
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Some Clustering and Classification Problems in High-Throughput Metagenomics and
Cheminformatics

Permalink
https://escholarship.org/uc/item/1r33c9dz

Author
Tanaseichuk, Olga

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1r33c9dz
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

RIVERSIDE

Some Clustering and Classification Problems in High-Throughput Metagenomics

and Cheminformatics

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Olga Tanaseichuk

December 2013

Dissertation Committee:

Dr. Tao Jiang, Chairperson
Dr. Stefano Lonardi
Dr. Marek Chrobak
Dr. Thomas Girke

Copyright by
Olga Tanaseichuk

2013

The Dissertation of Olga Tanaseichuk is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I wish to express sincere thanks to all who have influenced the writing of this

dissertation.

I am especially grateful to my advisor, Dr. Tao Jiang, for guidance, under-

standing and patience during my graduate studies. I appreciate the freedom he gave me

to choose the research projects as well as his constructive suggestions and critical com-

ments that always worked as motivational boosters. I would like to thank the members

of my committee, Dr. Stefano Lonardi, Dr. Marek Chrobak, and Dr. Thomas Girke,

for their helpful feedback and invaluable comments. I would also like to thank Dr.

Yingyao Zhou, Director of Informatics and IT at the Genomics Institute of the Novartis

Research Foundation (GNF), for offering me amazing summer internship opportunities

in his group. Furthermore, I am thankful to Nickolay Pihtar, my school mathematics

teacher, for rising my interest in science during my mid-school years, and for being my

mentor through the years and across the miles.

I would like to thank my friends for their help and support in different aspects

of my grad life, and for all the wonderful time we had together: Anton Polishko, Lucy

Ulanova and Denis Ulanov, Konstantin Choumiline, Olga Kapralova, Zoia Comarova and

Serghei Mangul, Christine Ren, Matt Zimmerman, Mark Vega, Kouyki Takenaka. It has

been a pleasure to work with my lab mates: Yu-Ting Huang, Yi-Wen Yang, Li Yan, Wei

Li, Dennis Duma, Rachid Ounit, Jonathan Dautrich Jr. and others. Additionally, I am

grateful to my “Bonair” friends for being my stress release in the past few month. Thank

you all for being there and supporting me during the most difficult times. Without you,

this dissertation would be impossible.

iv

To my parents Lyuda and Sergey Tanaseichuk. Thank you for your endless love

and support. I love you.

v

ABSTRACT OF THE DISSERTATION

Some Clustering and Classification Problems in High-Throughput Metagenomics and
Cheminformatics

by

Olga Tanaseichuk

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2013

Dr. Tao Jiang, Chairperson

In this dissertation, we address three different problems in high-throughput

metagenomics and cheminformatics.

(1) Metagenomics studies the genomic content of an entire microbial commu-

nity by simultaneously sequencing all genomes in an environmental sample. The advent

of next-generation sequencing (NGS) technologies has drastically reduced sequencing

time and cost, leading to the generation of millions of sequences (reads) in a single run.

An important problem in metagenomic analysis is to determine and quantify species

(or genomes) in a metagenomic sample. The problem is challenging due to an unknown

number of genomes and their abundance ratios, presence of repeats and sequencing er-

rors, and the short length of NGS reads. We propose two algorithms to address these

challenges. First, we present an algorithm for separating short paired-end reads from

genomes with similar abundance levels. Second, we propose a method to accurately

estimate the abundance levels of species. The algorithm automatically determines the

number of abundance groups in a metagenomic dataset and bins the reads into these

groups.

vi

(2) NGS coupled with metagenomics has led to the rapid growth of sequence

databases and enabled a new branch of microbiology called comparative metagenomics.

It is a fast growing field that requires the development of novel supervised learning tech-

niques. In particular, the problem of microbial community classification may have useful

applications enabling efficient organization and search in rapidly growing metagenomic

databases, detection of disease phenotypes in clinical samples, and forensic identifica-

tion. We propose a novel supervised classification method for metagenomic samples

that takes advantage of the natural structure in microbial community data encoded by

a phylogenetic tree.

(3) In modern drug discovery, ultra-high-throughput screening is applied to

millions of drug-like compounds in one experiment. Hierarchical clustering is an impor-

tant step in the drug discovery process. Standard implementations of the exact algo-

rithm for hierarchical clustering require O(n2) time and O(n2) memory. Even though

approximate hierarchical clustering methods overcome this problem, they either rely on

embedding into spaces that are not biologically sensible, or produce very low resolution

hierarchical structures. We present a hybrid hierarchical clustering algorithm requir-

ing approximately O(n
√
n) time and O(n

√
n) memory while still preserving the most

desirable properties of the exact algorithm.

vii

Contents

List of Figures x

List of Tables xiii

1 Introduction 1
1.1 High-Throughput Technologies in Bio- and Cheminformatics 1
1.2 Binning Metagenomic Sequences . 2
1.3 Classification of Metagenomic Samples 4
1.4 Hierarchical Clustering in Cheminformatics 6
1.5 Publications . 7

2 Binning of Metagenomic Short Reads 9
2.1 Introduction . 9
2.2 Methods . 15

2.2.1 Separating Metagenomic Short Reads from Genomes with Similar
Abundance Levels . 15
2.2.1.1 Preliminaries . 15
2.2.1.2 Observations . 17
2.2.1.3 Finding Unique l-mers 22
2.2.1.4 Clustering the Unique l-mers 24
2.2.1.5 Merging Clusters and the Final Clustering of Metage-

nomic Reads . 26
2.2.1.6 Implementation . 28

2.2.2 Abundance-Based Binning of Metagenomic Reads 29
2.2.2.1 Definitions and Notations 29
2.2.2.2 A Probabilistic Model for l-mer Frequencies 31
2.2.2.3 Parameter Estimation 33
2.2.2.4 Detecting the Number of Bins 34

2.2.3 Handling Genomes with Arbitrary Abundance Levels 35
2.3 Experimental Results . 37

2.3.1 Simulated Data Sets . 38
2.3.2 Performance Evaluation . 38
2.3.3 Performance of TOSS . 40

2.3.3.1 Simulated Data . 40
2.3.3.2 Comparison with Modified Velvet 41

viii

2.3.3.3 Experiments on Genomes Separated by Different Phylo-
genetic Distances . 42

2.3.3.4 Handling Sequencing Errors 42
2.3.3.5 The Issue of Abundance Levels 43
2.3.3.6 Comparison with CompostBin 45
2.3.3.7 Performance on a Real Dataset 48

2.3.4 Performance of the Abundance-Based Binning Algorithm 48
2.3.4.1 Performance on a Simulated Data 48
2.3.4.2 Performance on a Real Dataset 49

2.3.5 Performance of the Improved TOSS 49
2.4 Conclusion . 50

3 Phylogeny-Based Classification of Microbial Communities 53
3.1 Introduction . 53
3.2 Methods . 58

3.2.1 The Multinomial Logistic Regression Model 58
3.2.2 Bayesian Regularization . 59
3.2.3 Tree-Guided Regularization . 60
3.2.4 Cyclic Coordiante Descent . 61
3.2.5 Implementation Details . 63

3.3 Experimental Results . 63
3.3.1 Synthetic Framework and Performance Analysis 64
3.3.2 Comparisons . 66
3.3.3 Performance on Simulated Data 67
3.3.4 Performance on Real Data . 72

3.4 Conclusion . 76

4 An Efficient Hierarchical Clustering Algorithm for Large Datasets 77
4.1 Introduction . 77
4.2 The Hybrid Algorithm . 79
4.3 The Implementation of the Exact Hierarchical Clustering Algorithm . . 82
4.4 Experimental Results . 83

4.4.1 Data Sets . 83
4.4.2 The Running Time and Memory Analysis 84
4.4.3 Performance Analysis . 87
4.4.4 Performance on a Large Dataset and Robustness Analysis 91

4.5 Conclusion . 94

5 Conclusions 96

Bibliography 98

ix

List of Figures

2.1 Unique and repeated l-mers. A and G: unique l-mers; B and F: individual
repeats; C, D, E, and H: common repeats where C and E contain repeats
only for one of the genomes, D contains repeats for both genomes, and
H contains l-mers that are common to both genomes. Note that ndist

1 =
A+B+C+D+E+H , ndist

2 = C+D+E+F+G+H, nuniq
1 = A+E+H,

nuniq
2 = G+C+H, ndist = A+B+C+D+E+F+G+H and nuniq = A+G. 18

2.2 The fraction of unique l-mers. Estimated density functions of the fraction
of unique l-mers in fully sequenced bacterial genomes for l = 14, 16, 18, 20.
Left: the ratio of unique l-mers to distinct l-mers. Right: the ratio of
unique l-mers to total l-mers. 18

2.3 The fraction of lost unique l-mers. Estimated density of the ratio of the
number of unique l-mers nuniq to the total number of l-mers that are
unique in an individual genome, nuniq

1 +nuniq
2 . Top left: pairs of genomes

from the same genus but different species. Top right: pairs of genomes
from the same family but different genera. Bottom left: pairs of genomes
from the same order but different families. Bottom right: pairs of genomes
from the same class but different orders. 20

2.4 The fraction of common repeats. Estimated density function of the ratio
of the number of common repeats (or distinct common repeats) to the
total number of all distinct repeats (or all repeats, respectively). Top left:
pairs of genomes from the same genus but different species. Top right:
pairs of genomes from the same family but different genera. Bottom left:
pairs of genomes from the same order but different families. Bottom right:
pairs of genomes from the same class but different orders. 21

2.5 Flowchart of the algorithm. 22
2.6 Threshold choice for the separation of l-mers from different distributions.

K is a threshold to separate l-mers from two distributions. 23
2.7 Coverage of l-mers and occurrences of l-mers in the reads. The coverage

of l-mer w = CCTG is x(w) = 4. However, due to an error in one of the
reads that cover w, w appears in the reads only 3 times, i.e. y(w) = 3.
For the l-mer u = GCTG, x(u) = 3. Observe that even though there is
an error in one of the reads that cover u, this l-mer also occurs in a read
that covers w due to an error, and thus y(u) = 3. 30

x

2.8 The proposed graphical model. Count Y of an l-mer depends on the
coverage X and the number of errors E within the l-mer. In turn, the
coverage depends on the abundance level G of the genome and the number
of occurances T of the l-mer in the genome. 30

2.9 The fraction of distinct common repeats for separated and unseparated
genomes. Estimated density function of the ratio of the number of distinct
common repeats to the number of distinct repeats. Left: pair of genomes
from the same genus but different species. Right: pairs of genomes from
the same family but different genera. 44

3.1 The simulation pipeline. 64
3.2 Performance for varying number of classes and within- and between-class

variances. 68
3.3 Comparison with LR, SVM, RF and MetaDistance on simulated datasets

for varying number of classes and between-class variances. The top, mid-
dle and bottom plots correspond to datasets with 2, 5 and 10 classes,
respectively. The within-class variance γ = 1. The between-class vari-
ance γ̃ is 1.5, 1 and 0.5 on the left, middle and right plots. 69

3.4 Comparison with LR, SVM, RF and MetaDistance on simulated datasets
for varying number of classes and within-class variances. The top, middle
and bottom plots correspond to datasets with 2, 5 and 10 classes, respec-
tively. The between-class variance γ̃ = 1. The within-class variance γ is
0.5, 1 and 1.5 on the left, middle and right plots. 70

3.5 The real data pre-processing pipeline. Rectangular boxes show the QI-
IME steps. Ellipses show the input data for our classification algorithm.
First, all the reads are clustered into OTUs based on a user-defined sim-
ilarity cutoffs using UClust [38]. For each sample, a feature vector of
OTU frequencies is constructed. The most abundant sequence in each
OTU is picked as the representative sequence. A multiple sequence align-
ment of the representative sequences is built using PyNAST [20]. Finally,
the phylogenetic tree relating the OTUs is constructed from the multiple
sequence alignment using FastTree [86]. 71

3.6 The within-class variances γ for datasets D1, D2 and D3. The average
within-class variance was calculated for each node of the phylogenetic
tree. We break the interval (0,max distance to the root) into L subinter-
vals. Each subinterval corresponds to a specific resolution level. For each
subinterval we calculate the average within-class variance for all nodes
whose distance to the tree root falls within the subinterval. 74

3.7 The between-class variances γ̃ for datasets D1, D2 and D3. The average
between-class variance was calculated for each node of the phylogenetic
tree. We break the interval (0,max distance to the root) into L subinter-
vals. Each subinterval corresponds to a specific resolution level. For each
subinterval we calculate the average between-class variance for all nodes
whose distance to the tree root falls within the subinterval. 75

4.1 Running time of the hybrid algorithm for datasets D1 and D2. (A)
Dataset D1, for all values of k. (B) Dataset D1, zoomed in for k < 500.
(C) Dataset D2. (D) Dataset D2, zoomed in for k < 1000. 86

xi

4.2 The hierarchical trees for the dataset D1 produced by (A) the exact al-
gorithm and (B) the hybrid algorithm with k = 25. Highlighted are
the biologically meaningful clusters selected for the evaluation of the ap-
proximation quality of the hybrid algorithm. The heat map illustrates
the activity of compounds: red and green indicate active and inactive
compounds, respectively. 89

4.3 The hierarchical trees for the dataset D2 produced by (A) the exact al-
gorithm and (B) the hybrid algorithm with k = 130. Highlighted are
the biologically meaningful clusters selected for the evaluation of the ap-
proximation quality of the hybrid algorithm. The heat map illustrates
the activity of compounds: the intensity of red is proportional to the
compound’s activity. 90

4.4 Approximation quality Sg(T, T̃ (k)) of the exact tree T with the hybrid

trees T̃ (k) for different values of the parameter k for dataset D1. 91
4.5 Approximation quality Sg(T, T̃ (k)) of the exact tree T with the hybrid

trees T̃ (k) for different values of the parameter k for dataset D2. 92
4.6 The performance comparison between the Murtagh method and the Java

implementation of the Cluster 3.0 method. The running time of the
Murtagh method matches a linear curve of slope 2 while the running
time of the Cluster 3.0 method matches a linear curve of slope 3, showing
that their running time are of O(n2) and O(n3), respectively. The green
curve is a linear curve of slope 2 that crosses the curve of Cluster 3.0
running time included to make the comparison easier. 93

xii

List of Tables

2.1 Performance of TOSS and the Velvet-based approach on pairs of genomes
with different phylogenetic distances. 43

2.2 Performance of TOSS on data with and without sequencing errors. . . . 45
2.3 Performance on synthetic datasets with abundance ratio 1:2. 45
2.4 Performance on synthetic datasets with abundance ratio (1:1:4:4). . . . 46
2.5 Comparison with CompostBin on the datasets described in [27]. Note

that some datasets involve genomes separated at several different taxo-
nomic levels. 47

2.6 Comparison with AbundanceBin on simulated datasets. The bold num-
bers indicate improved sensitivity and precision. The numbers in paren-
theses are normalized sensitivity and precision. 51

2.7 Performance of the improved TOSS and comparison with the previous
TOSS, MetaCluster 4.0 and MetaCluster 5.0. The bold numbers indicate
the best performance among all four methods. 52

3.1 Relative performance of our algorithm compared to LR, SVM, RF and
MetaDistance across 30 simulated datasets for γ̃ = 1, γ = 1 and K = 5.
The bold numbers indicate the best performance among all five methods. 64

3.2 Comparison of the error rates (%)with LR, SVM, RF and MetaDistance
classifiers on real datasets. 72

xiii

Chapter 1

Introduction

1.1 High-Throughput Technologies in Bio- and Chemin-

formatics

Advances in biotechnology have revolutionized biomedical research, allowing to

uncover various biological questions unattainable with conventional methods. Automa-

tion of classical cell biology techniques has lead to the development of high-throughput

technologies that allow to perform simultaneous measurements of biological molecules at

an unprecedented scale. For example, the recent advent of next-generation sequencing

(NGS) technologies [76, 11] has drastically reduced sequencing time and cost, producing

millions of reads in a single run. The increased sequencing depth has made it possi-

ble to attempt genome-wide discovery in genomic sequences and whole transcriptomes

at a single nucleotide level [49]. Deep sequencing also allows to study complex mi-

crobial populations at a high resolution, thus enabling detection of rare species [126],

and providing a deep insight into phylogenetic composition and functional diversity of

microbial communities. High-throughput and ultra-high-throughput screening (HTS and

1

uHTS) technologies [50] are examples of technological innovations in drug discovery.

The invention of HTS and uHTS has made it possible to screen hundreds of thousands

of chemical compounds against a biological target. The large volumes of data gener-

ated by high-throughput technologies require the development of novel computational

techniques and tools to efficiently analyze the data.

In this dissertation, we address three different problems that arise in high-

throughput metagenomics and cheminformatics: how to separate genomic sequences

(reads) from different organisms in a metagenomic sample, how to take advantage of

the phylogeny to classify new metagenomic samples, and how to efficiently cluster large

datasets of drug-like chemical compounds. Brief introductions to each of the three

problems are presented in Sections 1.2, 1.3 and 1.4, respectively.

1.2 Binning Metagenomic Sequences

The diversity of the microbial world had been hidden from the eyes of scientists

until the advent of metagenomics. Despite the vital roles of microbes in our planet’s

ecology, evolution and human health, large populations of bacteria remain poorly char-

acterized because the majority of bacterial species have not been successfully cultivated

[3]. The metagenomics approach has offered a remedy: bypassing the need for isolation

and cultivation, all the sequences present in an environmental sample are sequenced

simultaneously, making it possible to access the genetic information of otherwise hidden

organisms. It provides hope for a better understanding of natural diversity of microor-

ganisms as well as their roles and interactions. It also opens new opportunities for

medicine, biotechnology, agricultural studies and ecology.

2

The field of metagenomics has been advanced by the recent improvements in

DNA sequencing technologies. The advent of NGS technologies [76, 11] has drastically

improved sequencing time and cost, leading to an exponential increase in environmental

sequencing data which makes it possible to study microbial communities at a much

higher resolution due to increased sequencing depth [97]. The drawback of the NGS

technology is that read length is reduced.

In metagenomics, a sample contains sequence reads from various organisms.

Therefore, an important problem in a metagenomic analysis is to determine and quantify

the species (or genomes) in a sample. The identification of phylogenetically related

groups of reads in a metagenomic dataset is usually referred to as binning. Among

the existing computational tools for metagenomic analysis, there are similarity-based

methods that use reference databases to align reads, and composition-based methods

that use composition patterns (i.e., frequencies of short words or l-mers) to cluster reads.

Similarity-based methods are unable to classify reads from unknown species without

close references (which constitute the majority of reads). Since composition patterns

are preserved only in significantly large fragments, composition-based tools cannot be

used for very short reads, which becomes a significant limitation with the development

of NGS. Recently, several new metagenomic binning algorithms that can deal with NGS

reads and do not rely on reference databases were developed. However, all of them have

difficulty with handling samples containing low-abundance species.

In Chapter 2, we present a two-phase heuristic algorithm for separating short

paired-end reads from different genomes in a metagenomic dataset, called TOSS (i.e.,

TOol for Separating Short reads). The algorithm could handle very short reads and

sequencing errors. Initially, it was designed to handle genomes with similar abundance

levels. We also propose a new method to accurately estimate the abundance levels of

3

species based on a novel probabilistic model for counting l-mer frequencies in a metage-

nomic dataset. This method automatically determines the number of abundance groups

in a dataset and bins the reads into these groups. Finally, we incorporate the abundance-

based binning method into TOSS to enhance its performance.

1.3 Classification of Metagenomic Samples

NGS technologies have led to the rapid increase in the number and sizes of

metagenomic sequencing projects. Exponential growth of sequence data has enabled

comparative analysis of microbial communities, leading to a new branch of microbiol-

ogy called comparative metagenomics. Comparative analysis extends insights into the

structure and function of microbial communities: it may help to identify community

specific properties of different environments as well as discriminative properties between

different conditions, and to determine how microbial community composition is affected

by specific environmental changes. Comparative metagenomics has broad implications

for various fields of environmental science and human biology. It may help to address the

intriguing question of identifiability of a core human microbiome [102], to understand

the relationship between human microbiome and health, and to study how microbial

composition and function vary between distinct body sites and across the human pop-

ulation.

To access the taxonomic composition of a metagenomic sample, both single

marker gene sequencing and whole community shotgun sequencing are widely used [57].

Each metagenomic sample is represented as a list of operational taxonomic units (OTUs)

and their frequencies. Comparative analysis may involve the identification of composi-

tional patterns across samples from similar environments as well as discriminatory fea-

4

tures between different communities, associations between human bacterial communities

and disease phenotypes, prediction of unknown labels for new samples, etc. These tasks

require the development of new supervised learning techniques that would take into con-

sideration challenges associated with metagenomic data. One of the challenges is that

features defined by OTUs do not necessarily represent specific taxonomic units because

taxonomic levels are hard to define due to the fact that only relatively a small number

of bacteria have been cultured. Moreover, it is hard to determine which taxonomic

resolution level provides features with the best discriminative or predictive properties

[61]. The environment-specific patterns may even be comprised of different lineages at

varying phylogenetic depth. Finally, a low overlap in species between samples results in

sparse and high dimensional feature vectors. On the other hand, the natural properties

of microbial community data may provide useful information about the structure of the

data. For example, similarity between species encoded by a phylogenetic tree captures

the relationship between OTUs and may be useful for the analysis of complex microbial

datasets where the diversity patterns are comprised of features at multiple taxonomic

levels. Even though some of the challenges have been addressed by learning algorithms in

the literature, none of the available methods takes advantage of the inherent properties

of metagenomic data.

In Chapter 3, we propose a novel supervised classification method for metage-

nomic samples that takes advantage of the natural structure in microbial commu-

nity data encoded by a phylogenetic tree. This model allows us to take advantage

of environment-specific compositional patterns that may contain features at multiple

granularity levels. Additionally, we propose a new simulation framework for generating

metagenomic read counts that may be useful in comparative metagenomics research.

5

Our experimental results on simulated and real data show that the phylogenetic infor-

mation used in our method improves the classification accuracy.

1.4 Hierarchical Clustering in Cheminformatics

The process of drug discovery has been revolutionized with the advent of HTS

anf uHTS technologies that use automation to quickly assay the biochemical activity of

a large number of drug-like compounds in a fast and cost-effective manner. uHTS allows

to screen several million compounds in one experiment [50]. Clustering of compound

libraries is a fundamental task in cheminformatics. Among all clustering methods, hier-

archical clustering and k-means clustering are arguably the two most popular algorithms

used due to their simplicity in result interpretation. In the cheminformatics field, Wards

clustering [111] and Jarvis-Patrick clustering [88] are corresponding algorithms similar

in spirit to hierarchical clustering and k-mean clustering, respectively. Although there

is no definitive answer as to which algorithm is more accurate, hierarchical clustering

has been applied more often in cheminformatics research because of its deterministic

property and flexibility in flattening the resultant tree at different cutoff levels.

However, applying hierarchical clustering to large datasets is rather challenging.

