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We characterize the dual of the generalized hexagons naturally associated to the groups 
G2(q) and 3D4(q) by looking at certain configurations, and also by considering intersections 
of traces. For instance, the dual of a generalized hexagon F of finite order (s, t) is associated 
to the Chevaliey groups mentioned above if and only if the intersection of any two traces x v 
and x z, with some additional condition, contains at most t /s  + 1 elements. 

1 I N T R O D U C T I O N  

A finite generalized polygon of order (s, t), 1 < s, t < 0% is a point-line incidence geometry 
whose incidence graph has girth 2n and diameter n, for some natural number n, n _> 2 (in 
which case we also speak about a generalized n-gon), such that  there are exactly s + 1 points 
incident with any line, and t + 1 lines incident with any point. We have excluded the trivial 
case 8 = t = 1 and the cases t = 1 or s = 1 which can be reduced to the case 8, t > 1 by 
considering an appropriate generalized n/2-gon. Generalized polygons were introduced by 
TiTS [13]. For all extensive survey including most proofs, we refer to VAN MALDEGHEM 
[16], For the finite case, with emphasis on the generalized quadrangles, THAS [12] provides 
an overview, but mostly without proofs. For finite generalized quadrangles, see PAYNE 
THAS [7] (including a lot of proofs). 

In this paper, we are only concerned with (finite) generalized 6-gons, or hexagons. However, 
we would like to refer to similar situations in the theory of finite generalized quadrangles 
and octagons, and in order to be able to do so, we have given the general definition above. 
For example, some of the results we present in this paper have their roots in a recent 
characterization of the Ree-Tits octagons in VAN MALDEGttEM [16]. We will explain this 
below. Note tha t  by a well-known result of FElT & HIGMAN [5] finite generalized n-gons of 
order (8, t), with s , t  > 1, only exist for n = 3 ,4 ,6 ,8  (excluding the trivial case n = 2). 
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For each of the cases n = 4, 6, 8, there are so-called classical examples, which serve as 
standard examples, but which are also characterized by a group-theoretical condition. For 
the aim of the present paper, it suffices to mention that  these (finite) classical examples 
are the ones arising naturally from a (finite) Chevalley group of rank 2 (including the Ree 
groups in characteristic 2) by taking as points and lines the (left) cosets of the two respective 
maximal parabolic subgroups with respect to a fixed Borel subgroup (and a point and a line 
are incident if the corresponding cosets have nonempty intersection). The hexagons and 
octagons among them can be described geometrically as follows (for the type of a triality, 
we use the notation of TITS [13]): 

(1) The split Cayley hexagon H(q) is the geometry of absolute points and lines of a triality of 
type Iid on the triality quadric Q+(7, q) (in PG(7 ,  q)). It has a representation on the quadric 
Q(6, q) in PG(6 ,  q). Its order is (q, q). 

(2) The twisted triality hexagon T(q 3, q). This is the geometry of absolute points and lines 
of a triality of type Iq) on the triality quadric Q+(7, qa). It has order (qa, q). 

(3) Finally, the Ree-Tits octagon O(q) is the geometry of absolute points and lines of any 
polarity in a metasymplectic space over the field GF(q),  q = 22~+1. Here the order is (q, q2). 

We will call these examples classical. The generalized polygons obtained from these by 
interchanging the roles of the points and the lines, are then called dual classical. 

