subseteq C_{2}$. We see that $u_{3}-j_{3}>1$. Applying Theorem 5.2, for any pair a_{b}, a_{e} of non-negative integers satisfying $a_{b}+a_{e}<3174$, there exists an $\left(a_{b}, a_{e}\right)-\left[\left[3174+a_{b}+a_{e}, 2912\right]\right]_{23}$ QSC. Applying Lemma 2.5, there are 5040312 such QSCs.
- If $C_{3}=\left\langle h_{0}(x)^{45} h_{1}(x)^{16} h_{2}(x)^{24} h_{3}(x)^{33}\right\rangle$ and $C_{4}=\left\langle f_{0}^{6}(x) f_{1}(x)^{9} f_{2}(x)^{7} g_{3}(x)^{2}\right\rangle$, then $C_{3}^{\perp} \subseteq C_{3}$, $C_{4}^{\perp} \subseteq C_{4}$ and $C_{3} \subseteq C_{4}$. We see that $u_{1}-j_{1}>1$. Applying Theorem 5.2, for any pair a_{b}, a_{e} of nonnegative integers satisfying $a_{b}+a_{e}<3174$, there exists an $\left(a_{b}, a_{e}\right)-\left[\left[3174+a_{b}+a_{e}, 2938\right]\right]_{23}$ QSC. Using Lemma 2.5, there are 5040312 such QSCs.

VII. CONCLUSION

In this paper, we use the CSS and Steane's constructions to establish QEC codes from cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ (Theorems 3.3 and 3.5). We get some new QEC codes in the sense that the parameters are different from all the previous constructions (Examples 3.6 and 3.7). Applying the quantum Singleton bound, all qMDS cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ using the CSS construction are determined in Theorem 4.4. As in Section 5, we construct QSCs from cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ (Theorem 5.2) and such codes are applicable in quantum synchoronizable. Remark 5.3 shows that QSCs constructed from repeated-root cyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ are better than QSCs constructed from non-primitive, narrow-sense BCH codes. In Section 6, we provide some examples to illustrate our work in Sections 3, 4 and 5.

Although we only consider the case $p^{m} \equiv 2(\bmod 3)$ in this paper, the situation of $p^{m} \equiv 1(\bmod 3)$ can be studied in a similar fashion. When $p^{m} \equiv 1(\bmod 3)$, from [27], all cyclic codes of length $6 p^{s}$ have the form $C=\left\langle(x-1)^{u_{0}}(x+\right.$ $1)^{u_{1}}\left(x-\xi^{\frac{p^{m}-1}{6}}\right)^{u_{2}}\left(x-\xi^{\frac{5\left(p^{m}-1\right)}{6}}\right)^{u_{3}}\left(x-\xi^{\frac{2\left(p^{m}-1\right)}{6}}\right)^{u_{4}}(x-$ $\left.\left.\xi^{\frac{4\left(p^{m}-1\right)}{6}}\right)^{u_{5}}\right\rangle$, where $0 \leq u_{t} \leq p^{s}(t=0,1,2,3,4,5)$ and $\xi \in \mathbb{F}_{p^{m}}$ is a primitive $\left(p^{m}-1\right)$ th root of unity. Applying the method used in [29], we can determine the Hamming distances of all such cyclic codes. We also compute all

Hamming distances of negacyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$. Similar to Theorems 3.3 and 3.5 , we can construct new QEC codes from cyclic and negacyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$ using the CSS and Steane's constructions.

Let $q=p^{m}$ and $\mathbb{F}_{q^{2}}$ be a finite field of q^{2} elements. If $e=$ $\left(e_{0}, e_{1}, \ldots, e_{n-1}\right), t=\left(t_{0}, t_{1}, \cdots, t_{n-1}\right)$ are two vectors of $\mathbb{F}_{q^{2}}$, then Hermitian inner product of e and t is

$$
e \circ_{\mathbb{F}_{q^{2}}} t=e_{0} \bar{t}_{0}+e_{1} \bar{t}_{1}+\cdots+e_{n-1} \bar{t}_{n-1}
$$

where $\bar{t}_{i}=t_{i}^{q}$. The Hermitian dual code of C is defined as

$$
C^{\perp_{H}}=\left\{e \in \mathbb{F}_{q^{2}}^{n} \mid \quad \sum_{i=0}^{n-1} e_{i} \bar{t}_{i}=0, \forall t \in C\right\}
$$

If $C^{\perp_{H}} \subseteq C$, then C is said to be Hermitian dual-containing.
The Hermitian construction is also an important construction appeared in [1].