First, compared to the linear complexity of the k-means algorithm, the most popular

average-linkage hierarchical clustering (AHC) requires O(n2) time; we even observed

O(n3)-time implementations in some popular bioinformatics tools [33]. Second, it re-

quires O(n2) memory [81], which limits the number of input data points to ∼ 20 000 for

a typical desktop computer. In cheminformatics research, modern drug discovery applies

uHTS for several million compounds in one experiment [50]. Two problems arise from

uHTS. First, to expand the screening compound collection, vendor catalogs of millions of

6

compounds ideally should be hierarchically clustered and prioritized for acquisition. But

in practice, cheminformaticians resort to a greedy algorithm such as Sphere Exclusion

[45], which relies on a predetermined similarity threshold. Second, instead of analyzing

all compound profiles across a panel of screening assays, hierarchical clustering analyses

have usually been compromised and restricted to ∼ 20 000 top screening hits due to

memory limitations. Therefore, there exists a significant need to develop a hierarchical

clustering algorithm for large datasets.

In Chapter 4, we present a hybrid hierarchical clustering algorithm requiring

approximately O(n
√
n) time and O(n

√
n) memory while still preserving the most de-

sirable properties of the exact agglomerative hierarchical clustering (AHC) algorithm.

The algorithm was capable of clustering one million compounds within a few hours on

a single processor.

1.5 Publications

This dissertation encompasses four publications. The TOSS paper (Chapter 2)

is published in the 11th Workshop on Algorithms in Bioinformatics (WABI 2011) and

in Algorithms for Molecular Biology. The abundance-based binning paper (Chapter 2)

is published in the 12th Workshop on Algorithms for Bioinformatics (WABI 2012). The

Phylogeny-Based classification paper (Chapter 3) has been accepted in Bioinformatics

with minor revisions. The complete list of publications includes:

• Olga Tanaseichuk, James Borneman and Tao Jiang. Separating Metagenomic

Short Reads into Genomes via Clustering. 11th Workshop on Algorithms for Bioin-

formatics (WABI 2011), Lecture Notes in Bioinformatics, 6833:298-313, Springer

7

Berlin/Heidelberg, 2011. Also appears in Algorithms for Molecular Biology, 2012,

7(1):27

• Olga Tanaseichuk, James Borneman and Tao Jiang. Probabilistic Approach to

Accurate Abundance-Based Binning of Metagenomic Reads. 12th Workshop on

Algorithms for Bioinformatics (WABI 2012), Lecture Notes in Bioinformatics,

7534:404-416, Springer Berlin/Heidelberg, 2012.

• Olga Tanaseichuk, James Borneman and Tao Jiang. Phylogeny-Based Classifica-

tion of Microbial Communities. Accepted in Bioinformatics.

• Olga Tanaseichuk, Alireza Hadj Khodabakshi, Dimitri Petrov, Jianwei Che, Tao

Jiang, Bin Zhou, Andrey Santrosyan and Yingyao Zhou. An Efficient Hierarchical

Clustering Algorithm for Large Datasets. To be submitted to PLoS ONE.

8

Chapter 2

Binning of Metagenomic Short

Reads

2.1 Introduction

Metagenomics [47] is a new field of study that provides a deeper insight into

the microbial world compared to the traditional single-genome sequencing technologies.

Traditional methods for studying individual genomes are well developed. However,

they are not appropriate for studying microbial samples from the environment because

traditional methods rely upon cultivated clonal cultures while more than 99% of bacteria

are unknown and cannot be cultivated and isolated [90]. Metagenomics uses technologies

that sequence uncultured bacterial genomes in an environmental sample directly [8], and

thus makes it possible to study organisms which cannot be isolated or are difficult to

grow in a lab.

Many well-known metagenomics projects use the whole genome shotgun se-

quencing approach in combination with Sanger sequencing technologies. This approach

has produced datasets from the Sargasso Sea [106], Human Gut Microbiome [43] and

9

Acid Mine Drainage Biofilm [104]. However, new sequencing technologies have evolved

over the past few years. The sequencing process has been greatly parallelized, producing

millions of reads with much faster speed and lower cost. The exponential increase in

environmental sequencing data makes it possible to study microbial communities at a

much higher resolution due to increased sequencing depth [97]. NGS-based approaches

have recently been applied to sequence several metagenomes from cow rumen [51], saliva

microbiome [122], permafrost [73], etc.

The primary goals of metagenomics are to describe the populations of mi-

croorganisms and to identify their roles in the environment. Ideally, we want to identify

complete genomic sequences of all organisms present in a sample. However, metage-

nomic data is very complex, containing a large number of sequence reads from many

species. The number of species and their abundance levels are unknown. The assembly

of a single genome is already a difficult problem, complicated by repeats and sequenc-

ing errors which may lead to high fragmentation of contigs and misassembly. In a

metagenomic data, in addition to repeats within individual genomes, genomes of closely

related species may also share homologous sequences, which could lead to even more

complex repeat patterns that are very difficult to resolve. A lot of research has been

done for assembling single genomes [22, 112, 35, 96]. But due to the lack of research

on metagenomic assemblers, assemblers designed for individual genomes are routinely

used in metagenomic projects [106, 104]. It has been shown that these assemblers may

lead not only to misassembly, but also severe fragmentation of contigs [26]. A plausi-

ble approach to improve the performance of such assemblers is to separate reads from

different organisms present in a dataset before the assembly.

Many computational tools have been developed for separating reads from dif-

ferent species or groups of related species (we will refer to the problem as the cluster-

10

ing of reads). Some of the tools also estimate the abundance levels and genome sizes

of species. These tools are usually classified as similarity-based (or phylogeny-based)

and composition-based. Similarity-based methods explore the taxonomic composition

of metagenomic sequences by performing similarity search against databases of known

genomes, genes and proteins [52, 62, 42, 79]. Small-scale approaches involving 16S

rRNAs and 18S rRNAs [23] are commonly used to determine evolutionary relationships

by analyzing fragments that contain marker genes and comparing them with known

marker genes. These methods take advantage of small number of fragments containing

marker genes and require reads to have at least 1000 bps. Two other tools handle a

larger number of fragments: MEGAN [52] and CARMA [62]. MEGAN aligns reads to

databases of known sequences using BLAST [2] and assigns reads to taxa by the lowest

common ancestor approach. CARMA performs phylogenetic classification of unassem-

bled reads using all Pfam domains and protein families as phylogenetic markers. These

two methods have high accuracy and are suitable for very short reads (as short as 35 bps

for MEGAN and 80 bps for CARMA). However, they rely on the availability of refer-

ence databases, while a lot of organisms in a sample may not be remotely related to any

known species. As a consequence, a large fraction of read data may remain unclassified.

The second class of methods use compositional properties of the fragments

(or reads). These methods are based on the fact that some composition properties,

such as CG content and oligonucleotide frequencies are preserved across sufficiently long

fragments of the same genome, and vary significantly between fragments from different

organisms. K-mer frequency is the most widely used characteristics for binning. For

example, the method in [130] utilizes the property that each genome has a stable dis-

tribution of k-mer frequencies for k = 1..6 in fragments as short as 1000 bps. It shows

that these fragments have very similar “barcodes” and thus can be clustered based on

11

their barcode similarities. Barcode similarity also correlates with phylogenetic closeness

between genomes. The main challenge in the k-mer frequency approach is that these

frequencies produce large feature vectors, which can be even larger than the sizes of frag-

ments. Different methods have been proposed to deal with this problem. CompostBin

[27], which uses hexamer frequencies, adopts a modified principle component analysis

to extract the top three meaningful components and then cluster the reads based on

principal component values. Self-organizing maps are another way to reduce dimension-

ality by mapping multidimensional data to two dimensional space. The work in [24]

uses SOMs for tri- and tetranucleotide frequency vectors. In TETRA [99], z-scores are

computed for tetranucleotide frequencies and fragments are classified by the Pearson

correlation of their z-scores. MetaCluster 3.0 [67] uses Spearman Footrule distance be-

tween k-mer feature vectors. Another composition feature is used in TACOA [34]: the

ratio between observed oligonucleotide frequencies and expected frequencies given the

CG content. To cluster fragments, the k-NN approach is combined with the Gaussian

kernel function. Composition-based methods can accurately bin long fragments. How-

ever, due to local variation of DNA composition across a genome, the performance of

these methods degrades with the decrease of the read length, making them unsuitable

for NGS datasets. In general, these methods are not suitable for fragments shorter than

1000 bps [12].

Several recent unsupervised metagenomic binning algorithms have been devel-

oped to handle short NGS reads. In particular, MetaCluster 4.0 [110] exploits compo-

sitional properties of groups of reads rather than individual reads. Although it handles

high-abundance species well, it does not perform well on datasets with low-abundance

species. MetaCluster 5.0 [109] is an extension of MetaCluster 4.0 to deal with low-

abundant species. Another unsupervised binning algorithm that handles NGS reads

12

is AbundanceBin [119]. It is designed to separate reads from genomes with different

abundance levels. It computes frequencies of all l-mers in a metagenomic dataset and,

assuming that these frequencies come from a mixture of Poisson distributions, predicts

the abundance levels of genomes and clusters l-mers according to their frequencies.

Then reads are clustered based on the frequencies of their l-mers. The limitation is that

genomes whose abundance levels do not differ very much (within ratio 1:2) will not be

separated.

In this chapter, we present two algorithms. The first algorithm is a two-phase

heuristic algorithm for separating short paired-end reads from different organisms in a

metagenomic dataset, called TOSS (i.e., TOol for Separating Short reads). The basic

algorithm is developed to separate genomes with similar abundance levels. It is based

on several interesting observations about unique and repeated l-mers in a metagenomic

dataset, which enables us to separate unique l-mers (each of which belongs to only one

genome and is not repeated) from repeats (l-mers which are repeated in one or more

genomes) at the beginning of the first phase of the algorithm. During the first phase,

unique l-mers are clustered so that each cluster consists of l-mers from only one of the

genomes. This is possible due to the observation that most l-mers are unique within

a genome and, moreover, within a metagenomic dataset. During the second phase, we

find connections between clusters through repeated regions and then merge clusters of

l-mers that are likely to belong to the same organism. Finally, reads are assigned to

clusters. We test the method on a large number of simulated metagenomic datasets for

microbial species with various phylogenetic closeness according to the NCBI taxonomy

[114, 10] and show that genomes can be separated if the number of common repeats

is less then the number of genome-specific repeats. For example, genomes of different

species of the same genus often have a large number of common repeats and thus are

13

very hard to separate. In the tests, our method is able to separate fewer than a half

of groups of such closely related genomes. However, with the decrease in the fraction

of common repeats, the ability to accurately separate genomes significantly increases.

Due to the lack of appropriate short read clustering tools for comparison, we modify a

well-known genome assembly software, Velvet [125], to make it behave like a genome

separation tool and compare our clustering results with those of the modified Velvet.

The second algorithm is designed to automatically determine the number of

abundance groups in the dataset and bin the reads into these groups. The method is

based on a novel probabilistic model for counting l-mer frequencies in the metagenomic

dataset that takes into account the frequencies of erroneous l-mers as well as repeats.

An expectation maximization (EM) algorithm is used to learn the parameters of the

model. We show that the method outperforms AbundanceBin on simulated and real

datasets.

Finally, to handle metagenomic datasets with genomes of arbitrary abundance

ratios, we incorporate the abundance-based binning step into TOSS to improve its per-

formance in the presence of genomes with different abundance levels. The integrated

method works for very short reads, and is able to handle multiple genomes with arbi-

trary abundance levels and sequencing errors. We compare the improved TOSS against

recent metagenomic binning tools MetaCluster 4.0 and MetaCluster 5.0 on simulated

NGS datasets, and show that it has a comparable performance overall but often achieves

a better sensitivity and breaks fewer genomes.

The chapter is organized as follows. In Section 2.2.1, we introduce TOSS.

Section 2.2.2 presents our abundance-based binning algorithm. In Section 2.2.3, we

describe how to incorporate an abundance-based pre-processing step into TOSS. Section

14

2.3 gives the experimental evaluation of our methods and comparisons to other recent

binning tools. Section 2.4 concludes the chapter.

2.2 Methods

2.2.1 Separating Metagenomic Short Reads from Genomes with Sim-

ilar Abundance Levels

The algorithm we are going to present in Section 2.2.1, TOSS, is based on

l-mers from metagenomic reads. We will first discuss some properties of l-mers that are

important for our algorithm, and also make some important observations that lead to

the intuition behind the algorithm. Then we will present the algorithm itself. In Section

2.2.3 we will extend the method to handle arbitrary abundance ratios.

2.2.1.1 Preliminaries

First, let us analyze the expected number of occurrences of l-mers in reads

sequenced from a single genome of length G. Let the number of paired-end reads be N

(which corresponds to 2N read sequences) and read length L. In shotgun sequencing

projects, as well as NGS, the reads are randomly distributed across the genome. Since

reads may begin at any positions of the genome with equal probability, Lander and

Waterman suggested that the left ends of reads follow a Poisson distribution [66], which

means that the probability for a read to begin at a given position of the genome is

α = 2N/(G − L + 1) and the number of reads starting at each position has a Poisson

distribution with parameter α. Consider a substring wi of length l that begins at the

i-th position of the genome. Let x(wi) be the number of reads that cover this particular

l-mer. Since there are L − l + 1 possible starting positions for such reads, x(wi) has

15

a Poisson distribution with parameter λ = α(L − l + 1) (this parameter represents the

effective coverage [66, 113]). This analysis assume that the l-mer wi occurs uniquely in

the genome, but in general, an l-mer may occur multiple times. Suppose that an l-mer w

has n(w) copies in the genome located at positions i1, . . . , in(w). Then the total number

of reads containing w is x(w) =

n(w)∑

j=1

x(wij). If we assume that a read covers at most one

copy of w, then x(wij), j = 1, ..., n(w), are independent and identically distributed. So

by the additivity property of the Poisson distribution, the total number of occurrences

of w in the reads, x(w), follows a Poisson distribution with parameter α(L− l+1)n(w).

In [68], this model is used to find repeat families for a single genome, where a repeat

family is a collection of l-mers that have the same number of copies in the genome.

In a metagenome, besides repeats that occur within individual genomes, genomes

of different species may share common l-mers. Consider S genomes gj , j = 1, ..., S, and

assume that an l-mer w has nj(w) copies in each genome gj , j = 1, ..., S. Then the

number of reads containing w is x(w) =
S∑

j=1

αj(L − l + 1)nj(w) =
S∑

j=1

λjnj(w), where

λj represents the effective coverage of genome gj . Since sequencing depth is the same

for all genomes, we will refer to it as the abundance. This model is quite difficult to

use in practice because we do not know the number of genomes and their repeat struc-

tures, common repeats and abundance levels. A simplification of this model is used

in AbundanceBin [119], by assuming that for large enough l, most l-mers appear only

once in the genomes (note that in AbundanceBin, 20-mers are considered, compared to

12-mers considered in [68]). This allows the authors to estimate the abundance levels

of genomes by modeling the abundance levels of the genomes as a mixture of Poisson

distributions, where the parameters are the abundance levels of the genomes and their

observed values are the counts of the l-mers (i.e., the number of reads containing these

l-mers). This approach works well if the abundance levels are sufficiently different. Also,

16

it is applicable only if the above simplifying assumption holds. In the next section, we

will discuss the validity of this assumption in real bacterial genomes and make three

important observations about the distribution of l-mers.

2.2.1.2 Observations

Before going into the details of the observations, let us introduce some nota-

tions. Consider two different genomes, g1 and g2, of lengths G1 and G2. Let n
dist
1 denote

the number of distinct l-mers in g1, n
uniq
1 the number of l-mers that have only one copy

in g1 (we will call them the unique l-mers in g1) and ntot
1 the total number of l-mers

in g1 (including copies). Obviously ntot
1 = G1 − l + 1. The notations for genome g2

are defined similarly (see Figure 2.1 for an illustration of these notations). Our first

observation is the following: (1) Most of the l-mers in a bacterial genome are unique

in this genome. To confirm it, we have computed the ratio of unique l-mers to distinct

l-mers for all complete bacterial genomes downloaded from NCBI. Figure 2.2 shows the

estimated density of this value. We can conclude that fraction of unique l-mers with

l = 20 is between 96% and 100% for most of complete bacterial genomes.

In order to explain the second observation, let us introduce more notations.

Let us consider l-mers from two genomes g1 and g2. Denote by ndist the total number

of distinct l-mers in both genomes together. We say that an l-mer is unique if it is

present only in one genome and, moreover, unique in this genome. Then nuniq denotes

the number of unique l-mers in the genomes. Obviously, nuniq
1 + nuniq

2 ≥ nuniq, because

some l-mers that are unique in one genome may not be unique in both genomes due to

common repeats. Our second observation is concerned with the percentage of unique

l-mers in a metagenome: (2) Most l-mers are unique in a metagenome if it consists of

17

Figure 2.1: Unique and repeated l-mers. A and G: unique l-mers; B and F: individual
repeats; C, D, E, and H: common repeats where C and E contain repeats only for one
of the genomes, D contains repeats for both genomes, and H contains l-mers that are
common to both genomes. Note that ndist

1 = A+B+C+D+E+H , ndist
2 = C+D+E+

F+G+H, nuniq
1 = A+E+H, nuniq

2 = G+C+H, ndist = A+B+C+D+E+F+G+H
and nuniq = A+G.

85 90 95 100

0
.0

0
.2

0
.4

0
.6

0
.8

unique_to_distinct

E
s
ti
m

a
te

d
 d

e
n

s
it
y

l = 20

l = 18

l = 16

l = 14

85 90 95 100

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

unique_to_total

E
s
ti
m

a
te

d
 d

e
n

s
it
y

l = 20

l = 18

l = 16

l = 14

Figure 2.2: The fraction of unique l-mers. Estimated density functions of the fraction of
unique l-mers in fully sequenced bacterial genomes for l = 14, 16, 18, 20. Left: the ratio
of unique l-mers to distinct l-mers. Right: the ratio of unique l-mers to total l-mers.

18

genomes of species separated by sufficiently large phylogenetic distances. To validate it,

we show that the number of l-mers that are unique in an individual genome but are not

unique in the metagenome is small. We compute this value for pairs of genomes separated

by different taxonomic distances. Figure 2.3 shows the density function of the fraction of

l-mers that lost their uniqueness due to common repeats, i.e. 1− nuniq/(nuniq
1 + nuniq

2).

We can see that the bigger is the phylogenetic distance, the fewer unique l-mers are lost.

From now on, by “unique l-mers” we will mean l-mers that appear only once

in all the genomes. The remaining l-mers are repeats. We will further classify the

repeats into two groups: individual repeats are l-mers which appear only in one genome

(but have several copies) and common repeats are l-mers that appear in at least two

genomes (see Figure 2.1). Our final observation is: (3) If genomes are separated by

sufficient phylogenetic distances (they are at least from different families), then most of

the repeats are individual repeats. In addition, the bigger is the phylogenetic distance

between genomes, the fewer the common repeats. Figure 2.4 demonstrates the validity

of this observation.

Our algorithm is based on these three observations. Since most of the l-mers

are unique in a metagenome, we can cluster the unique l-mers by using their common

membership in reads so that each cluster contains l-mers from only one genome in the

first phase. The second phase of our algorithm uses the property that most of repeats are

specific to an individual genome. This allows us to merge clusters using the repeated

l-mers in the metagenome. Figure 2.5 illustrates a flowchart of our algorithm. Each

main step of the algorithm is explained below.

19

0 20 40 60 80 100

0
.0

0
0
.1

0
0
.2

0
0
.3

0

The faction of lost unique l−mers

E
s
ti
m

a
te

d
 d

e
n
s
it
y

0 5 15 25 35
0
.0

1
.0

2
.0

3
.0

The faction of lost unique l−mers

E
s
ti
m

a
te

d
 d

e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1
0

The faction of lost unique l−mers

E
s
ti
m

a
te

d
 d

e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

2
0

3
0

The faction of lost unique l−mers

E
s
ti
m

a
te

d
 d

e
n
s
it
y

Figure 2.3: The fraction of lost unique l-mers. Estimated density of the ratio of the
number of unique l-mers nuniq to the total number of l-mers that are unique in an
individual genome, nuniq

1 + nuniq
2 . Top left: pairs of genomes from the same genus but

different species. Top right: pairs of genomes from the same family but different genera.
Bottom left: pairs of genomes from the same order but different families. Bottom right:
pairs of genomes from the same class but different orders.

20

0 20 40 60 80 100

0
.0

0
0
.0

2
0
.0

4

The fraction of common repeats

E
s
it
m

a
te

d
 d

e
n
s
it
y com_rep_d/all_rep_dist

com_rep_total/all_rep_total

0 20 40 60 80 100
0
.0

0
0
.0

2
0
.0

4

The fraction of common repeats

E
s
it
m

a
te

d
 d

e
n
s
it
y com_rep_d/all_rep_dist

com_rep_total/all_rep_total

0 20 40 60 80 100

0
.0

0
0
.0

5
0
.1

0
0
.1

5

The fraction of common repeats

E
s
it
m

a
te

d
 d

e
n
s
it
y com_rep_d/all_rep_dist

com_rep_total/all_rep_total

0 20 40 60 80 100

0
.0

0
.1

0
.2

0
.3

0
.4

The fraction of common repeats

E
s
it
m

a
te

d
 d

e
n
s
it
y com_rep_d/all_rep_dist

com_rep_total/all_rep_total

Figure 2.4: The fraction of common repeats. Estimated density function of the ratio
of the number of common repeats (or distinct common repeats) to the total number of
all distinct repeats (or all repeats, respectively). Top left: pairs of genomes from the
same genus but different species. Top right: pairs of genomes from the same family
but different genera. Bottom left: pairs of genomes from the same order but different
families. Bottom right: pairs of genomes from the same class but different orders.

21

Get l-mers

Find unique

l-mers

Cluster unique l-mers s.t. in

each cluster l-mers are form

the same genome

Merge clusters that potentially belong

to the same genome

Assign Reads

Metagenomic Reads

P
re

-p
ro

c
e

s
s
in

g

P
h

a
s
e

 1
P

h
a

s
e

 2
P

o
s
t-p

ro
c
e

s
s
in

g

Figure 2.5: Flowchart of the algorithm.

2.2.1.3 Finding Unique l-mers

Before performing the first phase of the algorithm, which clusters the unique

l-mers, l-mers have to be separated into unique l-mers and repeats. This is done by

choosing a threshold value K for the counts of l-mers so that l-mers with counts less

than K are most likely unique and the remaining are most likely repeats. Below, we

discuss how to chose K.

First, consider error-free metagenomic reads of genomes with equal abundance

levels. Let n be the number of distinct l-mers w1, w2, ..., wn with counts x(w1), x(w2), ..., x(wn).