Let P be any generalized hexagon (or polygon). For any point x, we denote by P~(x) the 
set of elements of F at distance i from x (measured in the incidence graph; we denote that 
distance function by 5). Dually, we will use the notation Fj(L) for a line L. Two elements are 
called opposite if they are at maximal distance from each other. In particular, for hexagons, 
two points are opposite if they are at distance 6 from each other. For two opposite points x, y 
of a hexagon F, we denote by x v the set F2(x) N F4(y). Also, we write (x, y) = I~3(x) CI lP3(y). 
The set x ~ is usually called a trace (more precisely, a distance-2-trace), while the set (x, y} 
is sometimes called a regulus (or in a more systematic terminology, a distance-3-traee). The 
dual of a regulus is called a dual regulus and denoted by (L, M} for two opposite lines L, M 
at distance 3 from every point of the dual regulus. For two points y, z opposite some point 
x, we denote by x {y'z} the set of points w C x y Nx ~ such that F~(w) n P3(y) nP3(z) is empty. 
If two elements u, v of a generalized polygon are not opposite, then there is a unique element 
incident with u and nearest to v; we denote this element by proj ,v  and call it the projection 
of v onto u. If two elements u ,v  are at distance 4 in a generalized hexagon F, then the 
unique element of F2(u) N F2(v) will be denoted by u M v. Finally, we denote the unique line 
incident with two distinct collinear points x and y by xy. 

The following theorem is a consequence of the main result of RONAN [8]. 

T H E O R E M  ( R o n a n  [8]). I f  in a finite generalized hexagon F of order (s,t),  s , t  > 1, for 
all points x , y , z ,  with both y and z opposite z, we have Ix ~ Nx~l E {0,1, t  + 1}, then F is 
isomorphic to either H(s) or T(t 3, t). 

Furthermore, the converse also holds. With the terminology of VAN MALDEGHEM [14], the 
property stated in the above theorem is called distanee-2-regularity. 

From this result, lots of other geometric and combinatorial characterizations of H(q) and 
T(q 3,q) were derived. We refer to results of RONAN [10], THAS [11], DE SMET & VAN 
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MALDEGHEM [3], VAN BON, CUYPERS ~ VAN MALDEGHEM [i], GOVAERT [6] and BROUNS 
(% VAN MALDEGHEM [2]. All these results use certain point sets to characterize H (q) and/or  
T(q a, q) (sometimes for restricted values of q). We know of only one characterization of the 
duals of H(q) and T(q 3, q) using points sets, and that  is due to R.ONAN [10] (if we do not 
count the characterization of both T(q a, q) and its dual in RONAN [9]). In the present paper, 
we present some new characterization results of the duals of H(q) and T(q a, q) using certain 
point sets. In some cases, it seems to be already interesting to prove the condition we 
consider in the respective cases! 

ACKNOWLEDGEMENT.  The first author is a research assistant of the FWO, the Fund for  
Scientific Research - Flanders (Belgium) and the second author is a Research Director of 
the FWO. 

2 STATEMENT OF THE RESULTS 

Let us start by writing down some lesser-known properties of the duals of H (q) and T(q 3, q). 

T H E O R E M  1 Let F be dual to either H(q) or T(q3, q). Let (q,t) be its order (hence t E 
{q, qa}). Then we have: 

(i) Suppose that q is not divisible by 3 when t = q. I f  the distinct points v , w , x , y , z  are 
such that y , z  C F6(x) and v , w  E x y M x ~, with proj .y = proj .z  and proj~y ~ proj~z, then 
Ix y Nx~l = t / q  + 1. 

(ii) Suppose t = q and q is not divisible by 3. I f  the distinct points v, w, x, y, z are such 
that y , z  e F6(x) and v , w  E x y M x ~, with proj ,y  ~ proj ,z  and proj~y ~ projwz , then 

= nz l = 3. 

(iii) I f  a point x is at distance 4 from a point y of a dual regulus R, and i f  all elements of 
R \ {y} are opposite x,  then all these elements are at distance 4 from x ~ y. 

We will prove this result in the next section. We now consider slightly weaker versions of (i) 
and (ii) for a generalized hexagon of order (q, t): 

(i)' If the distinct points v , w , x , y , z  are such that  y , z  E Fa(x) and v , w  C x y M x z, with 
proj ,y  = proj ,z  and proj~y # proj~z, then ]x y M xZl < t /q  + 1. 