Theorem 7.1. (Hermitian construction) [1] Let $C=$ $\left[n, k, d_{H}\right]$ be a q^{2}-ary linear code satisfying $C^{\perp_{H}} \subseteq C$. Then there exists a q-ary quantum code with parameters $\left[\left[n, 2 k-n, \geq d_{H}\right]\right]_{q}$.

By giving the condition of a cyclic and negacyclic code of length $6 p^{s}$ over $\mathbb{F}_{q^{2}}$ to construct QEC codes, similar to Theorem 4.4, we can construct new QEC codes from cyclic and negacyclic codes of length $6 p^{s}$ over $\mathbb{F}_{q^{2}}$ using the Hermitian construction.

We also investigate the QSCs constructed from negacyclic codes of length $6 p^{s}$ over $\mathbb{F}_{p^{m}}$, or more generally $2^{m} p^{s}$, for any non-negative integer m in near future. We believe that these lengths can provide good and new QEC codes and QSCs.

REFERENCES

[1] A. Ashikhmin and E. Knill, " Nonbinary quantum stablizer codes," IEEE Trans. Inf. Theory. vol 47, pp. 3065-3072, 2001.
[2] C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, and W.K. Wooters, "Mixed State Entanglement and Quantum Error Correction", Phys. Rev. A., Vol 54, pp. 3824, 1996.
[3] S.D. Berman, "Semisimple cyclic and Abelian codes. II," Kibernetika (Kiev) Vol 3, pp. 21-30, 1967 (Russian). English translation: Cybernetics Vol 3, pp. 17-23, 1967.
[4] S. Bregni, Synchronization of Digital Telecommunications Networks. John Wiley Sons, New York, U.S., 2002.
[5] K.A. Bush, "Orthogonal arrays of index unity," Ann. Math. Statistics, Vol 23, pp. 426-434, 1952.
[6] A. R. Calderbank and P. W. Shor, "Good quantum error-correcting codes exist," Phys. Rev. A, Vol 54, pp. 1098-1106, 1996.
[7] A.R. Calderbank, E. M. Rains, P. W. Shor and N.J. A. Sloane, "Quantum Error Correction Via Codes Over GF(4)," IEEE Trans. Inform. Theory Vol 44, pp. 1369-1387, 1998.
[8] Y. Cao, Y. Cao, H. Q. Dinh, F. Fu, J. Gao and S. Sriboonchitta, "Constacyclic codes of length $n p^{s}$ over $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}} "$, Adv. Math. Commun., Vol 12, pp. 231-262, 2018.
[9] Y. Cao, Y. Cao, H. Q. Dinh, F. Fu, J. Gao and S. Sriboonchitta, "A class of repeated-root constacyclic codes over $\mathbb{F}_{p^{m}}[u] /\left\langle u^{e}\right\rangle$ of Type 2., Finite Fields \& Appl., pp. 238-267, 2019.
[10] Y. Cao, Y. Cao, H.Q. Dinh, S. Jitman, "An explicit representation and enumeration for self-dual cyclic codes over $\mathbb{F}_{2 m}+u \mathbb{F}_{2 m}$ of length 2^{s} ", Discrete Math., Vol 342, pp. 2077-2091, 2019.
[11] Y. Cao, Y. Cao, H. Q. Dinh, F. Fu, J. Gao and S. Sriboonchitta, "A class of linear codes of length 2 over fnite chain rings", Journal of Algebra and Its Applications, Vol 19, 2050103.1-15, 2020.
[12] Y. Cao, Y. Cao, H. Q. Dinh, F. Fu, F. Ma, "Construction and enumeration for self-dual cyclic codes of even length over $\mathbb{F}_{2 m}+u \mathbb{F}_{2} m$ ", Finite Fields \& Appl., Vol 61, 2020 (in press).
[13] Y. Cao, Y. Cao, H. Q. Dinh, F. Fu, F. Ma, "On matrix-product structure of repeatedroot constacyclic codes over fnite felds", Discrete Math, Vol 343, 111768, 2020 (in press).
[14] Y. Cao, Y. Cao, H. Q. Dinh, R. Bandi, F. Fu, "An explicit representation and enumeration for negacyclic codes of length $2^{k} n$ over $\mathbb{Z}_{4}+u \mathbb{Z}_{4}$, Adv. Math. Commun., 2020. (in press)