Let n(i) be the number of distinct l-mers with counts i. As we discussed in the previous

section, the unique l-mers follow a Poisson distribution and we may approximate the

parameter of the Poisson distribution by the most frequent count of any l-mers because

most l-mers are supposed to be unique. Then, given the estimated parameter, we can

estimate the expected number of l-mers with counts i, y(i). Figure 2.6 shows the count

22

K

Frequency

Counts of
l-mers

Figure 2.6: Threshold choice for the separation of l-mers from different distributions.
K is a threshold to separate l-mers from two distributions.

distributions of unique and non-unique l-mers, where the non-unique l-mers (i.e., re-

peats) are assumed to be from a mixture Poisson distributions and the shaded area

shows the expected rate of misclassified l-mers for the given threshold value K. In the

figure, if we choose the threshold higher or lower, more repeats or unique l-mers would

be undetected, respectively. As a balance, we would choose the intersection point of the

two distributions as shown in Figure 2.6. Although we do not know the distribution

of the repeats, we can see that the observed number of l-mers with count K is twice

the expected number of unique l-mers with count K, and this ratio increases for count

values greater than K. Based on this intuition, we can estimate the value of K. The

details are given in Algorithm 1. A similar approach is used to deal with sequencing

errors, by finding a threshold value for counts of l-mers that separates unique l-mers

and l-mers with errors.

The set U of unique l-mers is then used to construct a graph which can help

detect more repeats and will be used to do the clustering. The nodes of the graph G

correspond to the elements of U and there is an edge between two nodes if both l-mers

are contained in a same read. To remove previously undetected repeats, we use the

23

Algorithm 1: Clustering of the unique l-mers. Given the graph of unique
l-mers G = (U,E), cluster l-mers in U .

begin
T ← FindThreshold()
i← 1
Ci ← Initialize()
R← ∅
Q← Elements from U\⋃i

j=1Ci with at least T neighbors in Ci

while |Q| > 0 do
if |Q| > 2(L− (l + T) + 1) then

R← R ∪Q
i← i+ 1
Ci ← Initialize()

else
Ci ← Ci ∪Q

Q← Elements from U\⋃i
j=1Ci with at least T neighbors in Ci

NC ← Number of Clusters()
for every pair of cluster Ci and Cj, 1 ≤ i, j ≤ NC do

Wij ← Number of paired-end reads connecting the two clusters

for 1 ≤ i ≤ NC do
Topi ← {j1, j2} so that Wij1 and Wij2 hold the two largest values
among all Wij ’s.

for 1 ≤ i ≤ NC do
for every j ∈ Topi do

if i ∈ Topj then
Merge(Ci,Cj)

fact that nodes that correspond to truly unique l-mers cannot have more than 2(L− l)

neighbors.

2.2.1.4 Clustering the Unique l-mers

We use graph G described above to perform the clustering. The purpose is to

obtain clusters so that each cluster contains unique l-mers from only one genome. Note

that the number of such clusters for each genome can be large. We initialize the first

cluster with the l-mers from a randomly selected read and then iteratively find sets of

unclustered nodes that are connected to at least T nodes in the current cluster (the

24

Algorithm 2: Detection of unique and repeated l-mers. Given l-mers
wi, i = 1, . . . , n, and their counts n(wi), the algorithm classifies l-mers
into repeats R and unique l-mers U .

begin
R← ∅
U ← ∅
Compute the number n(i) of l-mers with count i for each i
λ = argmaxi n(i)
K ← max(i)
for i = λ, ...,max(i) do

y(i) = λie−λ/i!
if n(i) > 2y(i) then

K ← i
break

for i = 1, ..., n do
if n(wi) > K then

Add wi to R

else
Add wi to U

choice of T is discussed later in the subsection). It is important to note that the number

of unique l-mers we can add at each step is limited by 2(L− (l+T)+ 1), since we could

add l-mers from both ends of a read. If we need to add more than this many l-mers at

some step, it means that we have encountered true repeats that have not been removed

and thus we stop expanding the current cluster. We also stop expanding the current

cluster if no more nodes could be added. Then we go to the next iteration and construct

the next cluster. For each such subsequent iteration, we initialize a new cluster with

l-mers from some read that does not correspond to any of the current clusters. A read

corresponds to a cluster if at least a half of its l-mers belong to the particular cluster.

We create new clusters until there are no more unclustered reads left. At the end of

clustering, we obtain a set of disjoint clusters of l-mers. The paired-end information is

then used to consolidate the clusters. The details are given in Algorithm 2.

25

Threshold T (the minimum required number of edges between an unclustered

node and the nodes in a cluster so that the node can be added to this cluster) is chosen

to make the expected number of coverage gaps less than one. Recall that the effective

coverage is Cov = 2N(L − (l + T) + 1)/(G − L + 1) and expected number of gaps is

2Ne−Cov [113].

2.2.1.5 Merging Clusters and the Final Clustering of Metagenomic Reads

The goal of the second phase is to merge clusters obtained during the previous

phase, based on the repeats and information provided by the paired-end reads. First,

for each cluster Ci, we compute the set of repeats Ri that may potentially belong to

the same genome as the unique l-mers in Ci. Each Ri consists of two types of l-mers.

For each read corresponding to cluster Ci, it may contain some number of repeats.

These repeated l-mers are assigned to the set Ri. For each read corresponding to Ci,

we also consider its mate (in a paired-end read) and add to Ri all l-mers of the mate

that have not been assigned to any clusters. Then for each pair of sets Ri and Rj ,

we find the intersection of these sets, Rij . Then, we build a weighted graph F , where

nodes correspond to clusters Ci and the weight of an edge (i, j) equals the size of set Rij .

Finally, the clusters are merged by using the algorithm MCL [105] on the graph F . MCL

is an efficient algorithm for clustering sparse weighted graphs and ideal for our situation.

To avoid confusion, we will call clusters produced by MCL the m-clusters. MCL has

a parameter (we denote it by r), corresponding to granularity of clusters. We use an

iterative algorithm to find the best parameter so that the m-clusters are big enough

(in terms of the number of l-mers contained in each m-cluster) and the total weight

of connections between elements within an m-cluster is higher than the total weight of

connections between two different m-clusters. Let us call m-clusters that satisfy the

26

Algorithm 3: Clustering of the unique l-mers. Given the graph of unique
l-mers G = (U,E), cluster l-mers in U .

begin
T ← FindThreshold()
i← 1
Ci ← Initialize()
R← ∅
Q← Elements from U\⋃i

j=1Ci with at least T neighbors in Ci

while |Q| > 0 do
if |Q| > 2(L− (l + T) + 1) then

R← R ∪Q
i← i+ 1
Ci ← Initialize()

else
Ci ← Ci ∪Q

Q← Elements from U\⋃i
j=1Ci with at least T neighbors in Ci

NC ← Number of Clusters()
for every pair of cluster Ci and Cj, 1 ≤ i, j ≤ NC do

Wij ← Number of paired-end reads connecting the two clusters

for 1 ≤ i ≤ NC do
Topi ← {j1, j2} so that Wij1 and Wij2 hold the two largest values
among all Wij ’s.

for 1 ≤ i ≤ NC do
for every j ∈ Topi do

if i ∈ Topj then
Merge(Ci,Cj)

first property big, and a subset of big m-clusters that satisfy the second property (with

respect to all other big m-clusters) valid. We start with a parameter r which corresponds

to a high granularity and evaluate the resultant clusters in terms of size and validity.

Based on the evaluation, we either decrease the parameter to have less granularity or

choose the current value of r as the parameter for MCL. We obtain final clusters of the

unique l-mers by merging clusters that belong to the same m-cluster (see Algorithm 3

in for details).

27

Now we discuss how to define big and valid m-clusters. The minimum size

of a big m-cluster is specified by the user based on the minimum expected length of

a genome. Valid m-clusters are chosen from big m-clusters in the following way. Let

Wjj and Wii be the total weights of the connections within each of the m-clusters j

and i, and Wij the total weight of the connections between these two m-clusters. The

big m-cluster i is defined to be valid if for every other big m-clusters j, the inequality

√
Wij

WiiWjj > 10−3 holds. The threshold of 10−3 is chosen empirically.

In the final step of the algorithm, the reads are assigned to the resultant clusters

of unique l-mers. Iterative algorithm is used to assign the reads. At the first step, each

reads that correspond to some cluster is assigned to this cluster. During the second step,

unassigned reads that have assigned mates are assigned to the same clusters as their

mates. In the third step, for each cluster of unique l-mers we add all the l-mers from the

reads assigned to the cluster. We iteratively repeat the three steps for the unassigned

reads until no more reads can be assigned. If the read correspond to several clusters, we

assign it to one of the clusters.

2.2.1.6 Implementation

TOSS was implemented in C++. Its running time and memory requirement

depend on the total length of all the genomes present in a metagenomic dataset and on

the number of reads. The first phase of the algorithm is the most time and memory

consuming. In this phase, a graph of l-mers is constructed and the clustering of unique

l-mers is performed. The size of the graph is proportional to the total size of the

genomes and 0.5 GB of RAM is required for every million bases of the genomes. In

the experiments, we ran the algorithm on a single CPU with 2.8GHz AMD machine

and 64GB RAM. Each of the small-scale tests involving 2-4 genomes of total length of

28

2-6 Mbps was completed within 1-3 hours and required 2-4 GB of RAM. A test on 15

genomes with the total length of 40 Mbps ran for 14 hours and required 20GB of RAM.

2.2.2 Abundance-Based Binning of Metagenomic Reads

In this section, we introduce a novel probabilistic model that can be used

for computing the most probable abundance levels of the genomes in a metagenomic

dataset and estimating the proportions of the reads corresponding to each abundance

group. The problem of binning the reads is then reduced to the problem of determining

the parameters of the model and classifying the reads according to the frequencies of

l-mers comprising the reads.

2.2.2.1 Definitions and Notations

As we observed in Section 2.2.1.2, most of the l-mers in a bacterial genome

occur only once within the genome. However, some l-mers may occur at multiple loca-

tions within the genome. Assume that w is an l-mer with n copies in the genome. Due

to additivity of the Poisson distribution, the number of reads that cover w, denoted by

x(w), has a Poisson distribution with the parameter nλ. However, due to sequencing

errors, the actual count of the l-mer w in the reads, denoted by y(w), may differ from

x(w) (see Figure 2.7). Let xi(w) be the number of reads that cover the l-mer w with i

errors in w. Clearly, x(w) =
∑

i x
i(w) and y(w) = x0(w) + ew, where ew is the number

of times that w occurs in the reads due to errors in other l-mers.

Now, let us consider a metagenomic dataset. Assume that N reads are se-

quenced from S different genomes. The abundance value of genome gj is λj = Nj(L −

l + 1)/(Lgj − L + 1), where Nj is the number of reads corresponding to this genome,

29

CACCTGAACACATGCTGATT

CACCTGAA

CACCTGAA

CCTGAACA

AGCTGAAC

TGCTGATT

TGATGATT

ATGCTGAT
 x(w)

x(u)

w u

Figure 2.7: Coverage of l-mers and occurrences of l-mers in the reads. The coverage
of l-mer w = CCTG is x(w) = 4. However, due to an error in one of the reads that
cover w, w appears in the reads only 3 times, i.e. y(w) = 3. For the l-mer u = GCTG,
x(u) = 3. Observe that even though there is an error in one of the reads that cover u,
this l-mer also occurs in a read that covers w due to an error, and thus y(u) = 3.

G T

X E

Y

Figure 2.8: The proposed graphical model. Count Y of an l-mer depends on the coverage
X and the number of errors E within the l-mer. In turn, the coverage depends on the
abundance level G of the genome and the number of occurances T of the l-mer in the
genome.

30

Lgj is the length of the genome gj , and L is the length of the reads. Let us enumerate

all the substrings of length l in all the reads. Clearly, there are M = N(L− l+ 1) such

substrings. Let us consider the ith substring vi, i ∈ [1,M]. This substring belongs to

the read ri ∈ [1, N] which was sequenced from the genome gi ∈ [1, S]. Let wi be the

original l-mer in the genome gi corresponding to vi. Let us assume that wi has ti copies

in genome gi. Let ei be the number of sequencing errors (substitutions) within vi. Note

that ei equals the Hamming distance between wi and vi. Also, let xi be the number

of reads that cover all the copies of wi in the genome and yi the number of times that

l-mer vi occurs in the reads.

In Section 2.2.2.2, we model the relationship between the abundance values of

genomes, the coverage of l-mers, the number of errors in l-mers, and the counts of l-mers

in the reads.

2.2.2.2 A Probabilistic Model for l-mer Frequencies

We define random variables Gi, Xi, Yi, Ti, and Ei that are associated with the

values gi, xi, yi, ti and ei, respectively. The variables Yi are observed by counting the

number of occurrences of l-mers in the reads. The other variables cannot be observed

directly, so they are hidden. Our goal is to determine the most likely assignment of the

l-mers to the genomes. Figure 2.8 illustrates a graphical representation of the model.

Let πj be a parameter that represents the proportion of the reads that come

from the jth genome. Let αn
j be the fraction of l-mers that occur n times in the jth

genome. Let αj = (α1
j , ..., α

nmax

j), where nmax is the maximum possible number of copies

of an l-mer in a genome. For the convenience of notation, we define parameter vectors

θj = (λj , πj , αj) for all j ∈ [1, S], and θ = (θ1, ..., θS).

31

Assuming that the coverage of an l-mer with t copies in a genome g follows a

Poisson distribution, the probability that the random variable Xi, associated with the

coverage of l-mers in the genome g, takes a particular value c is

P (Xi = c|Gi = g, Ti = t, θ) =
cPois(tλg, c)

∑

j

j Pois(tλg, j)
= Pois(tλg, c− 1),

where Pois(λ, k) is the probability of a Poisson random variable taking the value k.

The variable Yi associated with the count of the l-mer vi in the reads con-

ditionally depends on variables Xi and Ei. If Ei = e, e > 0, it means that the

corresponding l-mer vi contains e errors. To model the distribution of counts of l-

mers that have e errors, we can borrow the idea from the Balls and Bins problem

(http://www.mathpages.com/home/kmath199.htm).

Assume that n balls are randomly thrown into m bins. It is known that the

expected fraction of bins that get exactly k balls can be approximated by a Poisson

distribution with the parameter n/m. Based on this, the probability that an erroneous

l-mer has frequency k in the reads is

P (Yi = k|Xi = c, Ei = e, e > 0, θ) =
kcPois(c/nl(e), k)

∑

j

j Pois(c/nl(e), j)
= Pois(c/nl(e), k − 1),

where nl(e) is the number of different possibilities for e errors to occur within an l-mer.

The distribution of the counts of l-mers without errors can be modeled by the

binomial distribution. The probability that an error-free l-mer has count k in the reads

is

P (Yi = k|Xi = c, Ei = 0) =
kBin(k, c, p0)

∑

j

j Bin(j, c, p0)
=

kBin(k, c, p0)

cp0

where Bin(j, c, p) is the probability that a variable following the binomial distribution

takes the value j, and p0 is the probability that an l-mer does not contain erros.

32

The above probabilities allow us to compute the probability of a given data

point yi given the values of unobserved variables and the parameter vector θ

P (Yi = yi|Gi = g,Xi = c, Ei = e, Ti = t, θ)

= P (Yi = yi|Xi = c, Ei = e)P (Xi = c|Gi = g, Ti = t, θ)P (Gi = g, Ti = t, θ)P (Ei = e)

= πgα
t
gP (Yi = yi|Xi = c, Ei = e)P (Xi = c|Gi = g, Ti = t, θ)P (Ei = e) (2.1)

2.2.2.3 Parameter Estimation

Now, let us consider the log-likelihood of the observed data Y given the pa-

rameter vector θ

L(Y |θ) =
∑

i

logP (Yi = yi|θ).

Our goal is to find the maximum likelihood estimate (MLE) of the parameter θ,

θ̂ = argmaxθ L(Y |θ).

To find θ̂, we use the EM algorithm. The E-step requires the computation of the

expected value of the log-likelihood function, with respect to the conditional distribution

of unobservable variables given the data and current parameter estimates θ(t):

Q(θ|θ(n)) =
∑

i

∑

g,c,e,t

P (Gi = g,Xi = c, Ti = t, Ei = e|Yi = yi, θ
(t))

·P (Yi = yi, Gi = g,Xi = c, Ti = t, Ei = e|θ).

Here, the posterior probabilities pG,X,E,T |Y,θ(g, c, e, t, k, θ) = P (Gi = g,Xi = c, Ei =

e, Ti = t|Yi = k, θ) of the unobserved data given current parameter estimates θ(t) can be

computed by applying Bayes’ rule to Equation 1.

33

In the M-step, we find the parameter θ(t+1) that maximizes Q(θ|θ(n)) with

respect to θ

θ(n+1) = argmax
θ

Q(θ|θ(n)). (2.2)

The updated parameters are thus

λ
(n+1)
g =

∑

c,e,t,k

pG,X,E,T |Y,θ(g, c, e, t, k, θ)c

∑

c,e,t,k

pG,X,E,T |Y,θ(g, c, e, t, k, θ)t
, αt

g
(n+1)

=

∑

c,e,k

pG,X,E,T |Y,θ(g, c, e, t, k, θ)

∑

c,e,j,k

pG,X,E,T |Y,θ(g, c, e, j, k, θ)
,

πg
(n+1) =

∑

c,e,k,j

pG,X,E,T |Y,θ(g, c, e, j, k, θ)

∑

i,c,e,j,k

pG,X,E,T |Y,θ(i, c, e, j, k, θ)

Once we estimate the parameters of the probabilistic model, we can assign l-

mers to bins (or genomes) based on the counts of the l-mers in the reads. We assign an

l-mer vi that occurs yi times in the reads to a bin g with probability P (Gi = g|Yi = yi, θ̂).

Then, each read is assigned to a bin according to the frequencies of its l-mers in the

dataset

P (r ∈ gj) =
∏

yi∈r

P (Gi = g|Yi = yi, θ̂)/
∑

g

∏

yi∈r

P (Gi = g|Yi = yi, θ̂).

2.2.2.4 Detecting the Number of Bins

The EM algorithm described in Section 2.2.2.3 assumes that the number of bins

(genomes) S and the maximum multiplicity of the repeats in the genome (the values

that variables Ti may take) are provided. Selecting the best number of clusters is a

challenging problem. Here, we propose an iterative algorithm to find the best value for

S. We start with one bin and iteratively increase the number of bins until one of the

following conditions is reached: (i) one or several bins are split into overlapping bins,

making it impossible to assign the reads to the overlapping bins correctly and (ii) one or

34

Algorithm 4: Deciding the optimal number of bins S and maximum mul-
tiplicity of the repeats R. Given observed l-mer frequencies, the algorithm
attempts to find the best values for S and R.

begin
V ←∞
R,S ← 1, 1
for r = 1, ..., Rmax do

s← 1

θ̂ ← EM(s, r)

if StopCondition(θ̂) then
break

else
if V (s, r) < V then

V ← V (s, r)
R,S ← r, s

s← s+ 1

return R, S

several bins are too small to represent a whole genome. In order to find the maximum

multiplicity of the repeats, denoted by R, we repeat the above procedure for different

values of R. For each pair of specific values S = s and R = r, we record the distance

between the observed and the expected frequencies of l-mers, V (s, r) =
∑

i |M · P (Y =

i|θ̂r,s) −
∑

j=1..M 1{i}(yj)|. Here M · P (Y = i|θ̂r,s) is the expected number of l-mers

with counts i, and
∑

j=1..M 1{i}(yj) is the observed number of l-mers with counts i in

the reads. Finally, we set S and R to the values s and r for which V (s, r) reaches the

minimum. See Algorithm 4 below for the details.

2.2.3 Handling Genomes with Arbitrary Abundance Levels

In Section 2.2.1 we presented TOSS, an algorithm designed to separate reads

from genomes with similar abundance levels. In the first phase, TOSS creates clusters

of l-mer so that all l-mer in each cluster are likely to originate from the same genome. In

the second phase, clusters from the same genome are merged. We would like to extend

35

TOSS to metagenomic data containing genomes with different abundance levels. If the

abundance level difference is not significant, TOSS would still work well. In this case,

the number of wrongly determined unique l-mers and repeats in the first phase of the

algorithm may slightly increase, but the clustering of l-mers based on their counts using

the Poisson mixture model may incur a significantly higher drop of performance. For

genomes with significantly different abundance levels, it makes sense to first separate

reads according to genome abundance levels. Otherwise, repeats from genomes with

lower abundance levels will not be detected, which could lead to a significant increase of

granularity in the clustering result produced by the first phase of the above algorithm.

To handle genomes with significantly different abundance levels, TOSS requires

a preprocessing step. First, we proposed to use the algorithm AbundanceBin [119] for

the initial abundance-based binning of reads. In this case, we run the first phase of

TOSS for each of the subsets of reads. For the second phase, we use all the reads to

find the connections between clusters so that connections between clusters from genomes

with low abundance levels are properly recovered, but MCL is performed on each subset

separately.

A key question is what ratios of abundance levels should be considered as signif-

icant? This ratio depends on the actual values of abundance levels and also on the sizes

of the genomes. Given abundance levels λ1 and λ2 (λ1 < λ2), genome sizes G1 and G2,

and a thresholdK for classifying l-mers into the two genomes based on count frequencies,

we can estimate the expected rate of misclassified l-mers from the count distributions

of the l-mers in these two genomes as discussed in Section 2.2.1.1. More specifically, the

shaded area in Figure 2.6 represents the expected fraction of misclassification for two

distributions. The number of l-mer in this area is l2

K−1∑

i=1

λi
2e

−λ2

i!
+ l1

Max∑

i=K

λi
1e

−λ1

i!
. So,

we first use AbundanceBin to predict the parameters of count distributions (i.e., the

36

abundance ratios and genome sizes) and then compute the expected rate of misclassifi-

cation. If this rate is unacceptable (we used 3% as the threshold in the experiments), it

means that the abundance levels are not significantly different and thus we do not run

AbundanceBin.

Clearly, the performance of TOSS is significantly affected by the performance

of AbundaceBin. Specifically, the inability of AbundaceBin to accurately infer low-

coverage genomes may result in bins with low sensitivity. When these bins are provided

to TOSS as an input, the performance of TOSS would suffer. Therefore, in the latest

version of TOSS, we replaced AbundaceBin with our abundance-based binning algorithm

described in Section 2.2.2.

2.3 Experimental Results

We test the performance of out algorithms on simulated and real datasets.

Although simulated datasets do not capture all characteristics of real metagenomic data,

there are no real benchmark datasets for NGS metagenomic projects and thus they are

the main available option.

In Section 2.3.3, we evaluate the performance of TOSS on a variety of syn-

thetic datasets with different numbers of species, phylogenetic distances between species,

abundance ratios and sequencing error rates. We modify a well-known genome assem-

bly software, Velvet [125], to make it behave like a genome separation tool and compare

our clustering results with those of the modified Velvet. In addition, we compare the

performance TOSS with the well-known composition-based method CompostBin [27] on

simulated metagenomic Sanger reads. We also apply the algorithm to a real metage-

37

nomic dataset obtained from gut bacteriocytes of the glassy-winged sharpshooter and

achieve results consistent with the original study [117].