(ii)' Suppose t = q. If the distinct points v, w, x, y, z are such that y, z ~ F6(x) and v, w C 
x y M x z, with proj ,y  # proj .z  and proj~y # proj~z, then Ix{v,z}l = I xv M x~l > 3. 

We can now state our main results: 

T H E O R E M  2 Let F be a finite generalized hexagon of order (q, t). 

(a) I f  F satisfies Condition (i)', then it is dual to either H(q), q not divisible by 3, or T(q a, q). 

(b) I f  F satisfies Condition (ii)', then it is dual to H(q), q not divisible by 3. 

(c) I f  q is even and F satisfies Condition (iii), then it is dual to either H(q) or T(q 3, q). 
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We remark tha t  all classical hexagons of order (s, t) with s odd satisfy Condit ion (iii). Hence 
in order to obtain the dual of some classical hexagons, the condition q even in (c) above is 
necessary. Also, in (a) it  is not necessarily understood that  t/q is an integer or tha t  t > q. 

The characterizations (a) and (b) above are par t ly  inspired by the characterization of the Ree- 
Tits octagons in VAN MALDEGHEM [15]. Indeed, the Ree-Tits octagons are characterized by 
some intersection propert ies of traces x y, from the point of view of the elements at  distance 
3 from x and 5 from y. This is exactly what happens in (a) and (b): given some propert ies  
of x y n x ~ and of (x, y) Cl (x, z), we require tha t  we know what  x y R x ~ looks like. 

As a corollary to our proof of Theorem 2(c), we obtain a common characterization of T (q3, q), 
q odd, and the dual of T(q s, q), q any prime power. See Remark 1 of Section 5. 

3 P R O O F  OF T H E O R E M  1 

Let r be dual to either H(q) or T(q 3, q). First ,  we consider Condit ion (i). Let v ,w,  x ,y ,  z 
be as in (i). Let L = p r o j v y = p r o j , z ,  let My = p r o j ~ y a n d l e t  M, = proj~z.  Let a b e  
the unique point  of (L, Mz) at distance 4 from y. By RONAN [8](5.8), we have x * = x a. By 
RONAN [10], we have Ix a n xYl = t / q  + 1. This proves (i). 

Now we show (ii). So we assume tha t  F is dual  to H(q), q not a multiple of 3. Let v ,w,x ,y ,  z 
be as in (ii), and put  Ly = proj~y, Lz = proj ,z ,  My = proj~y and Mz = proj~z.  From the 
explicit form of generalized homologies in D s  SMET & VAN MALDEGHEM [4], we deduce 
that  the stabilizer in the automorphism group of P of {x, v,w, z, My} acts t ransi t ively on 
the set F i (v)  \ {vx, L~}. For any line L E Fi (v)  \ {vx}, let u L be the unique point  of (L, My> 
closest to y. The q traces x "L thus obtained meet pairwise in {v, w}, by (i). Hence their 
union meets x ~ in q + 1 points. By the t ransi t ivi ty  jus t  mentioned, the q - 1 traces x ~L, with 
L E F i ( v ) \  {vx, Lz} meet x z in a constant number of points, while x ~Lz meets x ~ in just  
{v, w}. I t  now follows tha t  Ix z Cl x "L I = 3, for all L E Fl(v)  \ {vx, Lz}. The other assertion 
follows readily from (i). 