[15] Y. Cao, Y. Cao, H. Q. Dinh, T. Bag, W. Yamaka, "Explicit representation and enumeration of repeated-root $\delta^{2}+\alpha u^{2}$-constacyclic codes over $\mathbb{F}_{2} m[u] /\left\langle u^{2 \lambda}\right.$, IEEE Access, Vol 8, pp. 55550-55562, 2020.
[16] Y. Cao, Y. Cao, H. Q. Dinh, S. Jitman, "An efcient method to construct self-dual cyclic codes of length p^{s} over $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p} m$, Discrete Math, Vol 343, pp. 111868, 2020.
[17] G. Castagnoli, J.L. Massey, P.A. Schoeller, and N. von Seemann, "On repeated-root cyclic codes", IEEE Trans. Inform. Theory, Vol 37, pp. 337342, 1991.
[18] B. Chen, H.Q. Dinh, and H. Liu, "Repeated-root constacyclic codes of length ℓp^{s} and their duals", Discrete Appl. Math., Vol 177, pp. 60-70, 2014.
[19] B. Chen, S. Ling and G. Zhang, "Application of Constacyclic codes to Quantum MDS Codes", IEEE Trans. Inform. Theory, Vol 61, pp. 14741478, 2014.
[20] B. Chen, H.Q. Dinh, and H. Liu, "Repeated-root constacyclic codes of length ℓp^{s} and their duals", Discrete Appl. Math., Vol 177, pp. 60-70, 2014.
[21] R. Cleve and D. Gottesman, "Efficient Computations of Encodings for Quantum Error Correction," Phys. Rev. A., Vol 56, p. 76, 1997.
[22] J. Denes and A.D. Keedwell, "Latin squares and their applications," Academic Press, New York, 1974.
[23] D. Deutsch, "Quantum theory, the Church-Turing principle and the universal quantum computer", Proceedings of the Royal Society of London, Vol 400, pp. 97-117, 1985.
[24] H.Q. Dinh, "Constacyclic codes of length p^{s} over $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p m}$," J. Algebra, Vol 324, pp. 940-950, 2010.
[25] H.Q.Dinh, "Repeated-root constacyclic codes of length $2 p^{s}$ ", Finite Fields \& Appl., Vol 18, pp. 133-143, 2012.
[26] H. Q. Dinh, "Structure of repeated-root constacyclic codes of length $3 p^{s}$ and their duals," Discrete Math., Vol 313, pp. 983-991, 2013.
[27] H. Q. Dinh, "Repeated-Root Cyclic and Negacyclic Codes of Length $6 p^{s}$ ", Contemporary Mathematics, Vol 609, pp. 69-87, 2014.
[28] H. Q. Dinh, Bac. T. Nguyen, W. Yamaka, "Quantum MDS and Synchronizable Codes From Cyclic and Negacyclic Codes of Length $2 p^{s}$ Over $\mathbb{F}_{p^{m}} "$, IEEE Access, Vol 8, 124608-124623, 2020.
[29] H. Q. Dinh, X. Wang, P. Maneejuk, "On the Hamming distance of repeated-root cyclic codes of length $6 p^{s}$, IEEE Access, Vol 8, 3994639958, 2020.
[30] M. El-Khamy and R.J. McEliece, "The partition weight enumerator of MDS codes and its applications," In Proc. Int. Symp. Inf. Theory ISIT, pp. 926-930, 2005.
[31] W. Fang and F. Fu, "Two new classes of quantum MDS codes", Finite Fields Appl., Vol. 53, pp. 85-98, 2018.
[32] W. Fang and F. Fu, "Some new constructions of quantum MDS codes", IEEE Trans. Inf. Theory, Vol. 65, pp. 7840-7847, 2019.
[33] Y. Fujiwara. "Block synchronization for quantum information". Physical Review A, Vol 87, pp. 109-120, 2013.
[34] Y. Fujiwara and D. Tonchev, "High-rate self-synchronizing codes", IEEE Trans. Inf. Theory. Vol 59, pp. 2328-2335, 2013.
[35] Y. Fujiwara, D. Tonchev, and H. Wong. "Algebraic techniques in designing quantum synchronizable codes". Physical Review A, Vol 88, pp. 162-166, 2013.