In Section 2.3.4 we evaluate performance of our abundance-based binning al-

gorithm on simulated and real datasets and compare the results with AbundanceBin.

In Section 2.3.5, we evaluate our integrated binning algorithm. We test the

improved TOSS on simulated NGS datasets and compare the results with those of TOSS

that uses AbundanceBin as a preprocessor. Eventually, we compare the performance of

the improved TOSS with two very recent binning tools MetaCluster 4.0 and MetaCluster

5.0 on simulated NGS data.

2.3.1 Simulated Data Sets

We use MetaSim [91] to simulate paired-end Illumina reads for various bac-

terial genomes to form metagenomic datasets. MetaSim is a software for generating

metagenomic datasets with controllable parameters, such as the abundance level of each

genome, read length, sequencing error rate and distribution of errors. Thus, it can be

used to simulate different sequencing technologies and generate reads from available

completely sequenced genomes (for example, those in the NCBI database). In our ex-

periments, paired-end reads of length 80 bps are considered, with the mean insert size

500 bps and deviation 20 bps. The sequencing error model is set according to the error

profile of 80 bps Illumina reads.

2.3.2 Performance Evaluation

To evaluate the results of clustering, there are a number of factors that should

be considered. First of all, we would like most of the reads from each genome to be

located in one cluster. In other words, each genome should correspond to a unique

38

cluster that contains most of its reads. We say that a genome has been broken if there

is no cluster that contains more than a half of all its reads. It may happen that several

genomes correspond to the same cluster. In this case, we assign the cluster to all the

genomes, and say that the genomes are not separated. We will measure the performance

of the algorithms in terms of pairwise separability. For example, if a dataset contains

5 genomes, where 3 of them are located in one cluster, and each of the other two are

located in its own cluster, then in the pairwise evaluation, we consider the separability

of all 10 pairs of genomes. Since 3 pairs of genomes are not separated while the other

7 are separated, the separability rate is 70%. During the separability analysis, we

remove broken genomes from consideration. Besides separability, we are interested in

the precision and sensitivity of our algorithm on the separated genomes. Since we assign

a genome to the cluster that has most of its reads, it is also interesting to know how many

of its reads are wrongly assigned to other clusters. We call this sensitivity. One way to

estimate sensitivity is to compute how many reads are correctly assigned to each cluster

and divide it by the total number of reads that should be in this cluster. Here, true

positives are the reads from all genomes located in this cluster. However, consider the

case when we have two genomes in a cluster, of lengths 1 Mbps and 5 Mbps respectively.

Then, even if sensitivity is very low for the first genome, the overall sensitivity (for all

genomes in the cluster) will not be significantly affected. Another way to normalize

sensitivity is by computing sensitivity for each genome in the cluster separately and

then to find the average of these sensitivities. We use the second approach. To compute

precision of a cluster, we find the ratio of the reads that are wrongly assigned to the

cluster to the total number of reads in the cluster.

39

To summarize the results for a set of experiments, we compute separability

based on the total number of pairs of genomes in all the experiments. For the precision

and sensitivity, we take the average values for all the clusters from all the experiments.

2.3.3 Performance of TOSS

2.3.3.1 Simulated Data

The first experiment is designed to test the performance of TOSS on a large

number of datasets of varying phylogenetic distances. For this experiment, we create 182

synthetic datasets of 4 categories. Each dataset of the first category contains genomes

from the same genus but different species. Datasets in the second category consist of

genomes from the same family but different genera, datasets in the third category involve

genomes from the same order but different families, and datasets in the fourth category

involve genomes from the same class but different orders. Genomes in each test are

randomly chosen according to a category of phylogenetic distances and assumed to have

the same abundance levels. The number of genomes in the datasets varies from 2 to 10

and depends on the number of available complete sequences for each taxonomic group

and on the level of the group. Tests on genomes from the same genus typically involve

2 to 4 genomes since such genomes are similar to each other and hard to separate, while

tests on genomes from the same class may involve up to 10 genomes. Totally, we have

79 experiments concerning a genus, 66 concerning a family, 29 concerning an order, and

8 concerning a class. These datasets involve 515 complete genomes from the NCBI. The

number of reads for each experiment is adjusted to produce sufficient coverage depth

(ranging between 15 and 30).

40

We also performed some small-scale experiments to test the performance on

genomes with different abundance levels and on reads with sequencing errors. For each

of the experiments, we choose 10 random sets of genomes from the 182 datasets. For

each set of genomes, two metagenomic dataset are simulated, one with abundance ratio

1:2 and and the second with the error model but abundance ratio 1:1. Finally, we

test the performance of the combination of TOSS and AbundanceBin on a dataset of 4

genomes with abundances 1:1:4:4.

2.3.3.2 Comparison with Modified Velvet

Due to the lack of methods for separating short NGS reads into genomes,

we modify a well-known genome assembler, Velvet [125], so it behaves like a genome

separator. Genome assemblers such as Velvet often work with metagenomic data and

produce contigs that may actually correspond to sections of individual genomes. Hence,

we run Velvet to obtain a set of contigs and use each contig to define a cluster of l-

mers. This is equivalent to the first phase of TOSS. The only difference is that all

l-mers (instead of unique l-mers) are clustered. For each read contained in a cluster, we

add the l-mers in the mate of the read to the cluster, and then construct a weighted

graph whose nodes represent clusters and edges are weighted by the number of common

l-mers shared by the clusters connected by each edge. Finally, we apply the merging

algorithm to the constructed graph. Based on a series of experiments with the Velvet

parameters, we chose l-mer length as 31, which results in the highest N50 in most of

the experiments. We also set a very low coverage cutoff so that Velvet can deal with

genomes with different abundance levels without filtering out low coverage contigs.

41

2.3.3.3 Experiments on Genomes Separated by Different Phylogenetic Dis-

tances

Our experimental results on metagenomic datasets containing genomes with

different phylogenetic distances are summarized in Table 2.1. For genomes from the

same genus, separability rate is 45%. It increases to 77% for genomes from the same

family and more than 97% for higher level taxonomic categories. For separated pairs

of genomes, sensitivity of TOSS increases from 90% for genomes from the same genus

to 95% for genomes from the same order. The range of precision is from 95% to 98%.

These results are consistent with our expectation for correlation between separability and

phylogenetic distance. Figure 2.9 shows the estimated density functions of the fraction

of common repeats for separated and unseparated pairs of genomes at the genus and

family levels. It confirms our conjecture that the higher is the faction of common repeats,

the harder is separation and the worse is the accuracy of our method. Table 2.1 also

shows the performance of the Velvet-based approach. Its separability rate is lower than

that of TOSS (32% for genus, 62% for family and 91% for order). Its sensitivity and

precision numbers are also worse than those of TOSS at the genus and family levels but

become slightly higher at the order level.

2.3.3.4 Handling Sequencing Errors

Our approach for handling sequencing errors is very simple: we filter out l-

mers with counts lower than a certain threshold, since these infrequent l-mers are likely

to contain errors. However, there is a simple intuition behind it. We can aggressively

remove potential errors without attempting to correct them or being afraid to lose im-

42

Table 2.1: Performance of TOSS and the Velvet-based approach on pairs of genomes
with different phylogenetic distances.

of # of
Broken Separated

Sensitivity Precision
genomes pairs mean stdv mean stdv

Species
TOSS 229 184 3 83 90.38 8.71 95.55 5.96
Velvet 229 156 22 51 84.11 12.70 92.25 7.88

Genus
TOSS 171 147 2 113 93.40 9.39 97.07 5.52
Velvet 171 123 15 77 89.96 12.97 94.95 8.45

Family
TOSS 80 79 2 75 94.98 6.56 97.46 5.86
Velvet 80 78 2 71 91.90 8.90 97.25 4.16

Order
TOSS 35 71 0 70 95.14 4.87 97.79 2.49
Velvet 35 71 0 69 95.79 4.17 98.77 1.69

portant information, assuming that the genomes are sufficiently covered by the reads.

Note that we could be more aggressive than genome assemblers in throwing out infre-

quent l-mers here because (i) when the genomes are sufficiently covered, the filtration

will not lead to many more gaps, and (ii) we are less concerned with the fragmentation

of genomes.

In Table 2.2, we summarize our experimental results on pairs of genomes with

and without sequencing errors. We can see that TOSS is able to separate more pairs of

genomes when the reads are error-free. However, when broken genomes are discounted,

TOSS actually achieves a slightly higher sensitivity and precision on data with errors.

The Velvet-based method has a slightly worse performance, it separates fewer pairs of

genomes and achieves a lower sensitivity and precision on both data with and without

errors.

2.3.3.5 The Issue of Abundance Levels

In this section, we analyze the ability of TOSS to separate genomes with dif-

ferent abundance levels. First, we test TOSS (without any modification) on pairs of

genomes with abundance ratio 1:2 and compare the results with those on the same set

43

0 20 40 60 80 100

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

Fraction of distinct common repeats

E
s
ti
m

a
te

d
 d

e
n

s
it
y

pairs sep.

pairs not sep.

0 20 40 60 80 100

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

Fraction of distinct common repeats

E
s
ti
m

a
te

d
 d

e
n

s
it
y

pairs sep.

pairs not sep.

Figure 2.9: The fraction of distinct common repeats for separated and unseparated
genomes. Estimated density function of the ratio of the number of distinct common
repeats to the number of distinct repeats. Left: pair of genomes from the same genus
but different species. Right: pairs of genomes from the same family but different genera.

of pairs of genomes but with identical abundance levels. The results are summarized in

the Table 2.3. We can see that sensitivity slightly drops on genomes with different abun-

dance levels, but precision actually improves a little. On the other hand, separability of

the Velvet-based method drops significantly.

We also test the performance of a combination of AbundanceBin and TOSS

on a set of four genomes with abundance levels (1 : 1 : 4 : 4) and compare the result

with that of TOSS on the same set of genomes with identical abundance levels. The

results are summarized in Table 2.4. As we can see, the result on data with varying

abundance levels is actually better. Sensitivity and precision increase from 92% and

93% on data with identical abundance levels to 97% and 99% on data with varying

abundance levels. In order to explain this (somewhat counter-intuitive) phenomenon,

we analyzed intermediate results, and found that two of the six pairs of genomes, (1,3)

and (2,4), have high percentages of common repeats. These common repeats negatively

44

Table 2.2: Performance of TOSS on data with and without sequencing errors.

of # of
Broken Separated

Sensitivity Precision
genomes pairs mean stdv mean stdv

Species
TOSS 229 184 3 83 90.38 8.71 95.55 5.96
Velvet 229 156 22 51 84.11 12.70 92.25 7.88

Genus
TOSS 171 147 2 113 93.40 9.39 97.07 5.52
Velvet 171 123 15 77 89.96 12.97 94.95 8.45

Family
TOSS 80 79 2 75 94.98 6.56 97.46 5.86
Velvet 80 78 2 71 91.90 8.90 97.25 4.16

Order
TOSS 35 71 0 70 95.14 4.87 97.79 2.49
Velvet 35 71 0 69 95.79 4.17 98.77 1.69

Table 2.3: Performance on synthetic datasets with abundance ratio 1:2.

of # of
Broken Separated Sensitivity Precision

genomes pairs

TOSS
DiffAbund 24 18 0 17 91.00 98.25
IdentAbund 24 18 0 18 93.48 96.08

Velvet
DiffAbund 24 16 1 13 91.88 97.48
IdentAbund 24 18 0 17 88.24 95.06

affected the result on data with identical abundance levels. However, they did not cause

any trouble for the test on data with varying abundance levels since for both pairs, reads

from different genomes were separated by AbundanceBin early on due to the difference

in their abundance levels. On the other hand, the precision of the Velvet-based method

drops significantly.

2.3.3.6 Comparison with CompostBin

In this section, we compare the performance of TOSS with a composition-based

binning algorithm, CompostBin [27]. Note that composition-based methods require

sufficiently long reads while TOSS is designed to separate short NGS reads. On the other

hand, our method requires a high coverage depth. To compare the performance with

CompostBin, we use the simulated paired-end Sanger reads of length 1000 bps provided

45

Table 2.4: Performance on synthetic datasets with abundance ratio (1:1:4:4).

of # of
Broken Separated Sensitivity Precision

genomes pairs

TOSS
DiffAbund 4 6 0 6 97.42 99.81
IdentAbund 4 6 0 6 92.10 93.81

Velvet
DiffAbund 4 6 0 5 91.41 85.24
IdentAbund 4 6 0 6 90.44 92.65

in [27]. We slightly adapt our method to handle longer reads and lower coverage. In

particular, we use a higher threshold in the prediction of unique l-mers. Also, we cut the

Sanger reads into fragments of length 80 bps before constructing the graph of unique

l-mers in order to minimize memory usage. The linkage information of the fragments

belonging to a same read will be recovered and taken advantage of later in the cluster

merging phase. Normalized error rates (as defined in [27]) for TOSS and for CompostBin

are reported in Table 2.5. Note that in the last three datasets, the average coverage

of genomes with lower abundance levels (not shown in the table) is close to 1 and,

therefore, is insufficient for our algorithm. In addition, we simulate Illumina reads from

the same sets of genomes with a coverage depth between 15 and 30. Normalized error

rates for these datasets are shown in the last column of Table 2.5. The highest error

rates of TOSS on Sanger and Illumina reads are 4.74% and 4.92% respectively, and are

less than 10% for CompostBin. For some of the Sanger datasets, the performance of

TOSS is slightly worse compared to CompostBin and for the others, it is slightly better.

The performance of TOSS on the corresponding Illumina datasets is better in most

of the cases. Clearly, the higher coverage depths in Illumina datasets helped. A high

coverage depth is essential for the accurate prediction of unique and repeated l-mers in

the preprocessing phase of TOSS.

46

T
a
b
le

2
.5
:
C
o
m
p
ar
is
on

w
it
h
C
om

p
os
tB

in
o
n
th
e
d
a
ta
se
ts

d
es
cr
ib
ed

in
[2
7]
.
N
ot
e
th
at

so
m
e
d
at
as
et
s
in
vo
lv
e
ge
n
om

es
se
p
ar
at
ed

at
se
v
er
al

d
iff
er
en
t
ta
x
on

om
ic

le
ve
ls
.

S
p
ec
ie
s

R
at
io

P
h
y
lo
ge
n
et
ic

C
om

p
os
tB

in
’s

T
O
S
S
(S
an

ge
r)

T
O
S
S
(I
ll
u
m
in
a)

D
is
ta
n
ce

E
rr
or

E
rr
or

E
rr
or

B
a
ci
ll
u
s
h
a
lo
d
u
ra
n
s
&

B
a
ci
ll
u
s
su
b-

ti
li
s

1:
1

S
p
ec
ie
s

6.
48

1.
05

1.
38

G
lu
co
n
o
ba
ct
er

o
xy
d
a
n
s&

1:
1

G
en
u
s

3.
39

4.
72

4.
92

G
ra
n
u
li
ba
ct
er

be
th
es
d
en

si
s

E
sc
h
er
ic
h
ia

co
li
&

Y
er
si
n
ia

pe
st
is

1:
1

G
en
u
s

10
.0
0

3.
11

2.
58

M
et
h
a
n
oc
a
ld
oc
oc
cu
s
ja
n
n
a
sc
h
ii

&
1:
1

F
am

il
y

0.
51

0.
22

0.
01

M
et
h
a
n
oc
oc
cu
s
m
a
ri
pa
lu
d
is

P
yr
o
ba
cu
lu
m

a
er
o
p
h
il
u
m

&
1:
1

F
am

il
y

0.
28

1.
05

0.
01

T
h
er
m
o
fi
lu
m

pe
n
d
en

s

G
lu
co
n
o
ba
ct
er

o
xy
d
a
n
s
&

1:
1

O
rd
er

0.
98

4.
74

0.
01

R
h
od
o
sp
ir
il
lu
m

ru
br
u
m

G
lu
co
n
o
ba
ct
er

o
xy
d
a
n
s,

1
:1
:8

F
am

il
y
an

d
O
rd
er

7.
7

-
6.
45

G
ra
n
u
li
ba
ct
er

be
th
es
d
en

si
s
&

N
it
ro
ba
ct
er

h
a
m
bu
rg
en

si
s

E
sc
h
er
ic
h
ia

co
li
,

P
se
u
d
o
m
o
n
a
s

p
u
ti
d
a
&

1
:1
:8

O
rd
er

an
d

1.
96

-
0.
15

B
a
ci
ll
u
s
a
n
th
ra
ci
s

P
h
y
lu
m

E
sc
h
er
ic
h
ia

co
li
,

P
se
u
d
o
m
o
n
a
s

p
u
ti
d
a
,

1:
1:

S
p
ec
ie
s,

O
rd
er
,

4.
52

-
0.
80

T
h
er
m
o
fi
lu
m

pe
n
d
en

s,
1:
1:

F
am

il
y,

P
yr
o
ba
cu
lu
m

a
er
o
p
h
il
u
m
,

2
:1
4

P
h
y
lu
m
,
an

d
B
a
ci
ll
u
s
a
n
th
ra
ci
s
&

B
a
ci
ll
u
s
su
b-

ti
li
s

K
in
gd

om

47

2.3.3.7 Performance on a Real Dataset

A metagenomic dataset obtained from gut bacteriocytes of the glassy-winged

sharpshooter, Homalodisca coagulata, is known to consist of (Sanger) reads from Bau-

mannia cicadellinicola, Sulcia muelleri and some miscellaneous unclassified reads [117]

and studied in [27]. We apply TOSS, adapted to handle Sanger reads as discussed in

the previous section, to the dataset. As in [27], we only measure our ability to separate

the reads from Baumannia cicadellinicola and Sulcia muelleri. The sensitivity of the

classification achieved by TOSS is 92.21% and the normalized error rate is 1.59%, which

is lower than the normalized error rate of 9.04% achieved by CompostBin as reported

in [27].

2.3.4 Performance of the Abundance-Based Binning Algorithm

2.3.4.1 Performance on a Simulated Data

We compare the performance of our abundance-based binning algorithm against

AbundanceBin. In this test, we are mainly concerned with the ability of both algorithms

to separate reads from genomes with different abundance levels. The detailed datasets

and performance of the two algorithms are summarized in Table 2.6. On most of the

datasets, the sensitivity and precision of our method were better than those of Abun-

danceBin by 4-10%. In tests S4 and S7, AbundanceBin failed to separate the two

genomes totally. In test S6, AbundanceBin could identify only 2 bins, while combining

the reads from two genomes into one bin. Our method was more ambitious and sepa-

rated all three genomes at the cost of lowered precision and sensitivity. However, when

we set the number of bins to two for the dataset in test S6, our algorithm was able

48

to achieve a high sensitivity and precision above 95%, compared to 81% and 88% for

AbundanceBin.

2.3.4.2 Performance on a Real Dataset

We test the performance of our abundance-based binning method on a dataset

obtained from the acid mine drainage [104]. This dataset has been well studied and

is known to contain five dominant genomes. The two most abundant species belong

to Leptospirillum group II and Ferroplasma group II. The three species with a lower

abundance levels belong to Leptospirillum group III, Ferroplasma group I and Sulfobacill.

The dataset consists of approximately 120K Sanger reads. Only 56% percent of the reads

can be mapped to the reference sequences of the five dominant genomes. We apply

both our algorithm and AbundanceBin to the unfiltered dataset. Then we BLAST

the reads of each bin against reference sequences of the five organisms. We measure

the ability of the algorithms to separate reads from the two main abundance groups.

Although both algorithms could correctly identify the two bins, our algorithm slightly

outperforms AbundanceBin in terms of precision and sensitivity. Our method achieves

82% sensitivity and 81% precision, while the corresponding values are 78% and 79% for

AbundanceBin. Note that due to the overlap of the bins, it would be very difficult to

separate the reads with much better sensitivity and precision based on l-mer frequencies

only.

2.3.5 Performance of the Improved TOSS

We compare the performance with the version of TOSS that employs Abun-

danceBin as a preprocessor. Also, we make a comparison with the most recent metage-

nomic NGS binning tools MetaCluster 4.0 and MetaCluster 5.0. The results of the

49

comparison are summarized in Table 2.6. Note that here we only measure the ability of

the algorithms to separate high-abundance genomes (with abundance levels ≥ 7, as done

in [109]). The improved TOSS obviously outperforms the version of TOSS that relies

on AbundanceBin. Compared to the MetaCluster tools, our algorithm often achieves

the highest sensitivity and breaks fewer genomes.

2.4 Conclusion

While the NGS sequencing technologies are very promising for metagenomic

projects due to their great sequencing depths and low costs, they also present new

challenges in the analysis of metagenomic data because of their short read lengths. In

this chapter, we developed an algorithm for separating short paired-end NGS reads from

different bacterial genomes of similar abundance levels and then combined the algorithm

with AbundanceBin [119] to handle arbitrary abundance ratios. We have shown that

our algorithm is able to separate genomes when the number of common repeats is small

compared to the number of genome-specific repeats. Since the fraction of common

repeats in genomes correlates with the phylogenetic distance between the genomes, it is

hard to separate genomes of closely related species. However, for the genomes that are

separated by sufficient phylogenetic distance, they share few l-mers and can be separated

with high precision and sensitivity.

We also introduced a novel probabilistic model for counting l-mer frequencies

in a metagenomic dataset. The model allows us to identify the most probable abundance

levels of the genomes in a metagenomic sample accurately and estimate the proportions

of reads from corresponding genomes. We have shown that our model can serve as a

useful preprocessing tool for further metagenomic analysis.

50

T
a
b
le

2.
6:

C
o
m
p
ar
is
on

w
it
h
A
b
u
n
d
an

ce
B
in

o
n
si
m
u
la
te
d
d
at
as
et
s.

T
h
e
b
ol
d
n
u
m
b
er
s
in
d
ic
at
e
im

p
ro
ve
d
se
n
si
ti
v
it
y
an

d
p
re
ci
si
on

.
T
h
e

n
u
m
b
er
s
in

p
a
re
n
th
es
es

ar
e
n
o
rm

al
iz
ed

se
n
si
ti
v
it
y
an

d
p
re
ci
si
on

.

ID
#

C
ov
e-

L
en

g
th

O
u
rs

A
b
u
n
d
an

ce
B
in

ge
n
om

es
ra
ge

M
b
p

S
en

s.
P
re
c.

S
ep

.
S
en

s.
P
re
c.

S
ep

.