Finally, we show (iii). So let x be at distance 4 from a point y, suppose tha t  y belongs 
to a dual  regulus R and let x be opposite every element of R \ {y}. Pu t  L = proj~y and 
R = (M,N).  Note that ,  by RONAN [8](5.8), M and N can be chosen arbi t rar i ly  in (y,z), 
for any z E R \ {y}. In particular,  we may choose M at distance _< 4 from L. Now suppose 
3(L, M)  = 4. Then the point x N y does not belong to M; we deduce tha t  x N y is opposite 
every element of R \ {y}. Since IRI = q + 1, and since also x is opposi te  every element of 
R \ {y}, there must  be some point  w incident with L which is at  distance 4 from at least 
two points zl,z2 E R \  {y}. Now we may choose N in such a way that  it meets p ro j , lw  (and 
clearly this is allowed since p r o j z y  does not meet M). Note that  8(z~, M)  = 3. Wi th  dual 
notation, we thus obta in  {projyN, proj,~N, proj~ 2 N} ___ N M, and {projyN, projz ~ N} _C N L. 
By the dual of the distance-2-regularity, we must have 3(L, proj~2N ) = 4. But then, there 
are two shortest  paths  from w to N,  a contradiction. Hence 3(L, M)  = 2 and consequently 
z N y is incident with M. Clearly x ~ y is now at distance 4 from every element of R \ {y}. 

Theorem 1 is completely proved. 
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Note that  an alternative proof with coordinates in the sense of DE SMET g~; VAN MALDEG- 
HEM [4] would be very easy and short here, but less beautiful than the geometric arguments 
given above. 

4 PROOF OF THEOREM 2 

We now prove the characterizations given in (a), (b) and (c) of Theorem 2. First we introduce 
a little bit of terminology. Let F be a generalized hexagon. We say that  F is distance-3- 
reguIari f for  every pair of opposite lines L, M we have (x, y> = (a, b} for all x, y, a, b E (L, M}, 
with x r y and a 7 ~ b. This is called the regulus condition in RONAN [8]. 

4.1 PROOF OF (a) 

Let x, y, v, w be as in (i)' and put u = v ~ y. We first count the number of pairs (a, b), with 
a E P2(x) \ (Fl(VX) U Fl(wx)), b e u ~ \ {v} and with 5(a, b) = 4. Let k be the number of 
possible choices for a. When we fix a, then the set of points b is exactly (u a A u ~) \ {v}. By 
Condition (i)', there are at most t / q  such points. 

Now we first fix b and we easily obtain that  there are exactly t ( t  - 1) such pairs. Hence we 
have k .  ~t _> t ( t -  1). Since clearly k _< q(t - 1), we need the equality everywhere. This 
shows that  every element of P2(x) \ (Pl (vx)  O F 1 (wx) )  is the projection of exactly t / q  points 
of u w \ {v}. 

Now we prove that  F is distance-3-regular. Let z E (uv, proj~y) \ {z, y} be arbitrary. We 
must show that  5(z,  L) = 3, for all L C (x, y). We count the number of pairs (a, b) with 
a C x ~ \ {v, w}, b E u ~ \ {v} and with 5(a, b) = 4. By the previous paragraph, this number 
is equal to ( t -  1) �9 ~.t On the other hand, if b r y, then there at most q-t _ 1 choices for a, 
by Condition (i)'. Put t ing g = Ix y M x z \ {% w}[, we hence obtain 

( t - 1 ) . q _ <  ( t - l ) (  -1)+e, 

implying s = t - 1, which means that  x y = x z. It is now easily seen that  proj~y = proj~z for 
t all r C x y M x z, for otherwise Condition (i)' would imply that  ]x ~ M z~l _< ~ + 1 < t + 1. 

The result now follows directly from RONAN [10]. 

4.2 PROOF OF (b) 

Our aim is to show that  Condition (i) is satisfied for q = t. The result will then follow from 
(a), 
So let v , w , x , y , z  be as in (i). Put  u = v • y and u ~ = w N y. If z is collinear with u, then 
it is clear that  proj~y ~r proj~z for every r E x ~ M x ~ \ {v}. Hence, since proj ,y  = proj,z,  no 
such point r different from w exists by Condition (ii)'. So in this case I x~ Cl xZl = 2. 
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Suppose now tha t  5(u ,z )  = 4. Let T = {z"lr  C Pz(U')A C4(v) N F6(z)}. By the previous 
paragraph,  every two elements of T meet in just  {v, w}. Also, T A x ~ contains at  least one 
element different from v ,w ,  for all T C T \ {zY}. Since this gives rise to at  least q - 1 
elements of z ~ \ {v, w}, there is no room anymore in z ~ for elements of z ~ \ {% w}. We have 
shown z v N z* = {% w} and so, (a) applies. The result follows. 