[36] Y. Fujiwara and P. Vandendriessche. "Quantum synchronizable codes from finite geometries". IEEE Transactions on Information Theory, Vol 60, pp. 7345-7354, 2014.
[37] S.W. Golomb and E.C. Posner, "Rook domains, Latin squares, affine planes, and error-distributing codes," IEEE Trans. Information Theory, Vol 10, pp. 196-208, 1964.
[38] D. Gottesman. PhD Thesis (Caltech). quantph/9705052, 1997.
[39] M. Grassl, T. Beth, and M. Rȯtteler, "On optimal quantum codes," Int. J. Quantum Inform, Vol 2, pp. 757-766, 2004.
[40] M. Grassl, A. Klappenecker, and M. Rotteler, "Graphs, Quadratic Forms, and Quantum Codes," Proceedings 2002 IEEE International Symposium on Information Theory, pp. 45, 2002.
[41] M. Grassl, T. Beth, and M. Rȯtteler, "On optimal quantum codes," Int. J. Quantum Inform, Vol 2, pp. 757-766, 2004.
[42] M. Grassl, T. Beth and W. Geiselmann, Quantum Reed-Solomon Codes, AAECC-13, Honolulu, HI, USA, 1999.
[43] M. Grassl and T. Beth. Quantum BCH codes, In Proc. X. Intl. Symp. Theoretical Electrical Engineering, Magdeburg, (1999), 207-212.
[44] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, available online at http://www.codetables.de, 2007, accessed 2021-04-03.
[45] G. G. L. Guardia, "Constructions of new families of nonbinary quantum codes," Phys. Rev. A, Vol 80, pp. 042331-1-042331-11, 2009.
[46] D. Hu, W. Tang, M. Zhao, Q. Chen, S. Yu, and C. Oh, "Graphical nonbinary quantum error-correcting codes," Phys. Rev. A, Vol 78, pp. 111, 2008.
[47] L. Jin, H. Kan and J. Wen, "Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes," Des. Codes Cryptogr., Vol 84, pp. 463-471, 2017.
[48] L. Jin, S. Ling, J. Luo, and C. Xing, "Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes," IEEE Trans. Inf. Theory, Vol 56, pp. 4735-4740, 2010.
[49] L. Jin and C. Xing, "A Construction of New Quantum MDS Codes," IEEE Trans. Inform. Theory, Vol 60, pp. 2921-2925, 2014.
[50] D.D. Joshi, "A Note on Upper Bounds for Minimum Distance Codes," Information and Control, Vol 3, pp. 289-295, 1958.
[51] X. Kai and S. Zhu, "New quantum MDS codes from negacyclic codes," IEEE Trans. Inform. Theory, Vol 2, 1193-1197, 2013.
[52] X. Kai, S. Zhu and P. Li, "A Construction of New MDS Symbol-Pair Codes," IEEE Trans. Inf. Theory, Vol 11, pp. 5828-5834, 2015.
[53] Y. Komamiya, "Application of logical mathematics to information theory," (Application of theory of groups to logical mathematics.). In Proceedings of the Third Japan National Congress for Applied Mechanics, pp. 437-442, Tokyo, 1954. Science Council of Japan.
[54] E. Knill and R. Laflamme, "Theory of quantum error-correcting codes," Phys. Rev. A, Vol 55, pp. 900-911, 1997.
[55] E. Knill and R. Laflamme, "A Theory of Quantum Error-Correcting Codes," Phys. Rev. Lett., Vol 84, pp. 2525, 2000.
[56] R. Laflamme, C. Miquel, J.P. Paz, and W.H. Zurek, "Perfect Quantum Error Correcting Code," Phys. Rev. Lett., Vol 77, pp. 198, 1996.
[57] A. Lidar and A. Brun. Quantum Error Correction. Cambridge University Press, Cambridge, U.K., 2013.
[58] Z. Li, L. J. Xing, and X. M. Wang, "Quantum generalized Reed-Solomon codes: Unified framework for quantum maximum-distanceseparable codes," Phys. Rev. A, Vol 77, pp. 1-4, 2008.
[59] J. H. van Lint, "Repeated-root cyclic codes," IEEE Trans. Inform. Theory, Vol 37, pp. 343-345, 1991.