S
1

2
5

2
.0

0.
80

(0
.8
4
)

0
.8
4
(0

.8
4
)

1
0.
80

(0
.7
5)

0.
77

(0
.7
6)

1
10

1
.9

S
2

3
5

2
.7

0
.8
9
(0

.8
9
)

0
.8
9
(0

.8
9
)

1
0.
86

(0
.8
5)

0.
86

(0
.8
5)

1
5

2
.6

11
3
.0

S
3

2
5

0
.6

0
.7
9
(0

.8
1
)

0
.7
8
(0

.8
0
)

1
0.
74

(0
.6
9)

0.
74

(0
.6
9)

1
9

0
.6

S
4

2
4

4
.4

0
.7
3
(0

.8
2
)

0
.8
1
(0

.8
1
)

1
-

-
0

8
5
.2

S
5

3
3

5
.7

0.
87

(0
.9
3
)

0
.8
8
(0

.9
3
)

1
0
.9
1
(0
.8
9)

0.
80

(0
.8
9)

1
3

4
.4

8
6
.0

S
6

3
3

4
.6

0
.7
5
(0
.8
3)

0.
83

(0
.8
2)

1
0
.8
1
(0

.8
4
)

0
.8
8
(0

.8
4
)

0.
66

8
4
.1

15
4
.7

S
7

6
2,
2

1.
5,
1.
8

0
.8
6
(0

.7
5
)

0
.8
5
(0

.8
4
)

1
-

-
0

2,
6

2.
0,
1.
7

6,
6

1.
8,
2.
0

51

T
a
b
le

2.
7
:
P
er
fo
rm

an
ce

o
f
th
e
im

p
ro
ve
d
T
O
S
S
a
n
d
co
m
p
ar
is
on

w
it
h
th
e
p
re
v
io
u
s
T
O
S
S
,
M
et
aC

lu
st
er

4.
0
an

d
M
et
aC

lu
st
er

5.
0.

T
h
e
b
ol
d

n
u
m
b
er
s
in
d
ic
at
e
th
e
b
es
t
p
er
fo
rm

an
ce

a
m
on

g
al
l
fo
u
r
m
et
h
o
d
s.

ID
#

C
o
v
r.

O
u
rs
+
T
O
S
S

A
B
in
+
T
O
S
S

M
C

4
.0

M
C

5
.0

g
en

.
S
en

s.
P
re
c.

S
ep

.
B
ro
k
.

S
en

s.
P
re
c.

S
ep

.
B
ro
k
.

S
en

s.
P
re
c.

S
ep

.
B
ro
k
.

S
en

s.
P
re
c.

S
ep

.
B
ro
k
.

T
1

4
4
,4
,

1
.0

0
.8
4

1
.0

0
-

-
0

0
-

-
-

1
0
.7
5

0
.6
9

1
.0

0
1
0
,1
0

T
2

3
4
,1
0
,1
0

1
.0

0
.9
6

1
.0

0
0
.6
2

0
.7
2

1
.0

0
0
.9
1

1
.0

1
.0

0
0
.7
9

1
.0

1
.0

0

T
3

3
4
,1
2
,1
2

1
.0

1
.0

1
.0

0
1
.0

0
.9
9

1
.0

0
0
.9
7

0
.9
6

1
.0

0
0
.8
2

1
.0

1
.0

0

T
4

4
7
,7
,1
3
,1
3

0
.8
6

0
.8
2

0
.8
3

0
0
.7
6

0
.7
6

0
.6
7

0
0
.8
9

1
.0

1
.0

2
0
.8
4

1
.0

1
.0

0

T
5

1
0

1
,1
,1
,2
,

1
.0

0
.9
2

0
.8
3

0
-

-
0

0
0
.7
8

0
.9
7

1
.0

0
-

-
-

4
2
,2
,1
.5
,

1
.5
,1
0
,1
0

T
6

1
0

1
.5
,1
.5
,1
.5
,

0
.9
1

0
.8
7

1
.0

0
-

-
0

2
0
.8
0

0
.9
6

0
0

0
.7
4

1
.0

1
.0

2
1
.5
,1
.5
,1
.5
,

9
,9
,9
,9

T
7

1
8

2
,2
,2
,2
,

0
.8
7

0
.7
5

0
.7
3

0
-

-
0

0
0
.9

0
.9

1
0

0
.8
8

0
.9

1
0

3
,3
,3
,3
,

3
,3
,3
,4
,

4
,4
,
1
1
,

1
2
,1
2
,1
2

52

Chapter 3

Phylogeny-Based Classification of

Microbial Communities

3.1 Introduction

Next-generation sequencing coupled with metagenomics has led to the rapid

growth of sequence databases and enabled a new branch of microbiology called compar-

ative metagenomics. Comparative metagenomic analysis studies compositional patterns

within and between different environments providing a deep insight into the structure

and function of complex microbial communities. Comparative analysis has already led

to the discovery of three major enterotypes associated with the human gut microbiota

[5] and the differences between lean and obese individuals [103].

Microbial communities can be compared at the levels of sequence composition,

taxonomic diversity or functional potential. Taxonomic diversity provides detailed evo-

lutionary information regarding the community composition and therefore has been a

focus of many environmental and human studies [30, 71]. To access the taxonomic com-

position of a microbial community genomic sample, both single marker gene sequencing

53

and whole community shotgun sequencing are widely used [57]. The 16S ribosomal

RNA gene (or 16S rDNA) is a commonly used marker for bacterial identification due

to its universal distribution among all bacterial species and a slow rate of sequence

evolution. To reduce the dimensionality of large sequence datasets generated by high-

throughput sequencing of 16S rDNAs, the reads are clustered into operational taxonomic

units (OTUs) [123] that roughly represent taxa at phylogenetic levels defined by a user-

defined sequence similarity cutoff. The abundance of each OTU is defined as the number

of sequences in the OTU. Representative sequences from each OTU are chosen and used

to assign taxonomy to the OTUs and to construct phylogenetic trees. Packages such

as QIIME [21] and Mothur [93] provide integrated pipelines for the analysis described

above. The whole genome shotgun sequencing approach can also be used to study mi-

crobial community composition. It offers a more global view of the community, but

may not be deep enough to detect rare species in a sample, and is sensitive to the DNA

extraction and sequencing protocols. Even though the two approaches may not always

lead to the same conclusions about the community structure [94], they became standard

tools in microbial community analysis. In our study, we will focus on samples based on

the sequencing of 16S rDNAs although our proposed method can be easily extended to

samples based on whole genome sequencing.

For 16S rDNA datasets, each sample is represented as a list of OTUs and

their frequencies. We will refer to these lists as feature vectors. A feature vector cor-

responds to one metagenomic sample, and the vector’s elements (features) characterize

OTU frequencies in the sample. The evolutionary relationship between all of the OTUs

is captured by a phylogenetic tree. The downstream analysis may involve the iden-

tification of compositional patterns across samples from similar environments as well

as discriminatory features between different communities, associations between human

54

bacterial communities and disease phenotypes, prediction of unknown labels for new

samples, etc. These tasks require the development of new supervised learning tech-

niques that would take into consideration challenges associated with metagenomic data

(see Section 1.3).

The problem of classification of microbial communities is not well-studied, even

though classification techniques have been widely employed in the field of bioinformatics,

including classification of microarray cancer samples [44], gene expression profiles [6],

protein families [124], etc. Classification of metagenomes may have useful applications

in efficient organization and search in rapidly growing metagenomic (or 16S rDNA)

databases, detection of disease phenotypes in clinical samples, and forensic identification.

One of the first applications of supervised learning techniques to compara-

tive metagenomics [121] was the classification of soil and sediment samples according

to environment types using Support Vector Machines (SVM) and K-Nearest Neighbors

(KNN) algorithms. Recently, the feasibility of applying standard supervised classifi-

cation techniques to metagenomic data was studied on several benchmark datasets of

human microbiota [60]. MetaDistance [69] is the first dedicated algorithm for multi-class

classification of human microbiota. The algorithm combines the advantages of instance-

based and model-based methods, such as KNN and SVM. The above-mentioned methods

proved to be efficient learning techniques, and address some of the challenges associated

with the properties of metagenomic data. However, none of the methods have yet taken

advantage of the inherent properties of metagenomic data, although phylogenetic in-

formation contained in metagenomic samples has proved to be useful in comparative

metagenomics. For example, similarity measures that take into account phylogeny, e.g.

UniFrac [70] and its generalized versions [25], outperform non-phylogenetic distance in

their ability to recover natural clusters of metagenomic communities [72]. To incorporate

55

phylogeny into the similarity measure, UniFrac-based methods calculate the degree to

which the input samples share branch length on a phylogenetic tree. Another example

of a phylogeny-based similarity measure is the parsimony test [92] which employs Fitch’s

parsimony algorithm to compute the number of minimal changes along the phylogenetic

tree necessary to explain all the labels of the sequences. A recursive phylogenetic dis-

tance was defined in Meta-Storms [98] for the purpose of fast indexing of metagenomic

databases.

Although phylogeny provides important information about the natural hier-

archical grouping of features, it has not yet been adopted in classification algorithms

for metagenomic communities. To incorporate the underlying structural information

among the features in learning problems, several regularization methods have been pro-

posed. For example, in the problem of tumor class prediction from gene expression

measurements, functional groups of genes form the natural structure of data, and the

combination of L1 and L2 norms was used to encode the groups and variables within

the groups [53]. The group lasso penalty coupled with logistic regression was applied

for classification problems with feature groupings and proved to be useful in short DNA

motif modeling and splice site detection [78]. Composite Absolute Penalty (CAP) [129]

extended the grouping approach to deal with overlapping groups and with hierarchical

orderings of the input variables that reflect the order in which the variables should be

included in the solution. The idea of hierarchical grouping was later employed for the

multi-task regression learning problem where a tree encodes relationships between the

elements of a multidimensional dependent variable, and a balanced weighting scheme to

weight the hierarchically overlapping groups was proposed [58]. Here, we show that the

hierarchical grouping ideas [129, 58] can be efficiently applied to the multi-class classi-

56

fication problem where information about the natural hierarchical grouping of features

is available.

In this chapter, we propose a new multi-class classification method for 16S

rDNA sequence (or metagenomic) samples that takes advantage of the natural structure

of microbial community data encoded by a phylogenetic tree. The leaf nodes represent

features corresponding to individual OTUs, and the internal nodes may be considered

as super-features. The hierarchical structure captures similarities and differences among

the features and allows for the consideration of features at different granularity levels,

which may be desirable given that the features do not necessarily correspond to spe-

cific taxonomic units and only represent groups of similar sequences. Thereby, some

environment-specific patterns may be comprised of features at multiple granularity lev-

els. We propose a multinomial logistic regression model with a tree-guided penalty that

incorporates the hierarchy in the feature space, and provide an efficient optimization

algorithm to learn the model parameters.

We apply our algorithm to several real datasets of 16S rDNA sequences from

the human microbiota. We compare the classification performance of our method with

several state-of-the-art learning algorithms, and show that incorporating the natural

structure of the microbial data results in a model with a better predictive power. We

also perform a comprehensive analysis of the proposed method by applying it to sim-

ulated datasets of different complexity. Because the problem of classifying 16S rDNA

sequence samples is relatively new, there are no simulated data generators that would

generate the data appropriate for our goal. Current comparative studies use simulations

where features are generated independently from each other rather than according to a

phylogeny. Therefore, we propose a new simulation approach that employs the phylo-

genetic structure of microbial communities to generate OTU count data and simulate

57

scenarios where community-specific patterns may be comprised of features at multiple

levels of granularity. We show that by taking advantage of the phylogeny, our algo-

rithm has a robust performance with respect to the choice of feature resolution, which

corresponds to the selection of a similarity threshold when defining OTUs for the real

data.

3.2 Methods

First, we define a classical multinomial logistic regression model associated

with our classification problem for 16S rDNA sequence samples. Then, we provide

a background on how prior knowledge about the data, such as sparsity and natural

grouping, can be effectively incorporated into learning models. Finally, we present a

model for the classification problem that takes advantage of the hierarchical groups of

features, and describe a fast optimization algorithm.

3.2.1 The Multinomial Logistic Regression Model

Consider a supervised learning problem where K microbial communities cor-

respond to different environments or conditions. Each community (class) is represented

by several samples. Let N be the total number of samples present in the dataset. A

sample xi, i ∈ {1, ..., N} is characterized by feature values representing the abundance

values of each OTU, xi = (xi1, x
i
2, ..., x

i
M), where M denotes the number of features.

Each feature xij of xi is a continuous random variable. We first consider features as

independent variables, but will later add more definitions and extend the model to in-

corporate the information about the feature space encoded by a phylogenetic tree. Let

yi be a K-dimensional class variable, where each component takes on binary values, so

that yij = 1 if xi belongs to the community j, and yij = 0 otherwise. Our goal is to model

58

class labels as a function of the input features, that is, to find a classification rule so that

a new 16S rDNA sample x can be assigned to one of the classes. The goodness of the

fit is measured by the loss function L(x, y, β), where β is a vector of model coefficients.

We formulate the problem as a multinomial logistic regression so that the probability of

a class label given the feature vector is modeled by the logistic function:

P (yj = 1|x, β) = exβ
T
k

∑

k′

exβ
T
k′

,

where βk = (βi
1, β

i
2, ..., β

i
M) is the vector of parameters corresponding to the k-th class.

A new sample is assigned to a class with the highest conditional probability

estimate. The model coefficients β are obtained to better fit the observed data, that is,

to minimize the loss function defined as a log-likelihood:

L(x, y, β) =
∑

i

∑

k

yikx
iβk −

∑

i

ln
∑

k

ex
iβT

k .

3.2.2 Bayesian Regularization

To incorporate additional knowledge about the parameters, a Bayesian ap-

proach is often used. For example, the Gaussian prior favors parameter values that

are close to 0 while the Laplace prior favors sparse solutions. Maximum a posteriori

estimates of the model coefficients yield penalty terms in the form of the L2 and L1

norms for the Gaussian and Laplace priors, respectively. Finally, the optimal coeffi-

cients are obtained as a solution to a joint minimization of the loss function and the

penalty function:

argmin
β

L(x, y, β) + λT (β),

59

where T (β) = ||β||2 and T (β) = ||β||1 for the two cases described above.

3.2.3 Tree-Guided Regularization

In some situations, it may be desirable to consider some features as a group.

Let βGi be a set of coefficients that correspond to the i-th group of features. The group

penalty may be defined as a combination of norms for the groups and for coefficients

within each group. To incorporate the hierarchical nature of the features, groups may be

chosen to hierarchically overlap. Let T be a tree that reflects the hierarchical relationship

among the features. Let us consider a node in a tree v ∈ V , and denote βGv to be a set

of coefficients that correspond to features descendant from the node. As suggested in

[58], the tree-guided penalty may be defined as follows:

T (β) =
∑

k

∑

v∈V

ωv||βGv

k ||2,

where the weight ωv is associated with the node v and reflects a correlation within

the group of features descending from v. Since each coefficient βi
j may correspond to

multiple hierarchically overlapping groups of coefficients, it is important to penalize the

coefficients equally. In particular, for each particular coefficient βi
j , the weights of all

the groups that contain this coefficient should sum to one. A weighting scheme that

assures this property was proposed in [58]:

ωv =

gv
∏

m∈Anc(v)

sm if v is an internal node,

∏

m∈Anc(v)

sm otherwise.

Eventually, the solution to our problem is found as the minimum of the follow-

ing function:

60

−
∑

i

∑

k

yikx
iβk +

∑

i

ln
∑

k

ex
iβT

k + λ
∑

k

∑

v∈V

ωv||βGv

k ||2.

3.2.4 Cyclic Coordiante Descent

Estimation of the model coefficients requires solving a convex optimization

problem and therefore an efficient algorithm that scales up well to handle large high-

dimensional data is necessary. Newton methods are intractable for high dimensional

data, while feature selection methods may not have good statistical foundations as most

of them consider features in isolation which is not desirable in our framework. Another

challenge is that the penalty term is not differentiable at 0. A cyclic coordinate descent

algorithm is a fast and simple algorithm that has been efficiently applied for the binary

ridge logistic regression model [128] and extended to handle the non-smooth case of the

lasso-penalty [75]. Our implementation for the tree-guided penalty is based on the above

algorithms.

The cyclic coordinate descent method minimizes a function by cyclically up-

dating each coefficient while setting other coefficients fixed. The procedure continues

until the convergence criterion is met. Each update involves a Newton step. Since New-

ton’s method is based on the quadratic approximation of the objective function, large

updates should be avoided when the quadratic approximation is poor. We use an updat-

ing rule suggested in the CLG algorithm [128] and outlined in Algorithm 5 [75]. When

computing the step size δvkj , unlike the CLG algorithm, we use the second derivatives

directly rather then their upper bounds. For a smooth function, the update δvkj

would be

61

Algorithm 5: Coordinate descent algorithm.

begin
for k = 1, ...,K; j = 1, ...,M do

βkj ← 0
δkj ← 1

for t = 1, 2... do
for j = 1, ...,M do

for k = 1, ...,K do
compute δvkj
δβkj
← min(max(δvkj ,−δkj), δkj)

βkj ← βkj + δβkj

δkj ← max(2|δβkj
|, δkj/2)

δvkj = −
∂

∂βkj
(L(x, y, β) + λT (β))

∂2

∂β2

kj

(L(x, y, β) + λT (β))
.

However, the penalty function does not have a derivative at βkj = 0 because

some of the terms in the penalty function contain the absolute value of βkj . This happens

because the L2 norm ||βGv

k ||2 degenerates to the L1 norm ||βkj ||1 when either v is a leaf

node that corresponds to the j-th feature, or v is an ancestral node of j and all the

other coefficients descendant from v are equal to 0. We will denote the set of nodes v

that have one of the above properties by Vkj . We follow the approach in Madigan et

al. (2005) to handle the the non-smooth penalty. Specifically, when βkj 6= 0 we use the

following update rule:

δvkj = −
∂

∂βkj
(L(x, y, β) + λD1(k, j, β))

∂2

∂β2

kj

(L(x, y, β) + λD2(k, j, β))
,

where

D1(k, j, β) =
∑

v∈Anc(j)
v/∈Vkj

ωv
∂||βGv

k ||2
∂βkj

+
∑

v∈Vkj

ωvSign(βkj),

62

D2(k, j, β) =
∑

v∈Anc(j)
v/∈Vkj

ωv
∂2||βGv

k ||2
∂β2

kj

.

If updating βkj results in a sign change, βkj is set to 0. If βkj = 0, we try updating

βkj in both directions, and if any of the updates results in a decrease in the objective

function L(x, y, β) + λT (β), we update βkj accordingly.

3.2.5 Implementation Details

The implementation details that improve the computational efficiency include

(1) maintaining a list of nonzero data entries for each dimension, (2) storing the dot

product of xi and βk and updating the result once βk is updated, (3) storing the sums

of the exponentials
∑

k

ex
iβT

k and updating when the dot products in the exponents

are updated, (4) traversing the tree in the bottom-up manner to locate the sets Vkj of

ancestors for each βj
k to quickly find which terms in the penalty function degenerates to

the L1 norms and (5) computing partial sums of the hierarchically overlapping sets of

coefficients in a top-down manner.

3.3 Experimental Results

We propose a new simulation framework for the OTU count data generation

that incorporates knowledge about phylogenetic relatedness of the species. We use

the framework for a comprehensive evaluation of our algorithm’s performance under a

variety of simulation settings. We compare the performance of our algorithm with the

state-of-the-art classification algorithms on simulated and real datasets. The results

indicate that our algorithm has a better classification accuracy and is more robust with

respect to the granularity level of the features. The performance is evaluated based on

63

1
v

2
v 3

v

1
OTU 3

OTU
4

OTU
2

OTU

1

~
v

Initialize the

“base”
parameters

Sample the

parameters for

each class

)~,~(~
2

vv

k

v
N

Generate samples for

each class. Parameter

values are sampled from

),...,(
11

1

1

M
xxx

),...,(
22

1

2

M
xxx

),...,(
11

1

1 N

M

NN
xxx

),...,(
1

N

M

NN
xxx

2

~
v

3

~
v

 1

2v

1

1v

1

3v
 K

v2

K

v1

K

v3

))~(,(
2k

v

k

v
N

Figure 3.1: The simulation pipeline.

Table 3.1: Relative performance of our algorithm compared to LR, SVM, RF and
MetaDistance across 30 simulated datasets for γ̃ = 1, γ = 1 and K = 5. The bold
numbers indicate the best performance among all five methods.

LR SVM RF MD

mean std mean std mean std mean std

-4.3 3.9 -12.3 3.7 -10.0 5.8 -5.0 3.3

the classification error rate. We will not attempt to evaluate the algorithms based on

their computational efficiency. However, we will comment on the running time when

necessary.

3.3.1 Synthetic Framework and Performance Analysis

Simulated data is often used for extensive performance evaluation of algorithms

under varying settings for which real data may not be available. Current data simu-

lators that are used in comparative metagenomics simulate counts for each OTU inde-

pendently not taking into consideration phylogenetic relationship between the species.

64

For example, to evaluate the performance of MetaStats [115], a statistical method for

the comparison of clinical metagenomic samples (represented as counts of individual

features such as organisms, genes and functional groups), read counts for each feature

were generated according to negative binomial distributions independently from the

other features. To evaluate phylogeny-based distance measures, such as UniFrac, micro-

bial communities were represented as circles or ellipses [25] with the overlap patterns

between these ellipses expressing similarity between the communities. Species were sim-

ulated by sampling points from the interior of the ellipses. In this work, we propose

a novel simulation approach to generate OTU count data that takes into account the

input phylogeny and provides the flexibility for generating community-specific patterns

at multiple granularity levels.

Our starting point is the common phylogenetic tree T that relates OTUs in

all the 16S rDNA samples. For the ease of presentation, we will consider binary trees,

although the model can be easily generalized to handle any trees. To generate samples

for a class k, we traverse the tree systematically, deciding for each internal node v what

fraction of species would come from each of the subtrees rooted at the child nodes of

v. We associate two parameters with each node v for each class k. Let µk
v denote the

average proportion of species that correspond to the subtree rooted at the left child

node of v in the k-th class, and let (σk
v)

2 denote the variance of this proportion within

the class. A new class sample is generated by sampling the proportions of species at

each node v according to the normal distributions N(µk
v , (σ

k
v)

2). The parameters values

µk
v are in turn sampled from the normal distribution N(µ̃v, σ̃

2
v), where parameters σ̃2

v

characterizes the variance between the classes, and µ̃v are some “base” values that are

initialized randomly. The simulation pipeline is outlined in Figure 3.1.

65

We control the within- and between-class variances using the parameters (σk
v)

2

and σ̃2
v , respectively. We observed that in real-world datasets both variances tend to

increase towards the leaves of the tree (see Figures 3.6 and 3.7). To incorporate such

a behavior into our framework, we define coefficients γ̃ and γ that describe the overall

variances between and within the classes, respectively. We then sample the exact values

of σ̃v and σk
v at each tree node v according to N(0, γ̃d(v)) and N(0, γd(v)), where d(v)

is the distance between v and the tree root. Note that the parameters γ̃ and γ influence

the difficulty of the classification problem, which is proportional to γ and inversely

proportional to γ̃.