4.3 P R o o P  oF (c) 

We show (c) in three steps. In the first two steps, we do not use the fact tha t  q is even. 

(I) We first show tha t  (iif) implies distance-3-regularity. Let x, y, z be three dist inct  points 
of a dual regulus ( L , M )  and let N r (x ,v ) .  We have to show tha t  5(z, iv) = 3. Let 
v = projNa and let w = projNy. 

Suppose tha t  there exists a line N '  E Fx(v) \ {vr at distance 5 from every element of 
(L, M> \ {x}. Consider the project ion of {L, M} onto N ~. Since v is the image of at least 
two points (x and y), this mapping is not injective, hence neither is it surjective. So there 
is a point  incident with iV' opposite every element of (L, M) \ {z}. Condit ion (if i) implies 
now tha t  every point  of (L, M> \ {r is at distance 4 from v. As a consequence, every point 
z ~ of <L, M> \ {g} is at  distance 5 from every element N" of Pl(w) \ {N} (otherwise there 
arises a circuit of length 5(z', v) + 5(% N")  + 6(N",  z') < 4 + 3 + 5). Hence, interchanging 
the roles of v and w, we see that  6(z, v) = 6(z, w) = 4, which is only possible if 5(z, N )  = 3. 

Now suppose tha t  for every line iv' 7 ~ vx through v there exists a point of <L, M) \ {z} at 
distance 3 from N' .  By an argument in the previous paragraph,  this is also true mutat is  
mutandis  for every line iv" 7 ~ wy  through w. Put  z ~ = projLz and z" = projMz. Note tha t  
at least one of the lines zz  ~ and zz"  is opposite iv, otherwise 6(z, N) = 3 and we are done. 
Suppose 6(zz" ,  N) = 6. Similarly, z is opposite at  least one of v, w. Suppose 5(v, z) = 6. Let 
r be the project ion of v onto zz"  (then z 7/= r =/z").  Put  Ri  = proj~r and R2 = proj~v (then 
R1 • N) .  By assumption, there exists a point p' E (L, M} \ {x} at distance 3 from R1 (and 
note tha t  projRlp ~ • r ~ v because otherwise y~, projMy ~, z H, r, r M v defines a pentagon).  
We consider the project ion of <L, M} onto the line R2. Since z and y'  are both mapped  
on v N v, this project ion is, as above, not surjective, and hence, again as before, r must 
be at distance 4 from every element of <L, M} \ {z}, a final contradiction as, for example, 

5(r , z )  = 6. 

We have shown the distance-3-regularity. 

( I I )  We now show that ,  if a point z is at distance at most 4 from at least three points 
Yl,Y2, Y3 of a dual  regulus R, then it is at  distance 2 from a unique element of R and at 
distance 4 from all other elements of R. It is easily seen that  this follows immedia te ly  from the 
distance-3-regulari ty shown in (I) whenever proj~yl = proj~y2. Hence we may suppose that  
the project ions of Yl, Y2, Y3 onto z are three distinct lines. It suffices to find a contradiction. 
Put  N = proj~y~. If N is at distance 3 from an element of R \ {y~}, then again, by the 
distance-3-regularity, the result follows. So we may assume that  every point of R \ {Yl} is 
at distance 5 from N. We then consider the projection of R onto N.  Since Y2 and Y3 have 
the same image, there is some point incident with N and distinct from z ~ Yl opposi te  every 
element of R \ {y~}. Condit ion (iii) implies that  5(y2, z ~ y~) = 4, a contradiction. 
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(III) Finally we suppose that  q is even and we show that  every line L of F is at distance at 
most 4 from at least one line of any regulus (x, y}. Let R be the dual regulus {M, N}, with 
M, N E (x, y} and M # N. If L is at  distance 3 from some point of R, then the distance- 
3-regularity immediately implies the result. So we may assume that  L is at distance 5 from 
every point of R. Hence, by (II), no point incident with L is the projection of at least 3 
elements of R. Since q + ] is odd, there is a point v on L which is the projection of exactly 
one point z of R. Condition (iii) now implies that  v ~ z is at distance 4 from every point of 
R \ {z}. By the distance-3-regularity, the projection of any element of R \ {z} is a (unique) 
line of (x, y}, which is hence at distance 4 from L. We have shown the result. 