[60] L. Luo and Z. Ma, "Non-binary quantum synchronizable codes from repeated-root cyclic codes", IEEE Trans. Inform. Theory, Vol 14, pp. 110, 2015.
[61] L. Luo, Z. Ma, and D. Lin, "Two new families of quantum synchronizable codes", Quantum Information Processing, Vol $18,1-18,2019$.
[62] F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting Codes, $10^{\text {th }}$ impression, North-Holland, Amsterdam, 1998.
[63] C. Maneri and R. Silverman, "A combinatorial problem with applications to geometry," J. Combinatorial Theory Ser. A, Vol 11, pp. 118-121, 1966.
[64] J.L. Massey, D.J. Costello, and J. Justesen, "Polynomial weights and code constructions," IEEE Trans. Information Theory, Vol 19, pp. 101-110, 1973.
[65] A. Nielsen and L. Chuang. Quantum Computation and Quantum Information, Cambridge University Press, 2010.
[66] V. Pless and W.C. Huffman, Handbook of Coding Theory, Elsevier, Amsterdam, 1998.
[67] Y. Polyanskiy. "Asynchronous communication: Exact synchronization, universality, and dispersion". IEEE Trans. Inf. Theory. Vol 59, pp. 1256-1270, 2013.
[68] E. Prange, "Cyclic Error-Correcting Codes in Two Symbols", (September 1957), TN-57-103.
[69] E.M. Rains,"Quantum weight Enumerators," IEEE Trans. Inform. Theory, Vol 4, pp. 1388-1394, 1998.
[70] R.M. Roth and G. Seroussi, "On cyclic MDS codes of length q over GF (q)," IEEE Trans. Inform. Theory, Vol 32, pp. 284-285, 1986.
[71] D. Schlingemann and R. F. Werner, "Quantum error-correcting codes associated with graphs," Phys. Rev. A, Vol 65, pp. 012308, 2001.
[72] D. Schlingemann, "Stabilizer codes can be realized as graph codes," Quantum Information and Computation, Vol 2, pp. 307-323, 2002.
[73] X. Shi, Q. Yue, and X. Zhu, "Construction of some new quantum MDS codes", Finite Fields Appl., Vol. 46, pp. 347-362, 2017.
[74] P.W. Shor, "Scheme for reducing decoherence in quantum computer memory," Phys. Rev. A., Vol 52, pp. 2493, 1995.
[75] R. Silverman, "A metrization for power-sets with applications to combinatorial analysis," Canad. J. Math., Vol 12, pp.158-176, 1960.
[76] B. Sklar, Digital Communications: Fundamentals and Applications Prentice Hall, Upper Saddle River, NJ, 2nd edition, 2001.
[77] R. Steven (1992), Coding and Information Theory, GTM, 134, SpringerVerlag, ISBN 0-387-97812-7.
[78] A.M. Steane, "Error Correcting Codes in Quantum Theory," Phys. Rev. Lett., Vol 77, pp. 793, 1996.
[79] A. M. Steane, "Enlargement of Calderbank-Shor-Steane quantum codes", IEEE Trans. Inf. Theory, Vol 45, pp. 2492-2495, 1999.
[80] G.M. Tolhuizen. "On Maximum Distance Separable codes over alphabets of arbitrary size", In Proc. Int. Symp. Inf. Theory ISIT, page 431, 1994.
[81] Y. Xie, J. Yuan, and Y. Fujiwara. "Quantum synchronizable codes from augmentation of cyclic codes". Plos One, Vol 6, e14641, 2014.
[82] Y. Xie, L. Yang, and J. Yuan. " q -ary chain-containing quantum synchronizable codes". IEEE Communications Letters, Vol 20, pp. 414-417, 2016.
[83] X. Zhou, L. Song and Y. Zhang, Physical layer security in wireless communications, CRC Press, Inc. Boca Raton, FL, USA, 2013.
[84] T. Zhang and G. Ge, "Some new classes of quantum MDS codes from constacyclic codes", IEEE Trans. Inf. Theory, Vol. 61, pp. 5224-5228, 2015.
[85] T. Zhang and G. Ge, "Quantum MDS codes with large minimum distance", Des., Codes Cryptogr., Vol. 83, pp. 503-517, 2017.