3.3.2 Comparisons

We compare the performance of our proposed method with some of the popu-

lar classification techniques such as SVMs, logistic regression (LR) and Random Forests

(RFs), and with a dedicated classification algorithm for metagenomic (or 16S rDNA se-

quence) samples, MetaDistance. SVM [9] is a robust and powerful classification method

that has a widespread applications in many fields including computational biology. The

idea behind the SVM technique is to find the separating hyperplane in a feature space

with the largest margin between the classes. We consider the L1-regularized version of

SVMs due to its ability to handle high-dimensional sparse data. RF [15] is another pop-

ular classification algorithm that consists of a collection of tree predictors and makes the

overall prediction by the majority voting. The algorithm is well-known for its capability

of dealing with small sample sizes, high-dimensional feature space, and complex data.

LR [118] has been widely used in statistics for many years, and has recently received

much attention in the machine learning community. In particular, its L1-regularized

version is known to have good generalization performance in the presence of many irrel-

66

evant features. MetaDistance [69] is a classification method for samples of 16S rDNA

sequence counts. It is based on simultaneously minimizing the intraclass distance and

maximizing the interclass distance by combining instance-based and model-based learn-

ing techniques. For the comparison with the SVM and LR classifiers, we used the imple-

mentations in the MLPY Python package [1], for the RF classifier, we used scikit-learn

Python package [84], and for MetaDistance, we used the Matlab implementation [69].

For all the classifiers, we performed 10-fold cross-validation to find the optimal model

parameters and 3-fold (or 5-fold) cross-validations for the performance evaluation on

simulated (or real, respectively) datasets.

3.3.3 Performance on Simulated Data

We simulated datasets of 2, 3, 5 and 10 classes with 20 samples for each class.

To generate datasets of different complexity, we considered the variance coefficients γ̃

and γ of 0.5, 1 and 1.5. A complete binary tree of height 10 was used to guide the

simulation. For each parameter set, we generated datasets with different granularity by

cutting the tree at different heights to produce feature vectors with different resolutions.

The performance of our algorithm for all the parameter sets and resolution levels is shown

on Figure 3.2. We observe that the classification task becomes harder when the number

of classes is increased. Also, as expected, the classification error rate is low when γ

is decreased and γ̃ is increased. We also observe that for some parameter settings the

best performance is achieved at the highest resolution levels, while for the other settings

the best performance may be at some intermediate resolutions. This happens when

the between-class variance is dominated by the within-class variance at high resolution

levels, leading to an increased overlap between the classes. Using the information about

67

0
.0

0
.4

0
.8

γ = 0.5 γ =0.5 γ = 0.5 γ =1 γ = 0.5 γ =1.5
E

rr
o
r

0
.0

0
.4

0
.8

γ = 1 γ =0.5 γ = 1 γ =1 γ = 1 γ =1.5

0.0 0.2 0.4 0.6 0.8

0
.0

0
.4

0
.8

γ = 1.5 γ =0.5

Resolution
0.0 0.2 0.4 0.6 0.8

γ = 1.5 γ =1

0.0 0.2 0.4 0.6 0.8

γ = 1.5 γ =1.5

K = 2 K = 3 K = 5 K = 10

Figure 3.2: Performance for varying number of classes and within- and between-class
variances.

the hierarchical grouping of the features makes it possible to take advantage of the lower

resolution feature space where the classes may be better separated. Figure 3.2 shows

that even for these cases the accuracy at the highest resolution level is still reasonable

compared to the accuracy at the optimal resolution level.

We compared our algorithm with the other classifiers under a variety of pa-

rameter sets and plotted the results in Figures 3.3 and 3.4. The mean and standard

deviations of the relative performance of the algorithms at the highest resolution level

68

0
.0

0
.4

0
.8

γ = 1.5
γ =1

K = 2

γ = 1
γ =1

K = 2

γ = 0.5
γ =1

K = 2

E
rr

o
r

0
.0

0
.4

0
.8

γ = 1.5
γ =1

K = 5

γ = 1
γ =1

K = 5

γ = 0.5
γ =1

K = 5

0.0 0.2 0.4 0.6 0.8

0
.0

0
.4

0
.8

γ = 1.5
γ =1

K = 10

Resolution
0.0 0.2 0.4 0.6 0.8

γ = 1
γ =1

K = 10

0.0 0.2 0.4 0.6 0.8

γ = 0.5
γ =1

K = 10

ours LR SVM RF MD

Figure 3.3: Comparison with LR, SVM, RF and MetaDistance on simulated datasets
for varying number of classes and between-class variances. The top, middle and bottom
plots correspond to datasets with 2, 5 and 10 classes, respectively. The within-class
variance γ = 1. The between-class variance γ̃ is 1.5, 1 and 0.5 on the left, middle and
right plots.

69

0
.0

0
.4

0
.8

γ = 1
γ =0.5

K = 2

γ = 1
γ =1

K = 2

γ = 1
γ =1.5

K = 2

E
rr

o
r

0
.0

0
.4

0
.8

γ = 1
γ =0.5

K = 5

γ = 1
γ =1

K = 5

γ = 1
γ =1.5

K = 5

0.0 0.2 0.4 0.6 0.8

0
.0

0
.4

0
.8

γ = 1
γ =0.5

K = 10

Resolution
0.0 0.2 0.4 0.6 0.8

γ = 1
γ =1

K = 10

0.0 0.2 0.4 0.6 0.8

γ = 1
γ =1.5

K = 10

ours LR SVM RF MD

Figure 3.4: Comparison with LR, SVM, RF and MetaDistance on simulated datasets
for varying number of classes and within-class variances. The top, middle and bottom
plots correspond to datasets with 2, 5 and 10 classes, respectively. The between-class
variance γ̃ = 1. The within-class variance γ is 0.5, 1 and 1.5 on the left, middle and
right plots.

70

Cluster the sequences into OTUs

Pick representative sequences for each OTU

Align OTU sequences

Make a phylogenetic tree

N
xxx ,...,,

21
Feature vectors

TTree

Figure 3.5: The real data pre-processing pipeline. Rectangular boxes show the QIIME
steps. Ellipses show the input data for our classification algorithm. First, all the reads
are clustered into OTUs based on a user-defined similarity cutoffs using UClust [38]. For
each sample, a feature vector of OTU frequencies is constructed. The most abundant
sequence in each OTU is picked as the representative sequence. A multiple sequence
alignment of the representative sequences is built using PyNAST [20]. Finally, the
phylogenetic tree relating the OTUs is constructed from the multiple sequence alignment
using FastTree [86].

are shown in Table 3.1. Overall, LR performs reasonably well for the most of the test

cases, while SVM has an inferior performance compared to the other algorithms. RFs

perform poor for the small number of classes, but improve significantly when the num-

ber of classes is increased. In most of the test cases, our algorithm achieves the best

performance and is more robust with respect to the resolution level. That is, when the

optimal classification accuracy is achieved at some intermediate resolution, the perfor-

mance at the highest resolution is still reasonably close to the optimal. Figures 3.3 and

3.4 show that the performance difference between the algorithms is especially noticeable

at the highest resolution.

71

Table 3.2: Comparison of the error rates (%) with LR, SVM, RF and MetaDistance
classifiers on real datasets.

Alg. 65 70 75 80 85 90 95 97

D1

Ours 12.9 10.4 8.2 7.1 6.7 5.7 5.5 5.3
SVM 12.9 11.0 10 8.8 7.0 6.9 6.5 6.3
LR 12.9 10.8 9.6 8.2 7.6 7.1 6.5 6.1
RF 12.7 10.4 10.0 9.8 9.4 8.2 7.8 7.6
MD 14.9 12.2 10.8 8 6.9 6.7 - -

D2
Ours 29.2 27.4 24.6 24.6 23.9 21.0 19.2 16.7
SVM 30.3 29.6 26.7 28.9 26.7 26.4 26.7 23.1
LR 29.9 29.2 27.7 28.5 25.6 26.0 23.9 21.4
RF 28.5 29.2 26.0 25.6 24.5 26.3 26.7 27.8
MD 30.2 30.2 30.2 26.0 23.1 22.1 23.4 20.9

D3

Ours 9.3 10.4 7.2 4.9 3.8 3.5 3.3 -
SVM 8.7 10.5 7.2 5.7 4.4 4.1 4.5 -
LR 8.3 10.2 7.7 5.4 4.3 4.5 3.8 -
RF 8.7 10.0 7.4 5.7 4.9 5.1 5.1 -
MD 12.8 10.3 8.7 6.2 - - - -

3.3.4 Performance on Real Data

We used three real datasets of the human microbiota to evaluate our algorithm.

All the datasets were taken from the 16S rRNA sequencing studies and pre-processed

as shown in Figure 3.3.3 using the QIIME software [21]. Using different OTU similarity

cutoffs, we generated feature vectors of different granularity for each of the datasets. The

dataset D1 is described in [30] and is comprised of samples from six major body areas:

external ear, gut, hair, nostril, oral cavity and skin. The second dataset D2 contains

gut samples from lean, obese and overweight subjects [101]. The third dataset D3 is

described in the study of microbiota in healthy adults [29] and contains samples from five

body habitats: oral, gastrointestinal, urogenital, nasal and skin. Datasets D1 and D3

represent relatively easy classification problems because they are comprised of microbial

communities from different body sites, which are known to be significantly different.

On the other hand, D2 illustrates an example of a more challenging classification task

because the classes correspond to microbial communities from the same body habitat

72

and thus are very similar. To support the conclusions about the difficulty of the problems

represented by the three datasets, we have computed the average within- and between-

class variances for each dataset (see Figures 3.6 and 3.7). We observe that, compared to

D1 and D3, dataset D2 on average has a lower between-class variance which confirms

that the corresponding classification problem is more challenging.

The classification error rates for all the classification algorithms at all the

granularity levels are shown in Table 3.2. On average, all the algorithms show a better

performance at higher resolution levels which correspond to the higher OTU similarity

cutoffs. Our algorithm shows a comparable performance at the lower resolution levels

and outperforms the other methods at the higher resolution levels.

We do not evaluate the computational efficiency of the algorithms systemati-

cally because they are implemented in different programming languages. Some of the

entries are missing in Table 3.2 due to overly long processing time. More specifically, we

were unable to pre-process the dataset D3 at 97% similarity cutoff with QIIME on our

desktop PC. Therefore, we did not run any of the classification algorithms on the dataset

at 97% similarity cutoff. MetaDistance was two orders of magnitudes slower than the

other algorithms. For example, the training step for the dataset D1 with 90% OTU

similarity cutoff for just one set of parameters took approximately 1 second for LR and

SVM, 3 seconds for our algorithm, 5 seconds for RF and 12 minutes for MetaDistance.

Therefore, running cross-validation for multiple sets of parameters would take days or

weeks to compute on some datasets for MetaDistance.

73

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.1

0
0
.2

0
0
.3

0

Resolution

γ

D1

L=100

L=10

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.1

0
0
.2

0
0
.3

0

Resolution

γ

D2

L=100

L=10

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.1

0
0
.2

0
0
.3

0

Resolution

γ

D3

L=100

L=10

Figure 3.6: The within-class variances γ for datasets D1, D2 and D3. The average
within-class variance was calculated for each node of the phylogenetic tree. We break the
interval (0,max distance to the root) into L subintervals. Each subinterval corresponds
to a specific resolution level. For each subinterval we calculate the average within-class
variance for all nodes whose distance to the tree root falls within the subinterval.

74

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.1

0
0
.2

0
0
.3

0

Resolution

γ

D1

L=100

L=10

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.1

0
0
.2

0
0
.3

0

Resolution

γ

D2

L=100

L=10

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.1

0
0
.2

0
0
.3

0

Resolution

γ

D3

L=100

L=10

Figure 3.7: The between-class variances γ̃ for datasets D1, D2 and D3. The aver-
age between-class variance was calculated for each node of the phylogenetic tree. We
break the interval (0,max distance to the root) into L subintervals. Each subinterval
corresponds to a specific resolution level. For each subinterval we calculate the aver-
age between-class variance for all nodes whose distance to the tree root falls within the
subinterval.

75

3.4 Conclusion

We proposed a new classification method for 16S rDNA sequence samples that

employs the natural structure of microbial community data encoded by a phylogenetic

tree. We showed that using the phylogenetic information leads to an improved clas-

sification accuracy compared to the state-of-the-art classification algorithms. Unlike

many popular classification methods, which consider features (or OTU frequencies) in

isolation, our method takes advantage of the similarities between OTUs encoded by the

phylogenetic tree. We applied the algorithm to classify samples obtained from 16S rDNA

studies, but the approach can also be used to classify metagenomic samples obtained by

whole genome sequencing. The algorithm only requires frequencies of taxonomic groups

in each sample and a phylogenetic tree that relates these groups.

76

Chapter 4

An Efficient Hierarchical

Clustering Algorithm for Large

Datasets

4.1 Introduction

Clustering is a popular unsupervised learning technique used to identify object

groups within a given dataset, where intra-group objects tend to be more similar than

inter-group objects. There are many different clustering algorithms [54] with applica-

tions in bio-/chem- informatics and other data mining fields [55, 19], including studies

on protein families [59], functional genomics, [55], chemical scaffolds [36], etc. In par-

ticular, clustering algorithms have been widely adopted in the bioinformatics field after

TreeView [39], a user-friendly visualization program, was made available following early

studies on gene expression datasets.

77

Among all clustering methods, hierarchical clustering and k-means clustering

are arguably the two most popular algorithms used due to their simplicity in result

interpretation. In the cheminformatics field, Wards clustering [111] and Jarvis-Patrick

clustering [88] are corresponding algorithms similar in spirit to hierarchical clustering

and k-mean clustering, respectively. Although there is no definitive answer as to which

algorithm is more accurate, hierarchical clustering has been applied more often in chem-

informatics research because of its deterministic property and flexibility in flattening

the resultant tree at different cutoff levels.

As discussed in Section 1.4, applying hierarchical clustering to large datasets is

rather challenging, and there exists a significant need to develop a hierarchical clustering

algorithm for large datasets. Approximating hierarchical clustering in subquadratic time

and memory has been previously attempted [63, 64, 65, 83, 82]. However, these methods

either rely on embedding into spaces that are not biologically sensible, or they produce

very low resolution hierarchical structures. Our goal is to produce hierarchical results

with the same resolution as the exact hierarchical method, although with less accuracy,

while maintaining the bio/chemically meaningful distance metrics. For a dataset over

20 000 objects, we are limited by both O(n2) memory and time. Therefore, a reasonable

approximation needs to be introduced. We observe that if an exact hierarchical tree has

been constructed, one can set a similarity cutoff such that tree branches above the cutoff

are distant enough from each other and represent the coarse clusters of the dataset. The

branches and leaves below the cutoff represent hierarchical structures within small-scale

local vicinities. For a large dataset, we are often initially interested in a “zoomed out”

view of the coarse clusters, then “zoom in” to neighborhoods of interest for a finer

view of the intra-group structures. The two views are often considered to be the most

beneficial properties of the hierarchical clustering. For example, in the aforementioned

78

compound requisition problem, one would cherry pick vendor compounds from the coarse

neighborhood if only a small number of compounds can be selected for purchasing. When

budget and logistics permit, one could then lower the cutoff to pick more compounds

within interesting coarse clusters.

To capture both distant and close views of the hierarchical structure for a large

dataset, we propose a hybrid hierarchical clustering algorithm. Initially, the n objects

are clustered by a k-means clustering algorithm, where k is chosen to be reasonably large,

into roughly k coarse neighborhoods. We then apply the exact hierarchical clustering

algorithm to cluster the k centroids into a coarse tree, as well as to the objects within

each of the k clusters into k detailed trees. By replacing the k centroids in the coarse

tree by the corresponding detailed trees, this two-step hybrid algorithm assembles a

complete tree of n objects that can be cut, i.e., zoomed in and zoomed out, at various

levels. The number k can be selected by the user and controls the cutoff reflecting

the average similarities of objects within each coarse neighborhood. If k is chosen so

that the cutoff approximately equals the intrinsic noise in the data, the tree from the

hybrid method is essentially as accurate as the tree generated by the exact hierarchical

clustering algorithm. If optimized for clustering speed, k ∼ √n can be chosen to yield

an approximate running time of O(n
√
n) and storage of O(n

√
n) as discussed later in

detail.

4.2 The Hybrid Algorithm

In this section, we introduce a hybrid algorithm for hierarchical clustering of

large datasets. Our approach combines the advantages of the partitioning and agglom-

erative hierarchical clustering algorithms.

79

Hierarchical clustering organizes the data into a dendrogram that represents

the clustering structure of the data. We only consider the bottom-up clustering approach

here due to its ability to capture the local clustering structure of the data. The classic

agglomerative hierarchical clustering (AHC) method [32] requires computation of all

pairwise distances, which has a quadratic complexity. Therefore, the construction of the

distance matrix creates a bottleneck, especially for high dimensional data and expensive

distance functions. Since AHC algorithms greedily merge pairs of nearest data points

(clusters) into tree nodes, the exact computation of pairwise distances is important

for data points that are close enough to each other, while the computation of distances

between remote points is unlikely to contribute and should be avoided whenever possible.

Therefore, it makes sense to partition the dataset to avoid the full distance matrix

computation.

In the first step of the algorithm, we partition the data with k-means [74], a

simple and effective clustering algorithm that generates a locally optimal partitioning of

the data. The number of components k is predefined. The choice of k and performance

of our algorithm with respect to k are discussed later in the chapter. We apply the

optimized version of the exact k-means algorithm, which utilizes a triangle inequality to

avoid unnecessary distance computations [40]. The clusters are initialized uniformly at

random from the data points. In the second step, at the first level, AHC is applied to

cluster each individual component Pi obtained by k-means into an individual detailed

tree Ti. At the second level, each Ti is treated as a leaf and clustered by AHC into a

coarse tree T . T , therefore, reflects both the coarse relationships among components as

well as detailed relationships among members of each component.

A few questions arise in the above procedure and require careful consideration:

(1) How are distances defined between the components for the second level of clustering?

80

(2) What should be done when the distance between a pair of component centroids is

smaller than the radii of associated components?

Regarding the first question, the naive idea of taking the distance between the

centroids of components as a pairwise distance between these components is undesirable.

Consider two pairs of components, where the distance between the two centroids within

each pair is the same. Additionally, assuming that the first pair of components have

small radii while the other two components have large radii and may overlap. Clearly, the

above naive approach would not capture the intuition that the second pair of components

should be considered closer. We adopt the idea of data bubbles [18] and define the

distance of two components P1 and P2 as follows:

Dist(P1, P2) =

dist(C1, C2)− (R1 +R2) if dist(C1, C2)−

+1NN1 + 1NN2 (R1 +R2) ≥ 0,

Max(1NN1, 1NN2) otherwise

Here, Ci is the centroid of the partition Pi, and Ri is the radius of the com-

ponent (most of the objects are located within the radius Ri around the centroid Ci).

1NNi is the average 1-nearest neighbor distance within the component.

Regarding the second question, for each component Pi, we define the distance

threshold ri so that all points that are farther than ri away from the centroid are

considered outliers and removed from the component. Outliers are added as individual

points and used in the second level of hierarchical clustering.

In addition, due to the nonuniform distribution of objects within a real dataset,

the k-means clustering might result in components that exceed the size limit of AHC.

Therefore, the hybrid algorithm might need to be recursively applied in a divide-and-

81

Algorithm 6: Hybrid clustering of N data points. Given k, the algorithm
partitions the dataset and performs two-level hierarchical clustering to
construct a tree T . (The maximum size of the input for the agglomerative
hierarchical clustering (AHC) algorithm is n. It can be supplied by the
user, or estimated automatically).

begin
P ← ∅
Perform optimized k-means clustering to partition the data into
components Pi.
for each component Pi do

ri = argminj Dist(Pi, Pj)

Compute centroid Ci

for each point p in Pi do
if dist(p, Ci) > ri then

Remove p from Pi. Add p to P .

for each component Pi do
if Size(Pi) > n then

Recursively apply hybrid clustering to generate a tree Ti.

else
Apply AHC to generate a tree Ti.

Compute a combined distance matrix for all Pi and all points in P .
Perform AHC to generate a tree T .
return T

conquer manner. Occasionally, when the height of a detailed tree Ti exceeds its corre-

sponding level-two centroid distance, its height should be propagated up to its ancestral

nodes along the tree branches during the assembly of T .

Our hybrid algorithm is outlined in Algorithm 6.

4.3 The Implementation of the Exact Hierarchical Clus-

tering Algorithm

We have been using a non-trivial assumption that AHC requires an O(n2) run-

ning time. The complexity of an AHC implementations actually varies significantly.

82

Cluster 3.0 [33] provides a popular AHC implementation that is used extensively in the

bioinformatics field. For the average-linkage configuration, Cluster 3.0 implementation

takes O(n3) time, as shown in Figure 4.6. For this study, we adopt the Murtagh recip-

rocal nearest neighbor idea [81], which offers a much improved O(n2) time. To test this,

both Cluster 3.0 and Murtagh algorithms were implemented in Java and were applied

to sample datasets sizing between 1 000 and 20 000 (40 000 for the Murtagh implemen-

tation), where each data object consisted of double vectors of length 80. As shown in

Figure 4.6, the Murtagh method indeed performed at the scale of O(n2) and Cluster 3.0

at O(n3). These results are in agreement with the recent study [80]. It is worth men-

tioning that our Java implementation of Cluster 3.0 is two fold faster than the original C

implementation, and the observation in Figure 4.6 is not an over-estimation. Note that

although the Murtagh method has been used in the JKlustor program in the chemin-

formatics field [http://www.chemaxon.com], it is not widely adopted in bioinformatics.

Therefore, bioinformatics researchers not using an O(n2) implementation of AHC could

benefit from the release of our package.

4.4 Experimental Results

4.4.1 Data Sets

As our aim is to develop an algorithm for practical biomedical research appli-

cations, three real datasets encountered in our routine analyses were chosen. Dataset

D1 is an activity matrix consisting of 2117 compounds profiled across 398 cancer cell

lines. A subset of this matrix was previously published as the Cancer Cell Line Encyclo-

pedia project and was described in detail by Barretina et al. [7]. This dataset provides

83

an example of a typical medium-size clustering problem involved in bioinformatics and

cheminformatics research.

Dataset D2 is a larger high-throughput screening activity matrix of 45 000

compounds across 178 assays. This is a subset of the larger matrix described in a

published HTS frequent hit study [28]. A total of 45 000 compounds that hit the most

number of assays were selected, because this size approaches the upper limit of what an

exact hierarchical clustering algorithm can handle on a typical desktop computer. This

large dataset provides a test case to compare the speed of clustering and the qualities of

resultant trees, when both the exact hierarchical clustering algorithm and the proposed

hybrid algorithm are applied.

Dataset D3 consists of one million compounds randomly selected from our in-

house compound collection, where the average Tanimoto structure similarity determined

by ChemAxon two-dimensional fingerprinting is merely 0.3 [http://www.chemaxon.

com]. As structural redundancy of the collection is low, these compounds are expected

to form numerous clusters of fairly small sizes. This set is chosen to represent the

more challenging problem of identifying structurally diversified compounds from a large

vendor catalog as well as to enable us to study the robustness of the hybrid algorithm.

4.4.2 The Running Time and Memory Analysis

We theoretically and experimentally evaluate the running time of the hybrid

algorithm. First, let us show that with a reasonable choice of the partitioning parameter

k, the algorithm runs in O(N
√
N) time for datasets of randomly distributed objects.