Now (c) follows from (III) and Theorem I of GOVAE~T [6], which says that  a finite generalized 
hexagon F is isomorphic to H(q) or to T(q 3, q), both with q even, if and only if for any point 
x and any pair of lines L, M, there exists at least one point not opposite x at distance _< 3 
from both L and M. 

5 S O M E  I:~EMAI:tKS 

REMARK 1 

Following VAN MALDEGHEM [16], let us call a finite generalized hexagon of order (s, t) with 
s = t a or t = s 3 an extremal hexagon. From (I) of the proof of Theorem 2(c) above and the 
main result of RONAN [9], we deduce: 

C O R O L L A R Y  1 I f P  is an extremal hexagon satisfying Condition (iii), then it is isomor- 
phic or dual to T(q 3, q). 

If F is isomorphic to T(q 3, q), then it satisfies Condition (iii) if and only if q is odd. This can 
easily be proved using explicit coordinates, as for instance in DE SMET & VAN MALDEGHEM 
[4]. 

REMARK 2 

Probably, the proper ty  mentioned in (ii) above is the best analogue for hexagons of anti- 
regularity for generalized quadrangles (defined in case of order (s, s)). Indeed, one easily 
deduces from PAYNE &: THAS [7] that  a finite generalized quadrangle F is anti-regular if 
for any three points x , y , z ,  with z , y  both opposite x, such that  IP2(x) A F2(y) N F2(z)[ _> 1 
and ]rl(W ) N •I(Y) N rl(Z)l  • 0 ,  for at least one element w of r2(x) A r2(y) N C2(z), we 
have tha t  [P2(x) n Fe(y) n F2(z)[ = 2 and ]Pl(w) N Pl(y) N Pl(z)[ = 0, for all elements w of 
P2(x) N F2(y) N P~(z). Hence, one can generalize this property to finite generalized 2n-gons 
(of order (s, s)) in such a way that  for hexagons we obtain (ii), as follows: 

For any three points x, y, z, with z, y both opposite x, such that IF2 (x) N F2n-2 (y) A F2~-2 (z)] > 
? Z - -  1 and 1171(w) NF2n_3(y ) ~I~2n_3(z)l : 0, for  at least n--  1 elements w of re(x)  nFe~_e(y) n 
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we have that = a n d  = 0 ,  

for all elements iv of F2(x) Yl F2.-2(y) N F2.-2(z). 

If we call this property anti-regularity, then we might rephrase Theorem 2(b) as follows: 

C O R O L L A R Y  2 A finite generalized hezagon of order (s, s) is anti-regular if and only if 
it is dual to the classical hezagon H(s), with s not a power of 3. 

In particular, for an anti-regular finite generalized hexagon of order (s, s) one automatically 
has that s is not a power of 3. 

The finite anti-regular quadrangles are not all classified, although it has been conjectured 
that they should be dual to the quadrangle W(s) arising from a sympleetic polarity in 
PG(3, s), s not a power of 2, This once again shows the similarity between the symplectic 
quadrangle W(s) and the split Cayley hexagon H (s), see various places in VAN MALDEGHEM 
[ t6 ] .  
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