The running time of the algorithm is affected by (1) the time to partition the data in

the k-means phase and (2) the running time of the hierarchical clustering phase. The

traditional k-means algorithm requires computing kNL distances, where L is the number

84

of iterations. However, in the optimized version of k-means, only the first few iterations

require distance computations from all the data points to all the centroids. The time

needed for subsequent iterations drops significantly, because most of the distances are

not computed. Thus the overall number of distance computations becomes closer to

kN than to kNL. The k-means phase runs in O(kNL′), where L′ < L and can be

approximately estimated experimentally. In our experiments, L′ was in the range of 2

to 5. The running time of the hierarchical clustering phase includes the time required

to hierarchically cluster k subsets of approximate sizes N/k and to cluster k centroids.

Assuming quadratic time complexity for the AHC algorithm, the overall running time

of the hybrid algorithm is O(k2 +N2/k + kNL′). As the first term k2 is dominated by

kNL′, our algorithm runs in O(N2/k + kNL′) time. The best performance is achieved

when k is set to
√
N/L′, leading to an O(N

√
N) running time. The same analysis

applies to the memory complexity which is also bounded by O(N
√
N).

We measured the experimental running time of the hybrid algorithm for dif-

ferent values of k, for both the partitioning phase and the hierarchical clustering phase.

The results are shown in Figure 4.1. Even though the real data is not uniformly dis-

tributed, trends in the experimental results agree with the theory. Note, that the exact

algorithm matches the cases of k = 1 and k = N . Clearly, the larger the data size, the

more we gain in clustering speed compared to the exact algorithm. For example, when

the parameters are optimized, the hybrid algorithm is only 5 times faster on D1 while

it is 370 times faster on D2, running in 22 seconds compared to 8117 seconds for the

exact algorithm.

85

A

0 500 1000 2000

0
1
0

2
0

3
0

4
0

5
0

k

R
u
n
n
in

g
 t
im

e
,
s
e
c
o
n
d
s

B

0 100 200 300 400 500

0
2

4
6

8

k

R
u
n
n
in

g
 t
im

e
,
s
e
c
o
n
d
s

C

0 5000 10000 15000

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

k

R
u
n
n
in

g
 t
im

e
,
s
e
c
o
n
d
s

D

0 200 400 600 800

0
5
0

1
0
0

1
5
0

2
0
0

k

R
u
n
n
in

g
 t
im

e
,
s
e
c
o
n
d
s

Total time K−means Hier. clust.

Figure 4.1: Running time of the hybrid algorithm for datasets D1 and D2. (A) Dataset
D1, for all values of k. (B) Dataset D1, zoomed in for k < 500. (C) Dataset D2. (D)
Dataset D2, zoomed in for k < 1000.

86

4.4.3 Performance Analysis

There is no universal agreement on how clustering should be performed. There-

fore, methods for validating clustering results vary significantly [48]. Since our primary

goal is to accelerate AHC, the hierarchical tree T produced by the AHC algorithm is

taken as the gold standard and is referred to as the exact tree. The tree produced by

the hybrid algorithm is referred to as a hybrid tree or an approximate tree. Quanti-

tative comparison between the exact tree and a hybrid tree remains an open problem

and few results exist in the literature. One approach is to use a well-known tree edit

distance [13], but it is computationally expensive and may produce counter-intuitive

results [127]. Another popular approach is to cut trees at certain heights and measure

similarity between the resultant clusters. The latter was chosen for this study, as it

provides visualization that can be cross-examined by biological and chemical domain

knowledge. Various similarity measurements are applicable to two sets of clusters re-

sulting from tree cuts, e.g., Jaccard index [46], Rand index [89], Fowlkes-Mallows index

[41], information theoretic measures [107], etc. Each method has its own advantages

and weaknesses [108]. For example, the Rand index has an undesirable property of

converging to 1 as the number of clusters increases, while the Fowlkes-Mallows index

makes strong assumptions about the underlying distribution of data, making it hard to

interpret the results. The information-theoretic approaches are promising for clustering

validation, but require a more extensive evaluation. In our study, we chose the Jaccard

index, one of the most common similarity measures for clustering.

For each of the two given datasets, we first cut the exact tree T at some height

g, which was selected based on the combination of our domain knowledge of the bio-

and cheminformatics problems and our visual inspection of the exact hierarchical tree

87

T . This resulted in a set of clusters C(g) = {C1, C2, ..., C|C(g)|}. The corresponding

hybrid tree was then cut at different cutoff values h. For each h, the Jaccard similarity

index between C(g) and the hybrid clusters C̃(h) was calculated according to:

J(C(g), C̃(h)) =
N11

N11 +N10 +N01
,

where N11 is the number of object pairs consisting of objects clustered together into the

same cluster in both C and C̃. N10 + N01 is the number of object pairs consisting of

objects clustered together in either C or C̃ but not both. The h value that led to the

highest Jaccard index was retained and used for the similarity score Sg(T, T̃):

Sg(T, T̃) = argmax
h∈H

J(C(g), C̃(h)).

The set of cutoff values H was chosen to evenly cover different granularity levels of the

resulting clusterings, where granularity is defined as a percent of object pairs that cluster

together.

We are particularly interested in the approximation quality for biologically

meaningful clusters with pronounced activity patterns. Therefore, in the computation

of the similarity score, we disregarded clusters with low average Pearson correlation of

the activity profiles (below 0.2) as well as small clusters that contain less than 0.1%

of the data. The selected clusters for datasets D1 and D2 are highlighted in Figures

4.2A and 4.3A, respectively. For the dataset D1, we additionally excluded a large

cluster of low-activity compounds. Even though this cluster is well approximated by the

hybrid algorithm, it dominates the resulting Jaccard index leading to an overall high

similarity score. The results of the proposed similarity measures Sg on datasets D1 and

88

A

B

Figure 4.2: The hierarchical trees for the dataset D1 produced by (A) the exact al-
gorithm and (B) the hybrid algorithm with k = 25. Highlighted are the biologically
meaningful clusters selected for the evaluation of the approximation quality of the hy-
brid algorithm. The heat map illustrates the activity of compounds: red and green
indicate active and inactive compounds, respectively.

89

A

B

Figure 4.3: The hierarchical trees for the dataset D2 produced by (A) the exact al-
gorithm and (B) the hybrid algorithm with k = 130. Highlighted are the biologically
meaningful clusters selected for the evaluation of the approximation quality of the hy-
brid algorithm. The heat map illustrates the activity of compounds: the intensity of
red is proportional to the compound’s activity.

90

0 500 1000 1500 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

k

S
(T

,T
(k

))

Figure 4.4: Approximation quality Sg(T, T̃ (k)) of the exact tree T with the hybrid trees

T̃ (k) for different values of the parameter k for dataset D1.

D2 for the selected clusters are shown in Figures 4.4 and 4.5. It was observed that

quality measurements for both datasets are rather insensitive to the choice of k over

a wide range. Since the hybrid tree T̃ retains both the coarse and detailed structures

within a dataset and provides approximate results for interpretations in-between, it is

not surprising that T̃ reasonably approximates the exact tree. Since high quality trees

are produced for a wide range of the parameter values, it makes sense to optimize the

parameter k mainly for improved running time in practice.

4.4.4 Performance on a Large Dataset and Robustness Analysis

A major goal in proposing our algorithm is to provide a hierarchical method

that is capable of clustering datasets that contain more than 40 000 objects. Here, we

91

0 1000 2000 3000 4000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

k

S
(T

,T
(k

))

Figure 4.5: Approximation quality Sg(T, T̃ (k)) of the exact tree T with the hybrid trees

T̃ (k) for different values of the parameter k for dataset D2.

studied dataset D3, which consists of one million compounds randomly selected from

our in-house compound collection. Running AHC on such a large dataset is infeasi-

ble and cheminformaticians have relied on greedy algorithms such as Sphere Exclusion

(SE) [45] to partition the compounds into clusters. SE requires a fixed similarity cutoff

value as its input. It randomly selects a query compound and extracts all remaining

compounds, where their structural similarities to the query compound are above the

predefined threshold. The extraction and exclusion process is iterated until the collec-

tion is exhausted. Because the exact tree is not available for a dataset as large as D3,

performance comparisons between SE and hybrid algorithms cannot be conducted in

a manner similar to what we presented in Sections 4.4.2 and 4.4.3. Nevertheless, we

speculate that the hybrid method provides a result closer to the exact AHC tree than

to SE. This is because no super-sized compound cluster is expected in D3 based on our

92

3.0 3.2 3.4 3.6 3.8 4.0 4.2

0
1

2
3

4
5

6
7

Log of number of data points, log(N)

L
o
g
 o

f
ti
m

e
 (

m
s
)

●

●

●

●

●
●

●
●

● ●
●

●
● ●

● ●
● ● ● ●

● Log of Murtagh time (ms)
Log of Cluster 3.0 time (ms)
2*log(N)−4
3*log(N)−7
2*log(N)−3.5

Figure 4.6: The performance comparison between the Murtagh method and the Java
implementation of the Cluster 3.0 method. The running time of the Murtagh method
matches a linear curve of slope 2 while the running time of the Cluster 3.0 method
matches a linear curve of slope 3, showing that their running time are of O(n2) and
O(n3), respectively. The green curve is a linear curve of slope 2 that crosses the curve
of Cluster 3.0 running time included to make the comparison easier.

93

domain knowledge, i.e., the sizes of chemically interesting clusters are small. The first

k-means clustering step is expected to produce only large components of structurally

diverse compounds and is unlikely to break down small groups of highly similar com-

pounds. The SE algorithm, on the other hand, produced flattened clusters based on a

rather subjective similarity threshold, which may not match the average similarities in

small clusters.

A main criticism on SE is its greediness, which led to different clustering re-

sults in different runs in our experiment. As the hybrid algorithm also has a random

component in the k-means stage, it would be interesting to compare the two methods

for robustness in the results. We shuffled records in the one million compound dataset

ten times and applied both algorithms. We then measured how well each method was

able to reproduce its own results. In particular, we first applied a cutoff value to flat-

ten hybrid trees into a similar number of clusters as in the output of the SE algorithm.

Then, through random sampling of compound pairs in the output clusters, we estimated

the probability that a pair of compounds will cluster together in consecutive runs to be

37.1% with a standard deviation of 0.9% for the hybrid method, and 27.8% with a

standard deviation of 1.6% for the SE methods (p-value is 1× e−10). Similarly, we also

estimated the probability that a pair of compounds will not cluster together in con-

secutive runs to be 99.8% and 99.9%, respectively. These results indicate the superior

robustness of the hybrid algorithms across multiple runs.

4.5 Conclusion

In the chapter, we have introduced a hybrid hierarchical clustering algorithm

that requires approximately O(n
√
n) running time and O(n

√
n) memory, producing hi-

94

erarchical trees similar to what the exact hierarchical algorithm offers but applicable to

much larger datasets. With three example datasets, the hybrid algorithm was demon-

strated to be much faster, reasonably accurate and robust for clustering large datasets

encountered in bioinformatics and cheminformatics research. The software package has

been made available to the informatics community and should prove very useful when

applied to a wide range of data mining problems.

95

Chapter 5

Conclusions

Recent advances in biotechnology have created new opportunities for the life

sciences. High-throughput methods (NGS, HTS/uHTS) are increasingly applied in var-

ious areas of biological and chemical research. For example, metagenomics approach

combined with NGS has opened a door into the previously hidden world of microorgan-

isms, while HTS/uHTS technologies have created new opportunities in drug discovery.

There is a need for new methods and tools to efficiently analyze the increasing amounts

of data which would also handle challenges and take into account natural properties of

the data.

In this dissertation, we addressed three problems that arise in metagenomics

and cheminformatics. First, we presented an algorithm for separating short paired-end

NGS reads from different bacterial genomes of similar abundance levels, and extended

it with a new abundance-based binning method to handle arbitrary abundance ratios.

Second, we proposed a novel supervised classification method for metagenomic samples

that takes advantage of the natural structure in microbial community data encoded by

a phylogenetic tree. This model allows us to take advantage of environment-specific

96

compositional patterns that may contain features at multiple granularity levels. Our

method is based on the multinomial logistic regression model with a tree-guided penalty

function. We provide an efficient optimization algorithm to learn the model parameters.

Finally, we presented a hybrid hierarchical clustering algorithm that combines the k-

means clustering and agglomerative hierarchical clustering to efficiently cluster large

datasets encountered in bioinformatics and cheminformatics research.

97

Bibliography

[1] Davide Albanese, Roberto Visintainer, Stefano Merler, Samantha Riccadonna,
Giuseppe Jurman, and Cesare Furlanello. Mlpy: Machine learning python, 2012.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of molecular biology, 215(3):403–410, October 1990.

[3] R. I. Amann, W. Ludwig, and K. H. Schleifer. Phylogenetic identification and
in situ detection of individual microbial cells without cultivation. Microbiological
reviews, 59(1):143–169, March 1995.

[4] R. I. Amann, W. Ludwig, and K. H. Schleifer. Phylogenetic identification and
in situ detection of individual microbial cells without cultivation. Microbiological
reviews, 59(1):143–169, 1995.

[5] Manimozhiyan Arumugam, Jeroen Raes, Eric Pelletier, Denis Le Paslier, Takuji
Yamada, Daniel R. Mende, Gabriel R. Fernandes, Julien Tap, Thomas Bruls,
Jean-Michel Batto, Marcelo Bertalan, Natalia Borruel, Francesc Casellas, Ley-
den Fernandez, Laurent Gautier, Torben Hansen, Masahira Hattori, Tetsuya
Hayashi, Michiel Kleerebezem, Ken Kurokawa, Marion Leclerc, Florence Lev-
enez, Chaysavanh Manichanh, H. Bjorn Nielsen, Trine Nielsen, Nicolas Pons, Julie
Poulain, Junjie Qin, Thomas Sicheritz-Ponten, Sebastian Tims, David Torrents,
Edgardo Ugarte, Erwin G. Zoetendal, Jun Wang, Francisco Guarner, Oluf Ped-
ersen, Willem M. de Vos, Soren Brunak, Joel Dore, Jean Weissenbach, S. Dusko
Ehrlich, and Peer Bork. Enterotypes of the human gut microbiome. Nature,
473(7346):174–180, May 2011.

[6] Musa H. Asyali, Dilek Colak, Omer Demirkaya, and Mehmet S. Inan. Gene expres-
sion profile classification: a review. Current Bioinformatics, pages 55–73, January
2006.

[7] Jordi Barretina, Giordano Caponigro, Nicolas Stransky, Kavitha Venkatesan,
Adam A. Margolin, Sungjoon Kim, Christopher J. Wilson, Joseph Lehár, Gre-
gory V. Kryukov, Dmitriy Sonkin, Anupama Reddy, Manway Liu, Lauren Murray,
Michael F. Berger, John E. Monahan, Paula Morais, Jodi Meltzer, Adam Kore-
jwa, Judit Jané-Valbuena, Felipa A. Mapa, Joseph Thibault, Eva Bric-Furlong,
Pichai Raman, Aaron Shipway, Ingo H. Engels, Jill Cheng, Guoying K. Yu,
Jianjun Yu, Peter Aspesi, Melanie de Silva, Kalpana Jagtap, Michael D. Jones,
Li Wang, Charles Hatton, Emanuele Palescandolo, Supriya Gupta, Scott Ma-
han, Carrie Sougnez, Robert C. Onofrio, Ted Liefeld, Laura MacConaill, Wendy

98

Winckler, Michael Reich, Nanxin Li, Jill P. Mesirov, Stacey B. Gabriel, Gad Getz,
Kristin Ardlie, Vivien Chan, Vic E. Myer, Barbara L. Weber, Jeff Porter, Markus
Warmuth, Peter Finan, Jennifer L. Harris, Matthew Meyerson, Todd R. Golub,
Michael P. Morrissey, William R. Sellers, Robert Schlegel, and Levi A. Garraway.
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer
drug sensitivity. Nature, 483(7391):603–607, March 2012.

[8] O. Béjà, M. T. Suzuki, E. V. Koonin, L. Aravind, A. Hadd, L. P. Nguyen, R. Vil-
lacorta, M. Amjadi, C. Garrigues, S. B. Jovanovich, R. A. Feldman, and E. F.
DeLong. Construction and analysis of bacterial artificial chromosome libraries
from a marine microbial assemblage. Environmental Microbiology, 2(5):516–529,
2000.

[9] Asa Ben-Hur, Cheng S. Ong, Soren Sonnenburg, Bernhard Scholkopf, and Gunnar
Ratsch. Support vector machines and kernels for computational biology. PLoS
computational biology, 4(10):e1000173+, October 2008.

[10] Dennis A. Benson, Ilene Karsch-Mizrachi, David J. Lipman, James Ostell, and
Eric W. Sayers. GenBank. Nucleic acids research, 37(Database issue):D26–31,
January 2009.

[11] David R. Bentley. Whole-genome re-sequencing. Current opinion in genetics &
development, 16(6):545–552, December 2006.

[12] Stephen D. Bentley and Julian Parkhill. Comparative genomic structure of
prokaryotes. Annual Review of Genetics, 38:771–791, December 2004.

[13] Philip Bille. A survey on tree edit distance and related problems. Theor. Comput.
Sci., 337(1-3):217–239, 2005.

[14] Balls In Bins. http://www.mathpages.com/home/kmath199.htm.

[15] Anne-Laure Boulesteix, Silke Janitza, Jochen Kruppa, and Inke R. König.
Overview of random forest methodology and practical guidance with emphasis
on computational biology and bioinformatics. WIREs Data Mining Knowl Dis-
cov, 2(6):493–507, 2012.

[16] Michael Boutros, Amy A. Kiger, Susan Armknecht, Kim Kerr, Marc Hild, Britta
Koch, Stefan A. Haas, Heidelberg F. Consortium, Renato Paro, and Norbert Per-
rimon. Genome-Wide RNAi Analysis of Growth and Viability in Drosophila Cells.
Science, 303(5659):832–835, February 2004.

[17] Arthur Brady and Steven L. Salzberg. Phymm and PhymmBL: metagenomic
phylogenetic classification with interpolated Markov models. Nat Meth, 6(9):673–
676, 2009.

[18] Markus M. Breunig, Hans P. Kriegel, Peer Kröger, and Jörg Sander. Data bubbles:
quality preserving performance boosting for hierarchical clustering. In SIGMOD
’01: Proceedings of the 2001 ACM SIGMOD international conference on Manage-
ment of data, pages 79–90, New York, NY, USA, 2001. ACM.

[19] Sylvain Brohee and Jacques van Helden. Evaluation of clustering algorithms for
protein-protein interaction networks. BMC Bioinformatics, 7(1):488+, November
2006.

99

[20] J. Gregory Caporaso, Kyle Bittinger, Frederic D. Bushman, Todd Z. DeSantis,
Gary L. Andersen, and Rob Knight. PyNAST: a flexible tool for aligning sequences
to a template alignment. Bioinformatics (Oxford, England), 26(2):266–267, Jan-
uary 2010.

[21] J. Gregory Caporaso, Justin Kuczynski, Jesse Stombaugh, Kyle Bittinger, Fred-
eric D. Bushman, Elizabeth K. Costello, Noah Fierer, Antonio G. Pena, Julia K.
Goodrich, Jeffrey I. Gordon, Gavin A. Huttley, Scott T. Kelley, Dan Knights,
Jeremy E. Koenig, Ruth E. Ley, Catherine A. Lozupone, Daniel McDonald,
Brian D. Muegge, Meg Pirrung, Jens Reeder, Joel R. Sevinsky, Peter J. Turn-
baugh, William A. Walters, Jeremy Widmann, Tanya Yatsunenko, Jesse Zaneveld,
and Rob Knight. QIIME allows analysis of high-throughput community sequenc-
ing data. Nature methods, 7(5):335–336, May 2010.

[22] Mark J. Chaisson and Pavel A. Pevzner. Short read fragment assembly of bacterial
genomes. Genome research, 18(2):324–330, February 2008.

[23] Soumitesh Chakravorty, Danica Helb, Michele Burday, Nancy Connell, and David
Alland. A detailed analysis of 16s ribosomal RNA gene segments for the diagnosis
of pathogenic bacteria. J Microbiol Methods, 69(2), 2007.

[24] Chon-Kit Chan, Arthur Hsu, Saman Halgamuge, and Sen-Lin Tang. Binning
sequences using very sparse labels within a metagenome. BMC Bioinformatics,
9(1), 2008.

[25] Qin Chang, Yihui Luan, and Fengzhu Sun. Variance adjusted weighted UniFrac:
a powerful beta diversity measure for comparing communities based on phylogeny.
BMC Bioinformatics, 12(1):118+, 2011.

[26] Anveshi Charuvaka and Huzefa Rangwala. Evaluation of short read metagenomic
assembly. BMC Genomics, 12(Suppl 2):S8+, 2011.

[27] Sourav Chatterji, Ichitaro Yamazaki, Zhaojun Bai, and Jonathan A. Eisen. Com-
postbin: a dna composition-based algorithm for binning environmental shotgun
reads. In Proceedings of the 12th annual international conference on Research in
computational molecular biology, RECOMB’08, pages 17–28. Springer, 2008.

[28] Jianwei Che, Frederick J. King, Bin Zhou, and Yingyao Zhou. Chemical and
Biological Properties of Frequent Screening Hits. J. Chem. Inf. Model., 52(4):913–
926, March 2012.

[29] The Human Microbiome Project Consortium. Structure, function and diversity of
the healthy human microbiome. Nature, 486(7402):207–214, June 2012.

[30] E. K. Costello, C. L. Lauber, M. Hamady, N. Fierer, J. I. Gordon, and R. Knight.
Bacterial community variation in human body habitats across space and time.
Science, 326(5960):1694–1697, December 2009.

[31] E. K. Costello, C. L. Lauber, M. Hamady, N. Fierer, J. I. Gordon, and R. Knight.
Bacterial Community Variation in Human Body Habitats Across Space and Time.
Science, 326(5960):1694–1697, December 2009.

100

[32] William H. Day and Herbert Edelsbrunner. Efficient algorithms for agglomerative
hierarchical clustering methods. Journal of Classification, 1(1):7–24, December
1984.

[33] M. J. L. de Hoon, S. Imoto, J. Nolan, and S. Miyano. Open source clustering
software. Bioinformatics, 20(9):1453–1454, June 2004.

[34] Naryttza Diaz, Lutz Krause, Alexander Goesmann, Karsten Niehaus, and Tim
Nattkemper. TACOA - Taxonomic classification of environmental genomic frag-
ments using a kernelized nearest neighbor approach. BMC Bioinformatics,
10(1):56+, 2009.

[35] Juliane C. Dohm, Claudio Lottaz, Tatiana Borodina, and Heinz Himmelbauer.
SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo
genomic sequencing. Genome Research, 17(11):1697–1706, November 2007.

[36] Geoff M. Downs and John M. Barnard. Clustering Methods and Their Uses in
Computational Chemistry, pages 1–40. John Wiley and Sons, Inc., 2003.

[37] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification (2nd
Edition). Wiley-Interscience, 2000.

[38] Robert C. Edgar. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics (Oxford, England), 26(19):2460–2461, October 2010.

[39] Michael B. Eisen, Paul T. Spellman, Patrick O. Brown, and David Botstein. Clus-
ter analysis and display of genome-wide expression patterns. Proceedings of the
National Academy of Sciences, 95(25):14863–14868, December 1998.

[40] C. Elkan. Using the triangle inequality to accelerate kMeans, 2003.

[41] E. B. Fowlkes and C. L. Mallows. A Method for Comparing Two Hierarchical
Clusterings. Journal of the American Statistical Association, 78(383):553–569,
1983.

[42] Tarini Ghosh, M. Monzoorul Haque, and Sharmila Mande. DiScRIBinATE: a rapid
method for accurate taxonomic classification of metagenomic sequences. BMC
Bioinformatics, 11(Suppl 7):S14+, 2010.

[43] Steven R. Gill, Mihai Pop, Robert T. DeBoy, Paul B. Eckburg, Peter J. Turnbaugh,
Buck S. Samuel, Jeffrey I. Gordon, David A. Relman, Claire M. Fraser-Liggett, and
Karen E. Nelson. Metagenomic Analysis of the Human Distal Gut Microbiome.
Science, 312(5778):1355–1359, June 2006.

[44] Enrico Glaab, Jonathan M. Garibaldi, and Natalio Krasnogor. Learning pathway-
based decision rules to classify microarray cancer samples. In German Conference
on Bioinformatics 2010, volume 173 of Lecture Notes in Informatics, pages 123–
134. Gesellschaft fuer Informatik, 2010.

[45] A. Gobbi and M. L. Lee. DISE: Directed Sphere Exclusion. J. Chem. Inf. Comput.
Sci., 43(1):317–323, January 2003.

101

[46] Lieve Hamers, Yves Hemeryck, Guido Herweyers, Marc Janssen, Hans Keters,
Ronald Rousseau, and André Vanhoutte. Similarity measures in scientometric re-
search: The Jaccard index versus Salton’s cosine formula. Information Processing
& Management, 25(3):315–318, January 1989.

[47] J. Handelsman, M. R. Rondon, S. F. Brady, J. Clardy, and R. M. Goodman.
Molecular biological access to the chemistry of unknown soil microbes: a new
frontier for natural products. Chemistry & biology, 5(10), October 1998.

[48] J. Handl, J. Knowles, and D. B. Kell. Computational cluster validation in post-
genomic data analysis. Bioinformatics, 21(15):3201–3212, August 2005.

[49] S. J. Helyar, J. Hemmer-Hansen, D. Bekkevold, M. I. Taylor, R. Ogden, M. T.
Limborg, A. Cariani, G. E. Maes, E. Diopere, G. R. Carvalho, and E. E. Nielsen.
Application of SNPs for population genetics of nonmodel organisms: new oppor-
tunities and challenges. Molecular Ecology Resources, 11:123–136, 2011.

[50] R. P. Hertzberg and A. J. Pope. High-throughput screening: new technology for
the 21st century. Curr Opin Chem Biol, 4(4):445–451, August 2000.

[51] Matthias Hess, Alexander Sczyrba, Rob Egan, and et al. Metagenomic discovery of
biomass-degrading genes and genomes from cow rumen. Science, 331(6016):463–
467, 2011.

[52] Daniel H. Huson, Alexander F. Auch, Ji Qi, and Stephan C. Schuster. MEGAN
analysis of metagenomic data. Genome research, 17(3):377–386, March 2007.

[53] Laurent Jacob, Guillaume Obozinski, and Jean-Philippe Vert. Group lasso with
overlap and graph lasso. In ICML ’09: Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, pages 433–440, New York, NY, USA,
2009. ACM.

[54] A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clustering: A Review. ACM
Comput. Surv., 31(3):264–323, September 1999.

[55] Daxin Jiang, Chun Tang, and Aidong Zhang. Cluster analysis for gene expres-
sion data: a survey. IEEE Transactions on Knowledge and Data Engineering,
16(11):1370–1386, November 2004.

[56] William Jones. High-Throughput Sequencing and Metagenomics. Estuaries and
Coasts, pages 944–952, July 2010.

[57] Steven W. Kembel, Jonathan A. Eisen, Katherine S. Pollard, and Jessica L. Green.
The phylogenetic diversity of metagenomes. PLoS ONE, 6(8):e23214+, August
2011.

[58] Seyoung Kim and Eric P. Xing. Tree-guided group lasso for multi-task regression
with structured sparsity. In Proceedings of the 27th International Conference on
Machine Learning, 2010.

[59] William Klimke, Richa Agarwala, Azat Badretdin, Slava Chetvernin, Stacy Ciufo,
Boris Fedorov, Boris Kiryutin, Kathleen O’Neill, Wolfgang Resch, Sergei Res-
enchuk, Susan Schafer, Igor Tolstoy, and Tatiana Tatusova. The National Center

102

for Biotechnology Information’s Protein Clusters Database. Nucleic Acids Re-
search, 37(suppl 1):D216–D223, January 2009.

[60] Dan Knights, Elizabeth K. Costello, and Rob Knight. Supervised classification of
human microbiota. FEMS Microbiology Reviews, 35(2):343–359, 2011.

[61] Dan Knights, Laura W. Parfrey, Jesse Zaneveld, Catherine Lozupone, and Rob
Knight. Human-associated microbial signatures: examining their predictive value.
Cell Host Microbe, 10(4):292–296, October 2011.

[62] Lutz Krause, Naryttza N. Diaz, Alexander Goesmann, Scott Kelley, Tim W.
Nattkemper, Forest Rohwer, Robert A. Edwards, and Jens Stoye. Phylogenetic
classification of short environmental DNA fragments. Nucleic Acids Research,
36(7):2230–2239, April 2008.

[63] Drago Krznaric and Christos Levcopoulos. The first subquadratic algorithm for
complete linkage clustering. In John Staples, Peter Eades, Naoki Katoh, and Alis-
tair Moffat, editors, Algorithms and Computation, 6th International Symposium,
ISAAC 95, Cairns, Australia, December 4-6, 1995, Proceedings, volume 1004 of
Lecture Notes in Computer Science, pages 392–401. Springer, 1995.

[64] Drago Krznaric and Christos Levcopoulos. Optimal algorithms for complete link-
age clustering in d dimensions. In Igor Prvara and Peter Ruzicka, editors, Math-
ematical Foundations of Computer Science 1997, 22nd International Symposium,
MFCS 97, Bratislava, Slovakia, August 25-29, 1997, Proceedings, volume 1295 of
Lecture Notes in Computer Science, pages 368–377. Springer, 1997.

[65] Meelis Kull and Jaak Vilo. Fast approximate hierarchical clustering using similar-
ity heuristics. BioData Mining, 1(1):9+, 2008.

[66] E. S. Lander and M. S. Waterman. Genomic mapping by fingerprinting random
clones: a mathematical analysis. Genomics, 2(3):231–239, April 1988.

[67] Henry C. M. Leung, S. M. Yiu, Bin Yang, and et al. A robust and accurate
binning algorithm for metagenomic sequences with arbitrary species abundance
ratio. Bioinformatics, 27(11):1489–1495, June 2011.

[68] Xiaoman Li and Michael S. Waterman. Estimating the Repeat Structure and
Length of DNA Sequences Using l-Tuples. Genome Research, 13(8):1916–1922,
August 2003.

[69] Zhenqiu Liu, William Hsiao, Brandi L. Cantarel, Elliott F. Drábek, and Claire
Fraser-Liggett. Sparse distance-based learning for simultaneous multiclass classi-
fication and feature selection of metagenomic data. Bioinformatics, 27(23):3242–
3249, December 2011.

[70] Catherine Lozupone and Rob Knight. UniFrac: a new phylogenetic method
for comparing microbial communities. Applied and environmental microbiology,
71(12):8228–8235, December 2005.

[71] Catherine A. Lozupone and Rob Knight. Global patterns in bacterial diversity.
Proceedings of the National Academy of Sciences, 104(27):11436–11440, July 2007.

103

[72] Catherine A. Lozupone and Rob Knight. Species divergence and the measurement
of microbial diversity. FEMS Microbiology Reviews, 32(4):557–578, July 2008.

[73] Rachel Mackelprang, Mark P. Waldrop, Kristen M. DeAngelis, and et al. Metage-
nomic analysis of a permafrost microbial community reveals a rapid response to
thaw. Nature, 480(7377):368–371, 2011.

[74] J. B. MacQueen. Some Methods for classification and analysis of multivariate
observations. In Procedings of the Fifth Berkeley Symposium on Math, Statistics,
and Probability, volume 1, pages 281–297. University of California Press, 1967.

[75] David Madigan, Alexander Genkin, David D. Lewis, Dmitriy Fradkin, and David
D. Lewis Consulting. Bayesian multinomial logistic regression for author identifi-
cation. In In Maxent Conference, pages 509–516, 2005.

[76] Marcel Margulies, Michael Egholm, William E. Altman, and et al. Genome
sequencing in microfabricated high-density picolitre reactors. Nature,
437(7057):376–380, 2005.

[77] Alice C. McHardy, Hector G. Martin, Aristotelis Tsirigos, and et al. Accurate
phylogenetic classification of variable-length DNA fragments. Nature Methods,
4(1):63–72, 2006.

[78] Lukas Meier, Sara van de Geer, and Peter Buhlmann. The group lasso for lo-
gistic regression. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 70(1):53–71, February 2008.

[79] M. Monzoorul Haque, Tarini Shankar S. Ghosh, Dinakar Komanduri, and
Sharmila S. Mande. SOrt-ITEMS: Sequence orthology based approach for im-
proved taxonomic estimation of metagenomic sequences. Bioinformatics (Oxford,
England), 25(14):1722–1730, 2009.

[80] Daniel Müllner. fastcluster: Fast hierarchical, agglomerative clustering routines
for R and Python. Journal of Statistical Software, 53(9):1–18, 2013.

[81] F. Murtagh. Complexities of hierarchic clustering algorithms: state of the art.
Jomputational Statistic Quarterly, 1(2):101–113, 1984.

[82] F. Murtagh and P. Contreras. Fast, linear time, m-adic hierarchical clustering for
search and retrieval using the baire metric, with linkages to generalized ultramet-
rics, hashing, formal concept analysis, and precision of data measurement. P-Adic
Numbers, Ultrametric Analysis, and Applications, 4(1):46–56, 2012.

[83] Fionn Murtagh, Geoff Downs, and Pedro Contreras. Hierarchical clustering of
massive, high dimensional data sets by exploiting ultrametric embedding. SIAM
J. Scientific Computing, 30(2):707–730, 2008.

[84] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

104

[85] Shruthi Prabhakara and Raj Acharya. A two-way multi-dimensional mixture
model for clustering metagenomic sequences. In Proceedings of the 2nd ACM
Conference on Bioinformatics, Computational Biology and Biomedicine, BCB ’11,
pages 191–200. ACM, 2011.

[86] Morgan N. Price, Paramvir S. Dehal, and Adam P. Arkin. FastTree 2 Ap-
proximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE,
5(3):e9490+, March 2010.

[87] Fengzhu Sun Qin Chang, Yihui Luan. Variance adjusted weighted UniFrac: a
powerful beta diversity measure for comparing communities based on phylogeny.
BMC Bioinformatics, 12(1):118+, 2011.

[88] E. A. Patrick R. A. Jarvis. Clustering Using a Similarity Measure Based on Shared
Near Neighbors . JComputers, IEEE Transactions on, C-22(11), 1973.

[89] William M. Rand. Objective Criteria for the Evaluation of Clustering Methods.
Journal of the American Statistical Association, 66(336):846–850, 1971.

[90] Michael S. Rappé and Stephen J. Giovannoni. The uncultured microbial majority.
Annual review of microbiology, 57(1):369–394, 2003.

[91] Daniel C. Richter, Felix Ott, Alexander F. Auch, Ramona Schmid, and Daniel H.
Huson. MetaSim: a Sequencing Simulator for Genomics and Metagenomics. PLoS
ONE, 3(10):e3373+, October 2008.

[92] Patrick D. Schloss and Jo Handelsman. Introducing TreeClimber, a test to com-
pare microbial community structures. Appl. Environ. Microbiol., 72(4):2379–2384,
April 2006.

[93] Patrick D. Schloss, Sarah L. Westcott, Thomas Ryabin, Justine R. Hall, Martin
Hartmann, Emily B. Hollister, Ryan A. Lesniewski, Brian B. Oakley, Donovan H.
Parks, Courtney J. Robinson, Jason W. Sahl, Blaz Stres, Gerhard G. Thallinger,
David J. Van Horn, and Carolyn F. Weber. Introducing mothur: open-source,
platform-independent, community-supported software for describing and compar-
ing microbial communities. Applied and Environmental Microbiology, 75(23):7537–
7541, December 2009.

[94] Neethu Shah, Haixu Tang, Thomas G. Doak, and Yuzhen Ye. Comparing bacterial
communities inferred from 16S rRNA gene sequencing and shotgun metagenomics.
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, pages
165–176, 2011.

[95] R. Sibson. SLINK: An optimally efficient algorithm for the single-link cluster
method. The Computer Journal, 16(1):30–34, January 1973.

[96] Jared T. Simpson, Kim Wong, Shaun D. Jackman, Jacqueline E. Schein, Steven
J. M. Jones, and İnanç Birol. ABySS: A parallel assembler for short read sequence
data. Genome Research, 19(6):1117–1123, June 2009.

[97] Amoolya H. Singh, Tobias Doerks, Ivica Letunic, and et al. Discovering Functional
Novelty in Metagenomes: Examples from Light-Mediated Processes. J. Bacteriol.,
191(1):32–41, 2009.

105

[98] Xiaoquan Su, Jian Xu, and Kang Ning. Meta-Storms: efficient search for similar
microbial communities based on a novel indexing scheme and similarity score for
metagenomic data. Bioinformatics, 28(19):2493–2501, October 2012.

[99] Hanno Teeling, Jost Waldmann, Thierry Lombardot, Margarete Bauer, and Frank
Glockner. TETRA: a web-service and a stand-alone program for the analysis and
comparison of tetranucleotide usage patterns in DNA sequences. BMC Bioinfor-
matics, 5(1):163+, October 2004.

[100] Susannah G. Tringe, Christian von Mering, Arthur Kobayashi, and et al. Com-
parative Metagenomics of Microbial Communities. Science, 308(5721):554–557,
2005.

[101] Peter J. Turnbaugh, Micah Hamady, Tanya Yatsunenko, Brandi L. Cantarel,
Alexis Duncan, Ruth E. Ley, Mitchell L. Sogin, William J. Jones, Bruce A. Roe,
Jason P. Affourtit, Michael Egholm, Bernard Henrissat, Andrew C. Heath, Rob
Knight, and Jeffrey I. Gordon. A core gut microbiome in obese and lean twins.
Nature, 457(7228):480–484, January 2009.

[102] Peter J. Turnbaugh, Ruth E. Ley, Micah Hamady, Claire M. Fraser-Liggett,
Rob Knight, and Jeffrey I. Gordon. The Human Microbiome Project. Nature,
449(7164):804–810, October 2007.

[103] Peter J. Turnbaugh, Ruth E. Ley, Michael A. Mahowald, Vincent Magrini,
Elaine R. Mardis, and Jeffrey I. Gordon. An obesity-associated gut microbiome
with increased capacity for energy harvest. Nature, 444(7122):1027–1031, Decem-
ber 2006.

[104] Gene W. Tyson, Jarrod Chapman, Philip Hugenholtz, Eric E. Allen, Rachna J.
Ram, Paul M. Richardson, Victor V. Solovyev, Edward M. Rubin, Daniel S.
Rokhsar, and Jillian F. Banfield. Community structure and metabolism through
reconstruction of microbial genomes from the environment. Nature, 428(6978):37–
43, March 2004.

[105] Stijn van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University
of Utrecht, May 2000.

[106] J. Craig Venter, Karin Remington, John F. Heidelberg, Aaron L. Halpern, Doug
Rusch, Jonathan A. Eisen, Dongying Wu, Ian Paulsen, Karen E. Nelson, William
Nelson, Derrick E. Fouts, Samuel Levy, Anthony H. Knap, Michael W. Lo-
mas, Ken Nealson, Owen White, Jeremy Peterson, Jeff Hoffman, Rachel Par-
sons, Holly Baden-Tillson, Cynthia Pfannkoch, Yu-Hui Rogers, and Hamilton O.
Smith. Environmental Genome Shotgun Sequencing of the Sargasso Sea. Science,
304(5667):66–74, April 2004.

[107] Nguyen Xuan Vinh et al. Information theoretic measures for clusterings com-
parison: Variants, properties, normalization and correction for chance. J. Mach.
Learn. Res., 11:2837–2854, December 2010.

[108] Silke Wagner and Dorothea Wagner. Comparing clusterings- an overview. Tech-
nical report, Universität Karlsruhe (TH), 2007.

106

[109] Yi Wang, Henry Leung, S.M. Yiu, and Francis Chin. Metacluster 5.0: A two-
round binning approach for metagenomic data for low-abundance species in a
noisy sample. In Proceedings of the ECCB, 2012. To appear.

[110] Yi Wang, Henry C. Leung, S. M. Yiu, and Francis Y. Chin. MetaCluster 4.0:
A Novel Binning Algorithm for NGS Reads and Huge Number of Species. Jour-
nal of computational biology : a journal of computational molecular cell biology,
19(2):241–249, 2012.

[111] Joe H. Ward. Hierarchical Grouping to Optimize an Objective Function. Journal
of the American Statistical Association, 58(301):236–244, March 1963.

[112] Rene L. Warren, Granger G. Sutton, Steven J. M. Jones, and Robert A. Holt.
Assembling millions of short DNA sequences using SSAKE. Bioinformatics,
23(4):500–501, February 2007.

[113] M.C. Wendl and R.H. Waterston. Generalized gap model for bacterial artificial
chromosome clone fingerprint mapping and shotgun sequencing. Genome Res,
12(1):19431949, 2002.

[114] D. L. Wheeler, T. Barrett, D. A. Benson, S. H. Bryant, K. Canese, V. Chetvernin,
D. M. Church, M. Dicuccio, R. Edgar, S. Federhen, L. Y. Geer, Y. Kapustin,
O. Khovayko, D. Landsman, D. J. Lipman, T. L. Madden, D. R. Maglott, J. Os-
tell, V. Miller, K. D. Pruitt, G. D. Schuler, E. Sequeira, S. T. Sherry, K. Sirotkin,
A. Souvorov, G. Starchenko, R. L. Tatusov, T. A. Tatusova, L. Wagner, and
E. Yaschenko. Database resources of the National Center for Biotechnology Infor-
mation. Nucleic Acids Research, 35(Database issue), January 2007.

[115] James Robert White, Niranjan Nagarajan, and Mihai Pop. Statistical methods for
detecting differentially abundant features in clinical metagenomic samples. PLoS
computational biology, 5(4):e1000352+, April 2009.

[116] Tanja Woyke, Hanno Teeling, Natalia N. Ivanova, and et al. Symbiosis insights
through metagenomic analysis of a microbial consortium. Nature, 443(7114):950–
955, 2006.

[117] Dongying Wu, Sean C. Daugherty, Susan E. Van Aken, Grace H. Pai, Kisha L.
Watkins, Hoda Khouri, Luke J. Tallon, Jennifer M. Zaborsky, Helen E. Dunbar,
Phat L. Tran, Nancy A. Moran, and Jonathan A. Eisen. Metabolic Complemen-
tarity and Genomics of the Dual Bacterial Symbiosis of Sharpshooters. PLoS Biol,
4(6):e188+, June 2006.

[118] Tong T. Wu, Yi F. Chen, Trevor Hastie, Eric Sobel, and Kenneth Lange. Genome-
wide association analysis by lasso penalized logistic regression. Bioinformatics,
25(6):714–721, March 2009.

[119] Yu-Wei Wu and Yuzhen Ye. A novel abundance-based algorithm for binning
metagenomic sequences using l-tuples. In Proceedings of the 14th annual interna-
tional conference on Research in computational molecular biology, RECOMB’10,
pages 535–549. Springer, 2010.

[120] Bin Yang, Yu Peng, Henry Leung, and et al. Unsupervised binning of environ-
mental genomic fragments based on an error robust selection of l-mers. BMC
Bioinformatics, 11(Suppl 2):S5+, 2010.

107

[121] C. Yang, D. Mills, K. Mathee, Y. Wang, K. Jayachandran, M. Sikaroodi,
P. Gillevet, J. Entry, and G. Narasimhan. An ecoinformatics tool for micro-
bial community studies: supervised classification of amplicon length heterogeneity
(ALH) profiles of 16S rRNA. Journal of Microbiological Methods, 65(1):49–62,
2006.

[122] Fang Yang, Xiaowei Zeng, Kang Ning, and et al. Saliva microbiomes distinguish
caries-active from healthy human populations. The ISME Journal, 6(1):1–10,
2011.

[123] Yuzhen Ye. Identification and quantification of abundant species from pyrose-
quences of 16S rRNA by consensus alignment. Proceedings. IEEE International
Conference on Bioinformatics and Biomedicine, 2010:153–157, February 2011.

[124] Gangman Yi, Michael R. Thon, and Sing-Hoi H. Sze. Supervised protein family
classification and new family construction. Journal of computational biology : a
journal of computational molecular cell biology, 19(8):957–967, August 2012.

[125] Daniel R. Zerbino and Ewan Birney. Velvet: Algorithms for de novo short read
assembly using de Bruijn graphs. Genome Research, 18(5):821–829, May 2008.

[126] Aibin Zhan, Martin Hulk, Francisco Sylvester, Xiaoting Huang, Abisola A. Ade-
bayo, Cathryn L. Abbott, Sarah J. Adamowicz, Daniel D. Heath, Melania E.
Cristescu, and Hugh J. MacIsaac. High sensitivity of 454 pyrosequencing for de-
tection of rare species in aquatic communities. Methods in Ecology and Evolution,
4(6):558–565, 2013.

[127] Qi Zhang, Eric Yi Liu, Abhishek Sarkar, and Wei Wang. Split-order distance
for clustering and classification hierarchies. In In proceeding of: Scientific and
Statistical Database Management, 21st International Conference, SSDBM 2009,
2009.

[128] Tong Zhang and Frank J. Oles. Text categorization based on regularized linear
classification methods. Information Retrieval, 4:5–31, 2000.

[129] Peng Zhao, Guilherme Rocha, and Bin Yu. The composite absolute penal-
ties family for grouped and hierarchical variable selection. Annals of Statistic,
37(6A):3468–3497, 2009.

[130] Fengfeng Zhou, Victor Olman, and Ying Xu. Barcodes for genomes and applica-
tions. BMC Bioinformatics, 9(1):546+, 2008.

108

